Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions
Abstract
:1. Introduction
1.1. Pulmonary Surfactant
1.2. Acute Respiratory Distress Syndrome (ARDS)
2. Surfactant Abnormalities in ARDS
2.1. Lung Fluid Phospholipid Alterations in ARDS
2.2. Surfactant Protein Alterations in ARDS
2.3. Surfactant Extraction and Analytical Methods
3. Molecular Mechanisms of Surfactant Alterations in ARDS
4. Surfactant Replacement in ARDS
Surfactant Replacement Clinical Trials
5. Surfactant Replacement-Unanswered Research Questions
5.1. Surfactant Preparation: Synthetic vs. Natural Surfactant Replacement
5.2. The Mode of Surfactant Delivery
5.3. Surfactant Delivery via High Flow Nasal Oxygen and Non-Invasive Ventialtion
5.4. The Dose of Surfactant
5.5. Pharmacokinetics of Replaced Surfactant and the Duration of Surfactant Therapy
5.6. Heterogeneity of ARDS Patients and Treatment Effect
6. Pulmonary Surfactant as An Antioxidant to Minimize Oxidative Damage
7. Can Alveolar Biomarkers Help to Identify Surfactant Deficiency vs. Surfactant Inhibition and Requirement for Multiple Dosing during Replacement
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batenburg, J.J. Surfactant phospholipids: Synthesis and storage. Am. J. Physiol. 1992, 262 Pt 1, L367–L385. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Mallampalli, R.K. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann. Am. Thorac. Soc. 2015, 12, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Chroneos, Z.C.; Sever-Chroneos, Z.; Shepherd, V.L. Pulmonary surfactant: An immunological perspective. Cell Physiol. Biochem. 2010, 25, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Postle, A.D.; Heeley, E.L.; Wilton, D.C. A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 129, 65–73. [Google Scholar] [CrossRef]
- Dushianthan, A.; Goss, V.; Cusack, R.; Grocott, M.P.; Postle, A.D. Phospholipid composition and kinetics in different endobronchial fractions from healthy volunteers. BMC Pulm. Med. 2014, 14, 10. [Google Scholar] [CrossRef]
- Bernhard, W.; Pynn, C.J.; Jaworski, A.; Rau, G.A.; Hohlfeld, J.M.; Freihorst, J.; Poets, C.F.; Stoll, D.; Postle, A.D. Mass spectrometric analysis of surfactant metabolism in human volunteers using deuteriated choline. Am. J. Respir. Crit. Care Med. 2004, 170, 54–58. [Google Scholar] [CrossRef]
- Possmayer, F. Biophysical activities of pulmonary surfactant. Fetal Neonatal Physiol. 1991, 2, 949–956. [Google Scholar]
- Wright, J.R. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 2005, 5, 58–68. [Google Scholar] [CrossRef]
- Whitsett, J.A.; Wert, S.E.; Weaver, T.E. Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu. Rev. Med. 2010, 61, 105–119. [Google Scholar] [CrossRef]
- Watson, A.; Madsen, J.; Clark, H.W. SP-A and SP-D: Dual Functioning Immune Molecules with Antiviral and Immunomodulatory Properties. Front. Immunol. 2021, 11, 622598. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Goss, V.; Hunt, A.N.; Postle, A.D. Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim. Biophys. Acta 2013, 1831, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Agassandian, M.; Mallampalli, R.K. Surfactant phospholipid metabolism. Biochim. Biophys. Acta 2013, 1831, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Dushianthan, A.; Grocott, M.P.; Postle, A.D.; Cusack, R. Acute respiratory distress syndrome and acute lung injury. Postgrad. Med. J. 2011, 87, 612–622. [Google Scholar] [CrossRef]
- Matthay, M.A.; Arabi, Y.M.; Siegel, E.R.; Ware, L.B.; Bos, L.D.J.; Sinha, P.; Beitler, J.R.; Wick, K.D.; Curley, M.A.Q.; Constantin, J.M.; et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med. 2020, 46, 2136–2152. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef]
- Bos, L.D.J.; Ware, L.B. Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet 2022, 400, 1145–1156. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Xi, X.; Zhou, J.X.; The China Critical Care Sepsis Trial (CCCST) Workgroup. The Association Between Etiologies and Mortality in Acute Respiratory Distress Syndrome: A Multicenter Observational Cohort Study. Front. Med. 2021, 8, 739596. [Google Scholar] [CrossRef]
- Engelhardt, L.J.; Olbricht, C.; Niemann, M.; Graw, J.A.; Hunsicker, O.; Weiss, B.; Bunger, V.; Weber-Carstens, S.; Boie, S.D.; Piper, S.K.; et al. Outcome Comparison of Acute Respiratory Distress Syndrome (ARDS) in Patients with Trauma-Associated and Non-Trauma-Associated ARDS: A Retrospective 11-Year Period Analysis. J. Clin. Med. 2022, 11, 5734. [Google Scholar] [CrossRef]
- Yang, P.; Formanek, P.; Scaglione, S.; Afshar, M. Risk factors and outcomes of acute respiratory distress syndrome in critically ill patients with cirrhosis. Hepatol. Res. 2019, 49, 335–343. [Google Scholar] [CrossRef]
- Doyle, H.R.; Marino, I.R.; Miro, A.; Scott, V.; Martin, M.; Fung, J.; Kramer, D.; Starzl, T.E. Adult respiratory distress syndrome secondary to end-stage liver disease-successful outcome following liver transplantation. Transplantation 1993, 55, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.G.; Calfee, C.S. ARDS Subphenotypes: Understanding a Heterogeneous Syndrome. Crit. Care 2020, 24, 102. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.R.; Zemans, R.L.; Ware, L.B.; Schmidt, E.P.; Riches, D.W.H.; Bastarache, L.; Calfee, C.S.; Desai, T.J.; Herold, S.; Hough, C.L.; et al. New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. Am. J. Respir. Cell Mol. Biol. 2022, 67, 284–308. [Google Scholar] [CrossRef] [PubMed]
- Petty, T.L.; Silvers, G.W.; Paul, G.W.; Stanford, R.E. Abnormalities in lung elastic properties and surfactant function in adult respiratory distress syndrome. Chest 1979, 75, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Hallman, M.; Spragg, R.; Harrell, J.H.; Moser, K.M.; Gluck, L. Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J. Clin. Investig. 1982, 70, 673–683. [Google Scholar] [CrossRef]
- Pison, U.; Seeger, W.; Buchhorn, R.; Joka, T.; Brand, M.; Obertacke, U.; Neuhof, H.; Schmit-Neuerburg, K.P. Surfactant abnormalities in patients with respiratory failure after multiple trauma. Am. Rev. Respir. Dis. 1989, 140, 1033–1039. [Google Scholar] [CrossRef]
- Pison, U.; Obertacke, U.; Brand, M.; Seeger, W.; Joka, T.; Bruch, J.; Schmit-Neuerburg, K.P. Altered pulmonary surfactant in uncomplicated and septicemia-complicated courses of acute respiratory failure. J. Trauma 1990, 30, 19–26. [Google Scholar] [CrossRef]
- Gregory, T.J.; Longmore, W.J.; Moxley, M.A.; Whitsett, J.A.; Reed, C.R.; Fowler, A.A., 3rd; Hudson, L.D.; Maunder, R.J.; Crim, C.; Hyers, T.M. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J. Clin. Investig. 1991, 88, 1976–1981. [Google Scholar] [CrossRef]
- Gunther, A.; Siebert, C.; Schmidt, R.; Ziegler, S.; Grimminger, F.; Yabut, M.; Temmesfeld, B.; Walmrath, D.; Morr, H.; Seeger, W. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am. J. Respir. Crit. Care Med. 1996, 153, 176–184. [Google Scholar] [CrossRef]
- Nakos, G.; Kitsiouli, E.I.; Tsangaris, I.; Lekka, M.E. Bronchoalveolar lavage fluid characteristics of early intermediate and late phases of ARDS. Alterations in leukocytes, proteins, PAF and surfactant components. Intensive Care Med. 1998, 24, 296–303. [Google Scholar] [CrossRef]
- Schmidt, R.; Meier, U.; Yabut-Perez, M.; Walmrath, D.; Grimminger, F.; Seeger, W.; Gunther, A. Alteration of fatty acid profiles in different pulmonary surfactant phospholipids in acute respiratory distress syndrome and severe pneumonia. Am. J. Respir. Crit. Care Med. 2001, 163, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Markart, P.; Ruppert, C.; Wygrecka, M.; Kuchenbuch, T.; Walmrath, D.; Seeger, W.; Guenther, A. Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration. Respir. Res. 2007, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Dushianthan, A.; Goss, V.; Cusack, R.; Grocott, M.P.; Postle, A.D. Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome. Respir. Res. 2014, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Postle, A.D.; Clark, H.W.; Fink, J.; Madsen, J.; Koster, G.; Panchal, M.; Djukanovic, R.; Brealey, D.; Grocott, M.P.W.; Dushianthan, A. Rapid Phospholipid Turnover after Surfactant Nebulization in Severe COVID-19 Infection: A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2022, 205, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, P.; Ronit, A.; Nielsen, H.B.; Benfield, T.; Wiese, L.; Scoutaris, N.; Verder, H.; Berg, R.M.G.; Verder, P.; Plovsing, R.R. Reduced levels of pulmonary surfactant in COVID-19 ARDS. Sci. Rep. 2022, 12, 4040. [Google Scholar] [CrossRef] [PubMed]
- Greene, K.E.; Wright, J.R.; Steinberg, K.P.; Ruzinski, J.T.; Caldwell, E.; Wong, W.B.; Hull, W.; Whitsett, J.A.; Akino, T.; Kuroki, Y.; et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am. J. Respir. Crit. Care Med. 1999, 160, 1843–1850. [Google Scholar] [CrossRef]
- Greene, K.E.; Ye, S.; Mason, R.J.; Parsons, P.E. Serum surfactant protein-A levels predict development of ARDS in at-risk patients. Chest 1999, 116 (Suppl. S1), 90S–91S. [Google Scholar] [CrossRef]
- Bersten, A.D.; Hunt, T.; Nicholas, T.E.; Doyle, I.R. Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure. Am. J. Respir. Crit. Care Med. 2001, 164, 648–652. [Google Scholar] [CrossRef]
- Eisner, M.D.; Parsons, P.; Matthay, M.A.; Ware, L.; Greene, K.; Acute Respiratory Distress Syndrome Network. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003, 58, 983–988. [Google Scholar] [CrossRef]
- Steinberg, K.P.; Mitchell, D.R.; Maunder, R.J.; Milberg, J.A.; Whitcomb, M.E.; Hudson, L.D. Safety of bronchoalveolar lavage in patients with adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1993, 148, 556–561. [Google Scholar] [CrossRef]
- Klein, U.; Karzai, W.; Zimmermann, P.; Hannemann, U.; Koschel, U.; Brunner, J.X.; Remde, H. Changes in pulmonary mechanics after fiberoptic bronchoalveolar lavage in mechanically ventilated patients. Intensive Care Med. 1998, 24, 1289–1293. [Google Scholar] [CrossRef] [PubMed]
- Hussain-Alkhateeb, L.; Bake, B.; Holm, M.; Emilsson, O.; Mirgorodskaya, E.; Olin, A.C. Novel non-invasive particles in exhaled air method to explore the lining fluid of small airways-a European population-based cohort study. BMJ Open Respir. Res. 2021, 8, e000804. [Google Scholar] [CrossRef] [PubMed]
- Simonato, M.; Baritussio, A.; Ori, C.; Vedovelli, L.; Rossi, S.; Dalla Massara, L.; Rizzi, S.; Carnielli, V.P.; Cogo, P.E. Disaturated-phosphatidylcholine and surfactant protein-B turnover in human acute lung injury and in control patients. Respir. Res. 2011, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Carnielli, V.P.; Zimmermann, L.J.; Hamvas, A.; Cogo, P.E. Pulmonary surfactant kinetics of the newborn infant: Novel insights from studies with stable isotopes. J. Perinatol. 2009, 29 (Suppl. S2), S29–S37. [Google Scholar] [CrossRef]
- Brandsma, J.; Bailey, A.P.; Koster, G.; Gould, A.P.; Postle, A.D. Stable isotope analysis of dynamic lipidomics. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 792–796. [Google Scholar] [CrossRef]
- Ahmed, W.; Veluthandath, A.V.; Rowe, D.J.; Madsen, J.; Clark, H.W.; Postle, A.D.; Wilkinson, J.S.; Murugan, G.S. Prediction of Neonatal Respiratory Distress Biomarker Concentration by Application of Machine Learning to Mid-Infrared Spectra. Sensors 2022, 22, 1744. [Google Scholar] [CrossRef]
- Lewis, J.F.; Ikegami, M.; Jobe, A.H. Altered surfactant function and metabolism in rabbits with acute lung injury. J. Appl. Physiol. 1990, 69, 2303–2310. [Google Scholar] [CrossRef]
- Gross, N.J. Surfactant subtypes in experimental lung damage: Radiation pneumonitis. Am. J. Physiol. 1991, 260 Pt 1, L302–L310. [Google Scholar] [CrossRef]
- Holm, B.A.; Matalon, S.; Finkelstein, J.N.; Notter, R.H. Type II pneumocyte changes during hyperoxic lung injury and recovery. J. Appl. Physiol. 1988, 65, 2672–2678. [Google Scholar] [CrossRef]
- Crim, C.; Longmore, W.J. Sublethal hydrogen peroxide inhibits alveolar type II cell surfactant phospholipid biosynthetic enzymes. Am. J. Physiol. 1995, 268 Pt 1, L129–L135. [Google Scholar] [CrossRef]
- Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air. Exp. Lung Res. 1990, 16, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Holm, B.A.; Wang, Z.; Notter, R.H. Multiple mechanisms of lung surfactant inhibition. Pediatr. Res. 1999, 46, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Moses, D.; Holm, B.A.; Spitale, P.; Liu, M.Y.; Enhorning, G. Inhibition of pulmonary surfactant function by meconium. Am. J. Obstet. Gynecol. 1991, 164, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Seeger, W.; Grube, C.; Gunther, A.; Schmidt, R. Surfactant inhibition by plasma proteins: Differential sensitivity of various surfactant preparations. Eur. Respir. J. 1993, 6, 971–977. [Google Scholar] [CrossRef]
- Echaide, M.; Autilio, C.; Arroyo, R.; Perez-Gil, J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim. Biophys. Acta Biomembr. 2017, 1859 Pt B, 1725–1739. [Google Scholar] [CrossRef]
- Putman, E.; van Golde, L.M.; Haagsman, H.P. Toxic oxidant species and their impact on the pulmonary surfactant system. Lung 1997, 175, 75–103. [Google Scholar] [CrossRef]
- Rodriguez-Capote, K.; Manzanares, D.; Haines, T.; Possmayer, F. Reactive oxygen species inactivation of surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C. Biophys. J. 2006, 90, 2808–2821. [Google Scholar] [CrossRef]
- Arbibe, L.; Koumanov, K.; Vial, D.; Rougeot, C.; Faure, G.; Havet, N.; Longacre, S.; Vargaftig, B.B.; Bereziat, G.; Voelker, D.R.; et al. Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J. Clin. Investig. 1998, 102, 1152–1160. [Google Scholar] [CrossRef]
- Chabot, S.; Koumanov, K.; Lambeau, G.; Gelb, M.H.; Balloy, V.; Chignard, M.; Whitsett, J.A.; Touqui, L. Inhibitory effects of surfactant protein A on surfactant phospholipid hydrolysis by secreted phospholipases A2. J. Immunol. 2003, 171, 995–1000. [Google Scholar] [CrossRef]
- Holm, B.A.; Keicher, L.; Liu, M.Y.; Sokolowski, J.; Enhorning, G. Inhibition of pulmonary surfactant function by phospholipases. J. Appl. Physiol. 1991, 71, 317–321. [Google Scholar] [CrossRef]
- Anzueto, A.; Baughman, R.P.; Guntupalli, K.K.; Weg, J.G.; Wiedemann, H.P.; Raventos, A.A.; Lemaire, F.; Long, W.; Zaccardelli, D.S.; Pattishall, E.N. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N. Engl. J. Med. 1996, 334, 1417–1421. [Google Scholar] [CrossRef]
- Gregory, T.J.; Steinberg, K.P.; Spragg, R.; Gadek, J.E.; Hyers, T.M.; Longmore, W.J.; Moxley, M.A.; Cai, G.Z.; Hite, R.D.; Smith, R.M.; et al. Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1997, 155, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Spragg, R.G.; Gilliard, N.; Richman, P.; Smith, R.M.; Hite, R.D.; Pappert, D.; Robertson, B.; Curstedt, T.; Strayer, D. Acute effects of a single dose of porcine surfactant on patients with the adult respiratory distress syndrome. Chest 1994, 105, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Walmrath, D.; Gunther, A.; Ghofrani, H.A.; Schermuly, R.; Schneider, T.; Grimminger, F.; Seeger, W. Bronchoscopic surfactant administration in patients with severe adult respiratory distress syndrome and sepsis. Am. J. Respir. Crit. Care Med. 1996, 154, 57–62. [Google Scholar] [CrossRef]
- Wiswell, T.E.; Smith, R.M.; Katz, L.B.; Mastroianni, L.; Wong, D.Y.; Willms, D.; Heard, S.; Wilson, M.; Hite, R.D.; Anzueto, A.; et al. Bronchopulmonary segmental lavage with Surfaxin (KL(4)-surfactant) for acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1999, 160, 1188–1195. [Google Scholar] [CrossRef]
- Walmrath, D.; Grimminger, F.; Pappert, D.; Knothe, C.; Obertacke, U.; Benzing, A.; Gunther, A.; Schmehl, T.; Leuchte, H.; Seeger, W. Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: Impact on gas exchange and haemodynamics. Eur. Respir. J. 2002, 19, 805–810. [Google Scholar] [CrossRef]
- Gunther, A.; Schmidt, R.; Harodt, J.; Schmehl, T.; Walmrath, D.; Ruppert, C.; Grimminger, F.; Seeger, W. Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: Impact on biophysical and biochemical surfactant properties. Eur. Respir. J. 2002, 19, 797–804. [Google Scholar] [CrossRef]
- Tsangaris, I.; Galiatsou, E.; Kostanti, E.; Nakos, G. The effect of exogenous surfactant in patients with lung contusions and acute lung injury. Intensive Care Med. 2007, 33, 851. [Google Scholar] [CrossRef]
- Davis, A.J.; Jobe, A.H.; Hafner, D.; Ikegami, M. Lung function in premature lambs and rabbits treated with a recombinant SP-C surfactant. Am. J. Respir. Crit. Care Med. 1998, 157, 553–559. [Google Scholar] [CrossRef]
- Hafner, D.; Germann, P.G.; Hauschke, D. Effects of rSP-C surfactant on oxygenation and histology in a rat-lung-lavage model of acute lung injury. Am. J. Respir. Crit. Care Med. 1998, 158, 270–278. [Google Scholar] [CrossRef]
- Lewis, J.; McCaig, L.; Hafner, D.; Spragg, R.; Veldhuizen, R.; Kerr, C. Dosing and delivery of a recombinant surfactant in lung-injured adult sheep. Am. J. Respir. Crit. Care Med. 1999, 159, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Spragg, R.G.; Smith, R.M.; Harris, K.; Lewis, J.; Hafner, D.; Germann, P. Effect of recombinant SP-C surfactant in a porcine lavage model of acute lung injury. J. Appl. Physiol. 2000, 88, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Spragg, R.G.; Lewis, J.F.; Wurst, W.; Hafner, D.; Baughman, R.P.; Wewers, M.D.; Marsh, J.J. Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant. Am. J. Respir. Crit. Care Med. 2003, 167, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Spragg, R.G.; Lewis, J.F.; Walmrath, H.D.; Johannigman, J.; Bellingan, G.; Laterre, P.F.; Witte, M.C.; Richards, G.A.; Rippin, G.; Rathgeb, F.; et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N. Engl. J. Med. 2004, 351, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Taut, F.J.H.; Rippin, G.; Schenk, P.; Findlay, G.; Wurst, W.; Hafner, D.; Lewis, J.F.; Seeger, W.; Gunther, A.; Spragg, R.G. A Search for subgroups of patients with ARDS who may benefit from surfactant replacement therapy: A pooled analysis of five studies with recombinant surfactant protein-C surfactant (Venticute). Chest 2008, 134, 724–732. [Google Scholar] [CrossRef]
- Spragg, R.G.; Taut, F.J.; Lewis, J.F.; Schenk, P.; Ruppert, C.; Dean, N.; Krell, K.; Karabinis, A.; Gunther, A. Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am. J. Respir. Crit. Care Med. 2011, 183, 1055–1061. [Google Scholar] [CrossRef]
- Kesecioglu, J.; Beale, R.; Stewart, T.E.; Findlay, G.P.; Rouby, J.J.; Holzapfel, L.; Bruins, P.; Steenken, E.J.; Jeppesen, O.K.; Lachmann, B. Exogenous natural surfactant for treatment of acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2009, 180, 989–994. [Google Scholar] [CrossRef]
- Willson, D.F.; Thomas, N.J. Surfactant composition and biophysical properties are important in clinical studies. Am. J. Respir. Crit. Care Med. 2010, 181, 762. [Google Scholar] [CrossRef]
- Willson, D.F.; Truwit, J.D.; Conaway, M.R.; Traul, C.S.; Egan, E.E. The Adult Calfactant in Acute Respiratory Distress Syndrome Trial. Chest 2015, 148, 356–364. [Google Scholar] [CrossRef]
- Meng, S.S.; Chang, W.; Lu, Z.H.; Xie, J.F.; Qiu, H.B.; Yang, Y.; Guo, F.M. Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. BMC Pulm. Med. 2019, 19, 9. [Google Scholar] [CrossRef]
- Weg, J.G.; Balk, R.A.; Tharratt, R.S.; Jenkinson, S.G.; Shah, J.B.; Zaccardelli, D.; Horton, J.; Pattishall, E.N. Safety and potential efficacy of an aerosolized surfactant in human sepsis-induced adult respiratory distress syndrome. JAMA 1994, 272, 1433–1438. [Google Scholar] [CrossRef]
- Soll, R.F.; Blanco, F. Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 2001, 2, CD000144. [Google Scholar] [CrossRef]
- Logan, J.W.; Moya, F.R. Animal-derived surfactants for the treatment and prevention of neonatal respiratory distress syndrome: Summary of clinical trials. Ther. Clin. Risk Manag. 2009, 5, 251–260. [Google Scholar] [PubMed]
- Patel, D.V.; Bansal, S.C.; Shah, M.; Patel, C.L.; Patil, K.; Nimbalkar, S.M. Natural Versus Synthetic Surfactant Therapy in Respiratory Distress Syndrome of Prematurity. Indian J. Pediatr. 2022, 89, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Biniwale, M.; Sekar, K.; Hanna, N.; Golombek, S.; Bhatia, J.; Naylor, M.; Fabbri, L.; Varoli, G.; Santoro, D.; et al. Synthetic Surfactant CHF5633 Compared with Poractant Alfa in the Treatment of Neonatal Respiratory Distress Syndrome: A Multicenter, Double-Blind, Randomized, Controlled Clinical Trial. J. Pediatr. 2020, 225, 90–96.e1. [Google Scholar] [CrossRef]
- DiBlasi, R.M.; Kajimoto, M.; Poli, J.A.; Deutsch, G.; Pfeiffer, J.; Zimmerman, J.; Crotwell, D.N.; Malone, P.; Fink, J.B.; Ringer, C.; et al. Breath-Synchronized Nebulized Surfactant in a Porcine Model of Acute Respiratory Distress Syndrome. Crit. Care Explor. 2021, 3, e0338. [Google Scholar] [CrossRef]
- Dugernier, J.; Hesse, M.; Vanbever, R.; Depoortere, V.; Roeseler, J.; Michotte, J.B.; Laterre, P.F.; Jamar, F.; Reychler, G. SPECT-CT Comparison of Lung Deposition using a System combining a Vibrating-mesh Nebulizer with a Valved Holding Chamber and a Conventional Jet Nebulizer: A Randomized Cross-over Study. Pharm. Res. 2017, 34, 290–300. [Google Scholar] [CrossRef]
- Dushianthan, A.; Clark, H.; Madsen, J.; Mogg, R.; Matthews, L.; Berry, L.; de la Serna, J.B.; Batchelor, J.; Brealey, D.; Hussell, T.; et al. Nebulised surfactant for the treatment of severe COVID-19 in adults (COV-Surf): A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 1014. [Google Scholar] [CrossRef]
- Jardine, L.; Lui, K.; Liley, H.G.; Schindler, T.; Fink, J.; Asselin, J.; Durand, D. Trial of aerosolised surfactant for preterm infants with respiratory distress syndrome. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 51–55. [Google Scholar] [CrossRef]
- Razak, A.; Faden, M. Neonatal lung ultrasonography to evaluate need for surfactant or mechanical ventilation: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 164–171. [Google Scholar] [CrossRef]
- Jorch, G.; Hartl, H.; Roth, B.; Kribs, A.; Gortner, L.; Schaible, T.; Hennecke, K.H.; Poets, C. Surfactant aerosol treatment of respiratory distress syndrome in spontaneously breathing premature infants. Pediatr. Pulmonol. 1997, 24, 222–224. [Google Scholar] [CrossRef]
- Minocchieri, S.; Berry, C.A.; Pillow, J.J.; CureNeb Study, T. Nebulised surfactant to reduce severity of respiratory distress: A blinded, parallel, randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F313–F319. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.V.; Bandyopadhyay, T.; Abiramalatha, T.; Szczapa, T.; Wright, C.J.; Roehr, C.C. Clinical decision thresholds for surfactant administration in preterm infants: A systematic review and network meta-analysis. eClinicalMedicine 2023, 62, 102097. [Google Scholar] [CrossRef] [PubMed]
- Grotberg, J.B.; Filoche, M.; Willson, D.F.; Raghavendran, K.; Notter, R.H. Did Reduced Alveolar Delivery of Surfactant Contribute to Negative Results in Adults with Acute Respiratory Distress Syndrome? Am. J. Respir. Crit. Care Med. 2017, 195, 538–540. [Google Scholar] [CrossRef]
- Corbet, A.; Gerdes, J.; Long, W.; Avila, E.; Puri, A.; Rosenberg, A.; Edwards, K.; Cook, L. Double-blind, randomized trial of one versus three prophylactic doses of synthetic surfactant in 826 neonates weighing 700 to 1100 grams: Effects on mortality rate. American Exosurf Neonatal Study Groups I and IIa. J. Pediatr. 1995, 126, 969–978. [Google Scholar] [CrossRef]
- Liechty, E.A.; Donovan, E.; Purohit, D.; Gilhooly, J.; Feldman, B.; Noguchi, A.; Denson, S.E.; Sehgal, S.S.; Gross, I.; Stevens, D.; et al. Reduction of neonatal mortality after multiple doses of bovine surfactant in low birth weight neonates with respiratory distress syndrome. Pediatrics 1991, 88, 19–28. [Google Scholar] [CrossRef]
- Dunn, M.S.; Shennan, A.T.; Zayack, D.; Possmayer, F. Bovine surfactant replacement therapy in neonates of less than 30 weeks’ gestation: A randomized controlled trial of prophylaxis versus treatment. Pediatrics 1991, 87, 377–386. [Google Scholar] [CrossRef]
- Torresin, M.; Zimmermann, L.J.; Cogo, P.E.; Cavicchioli, P.; Badon, T.; Giordano, G.; Zacchello, F.; Sauer, P.J.; Carnielli, V.P. Exogenous surfactant kinetics in infant respiratory distress syndrome: A novel method with stable isotopes. Am. J. Respir. Crit. Care Med. 2000, 161, 1584–1589. [Google Scholar] [CrossRef]
- Cavicchioli, P.; Zimmermann, L.J.; Cogo, P.E.; Badon, T.; Giordano, G.; Torresin, M.; Zacchello, F.; Carnielli, V.P. Endogenous surfactant turnover in preterm infants with respiratory distress syndrome studied with stable isotope lipids. Am. J. Respir. Crit. Care Med. 2001, 163, 55–60. [Google Scholar] [CrossRef]
- Cogo, P.E.; Facco, M.; Simonato, M.; Verlato, G.; Rondina, C.; Baritussio, A.; Toffolo, G.M.; Carnielli, V.P. Dosing of porcine surfactant: Effect on kinetics and gas exchange in respiratory distress syndrome. Pediatrics 2009, 124, e950–e957. [Google Scholar] [CrossRef]
- Cogo, P.E.; Facco, M.; Simonato, M.; De Luca, D.; De Terlizi, F.; Rizzotti, U.; Verlato, G.; Bellagamba, M.P.; Carnielli, V.P. Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. Intensive Care Med. 2011, 37, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Facco, M.; Nespeca, M.; Simonato, M.; Isak, I.; Verlato, G.; Ciambra, G.; Giorgetti, C.; Carnielli, V.P.; Cogo, P.E. In vivo effect of pneumonia on surfactant disaturated-phosphatidylcholine kinetics in newborn infants. PLoS ONE 2014, 9, e93612. [Google Scholar] [CrossRef] [PubMed]
- Tamada, N.; Tojo, K.; Yazawa, T.; Goto, T. Necrosis Rather Than Apoptosis is the Dominant form of Alveolar Epithelial Cell Death in Lipopolysaccharide-Induced Experimental Acute Respiratory Distress Syndrome Model. Shock 2020, 54, 128–139. [Google Scholar] [CrossRef]
- Touqui, L.; Arbibe, L. A role for phospholipase A2 in ARDS pathogenesis. Mol. Med. Today 1999, 5, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Tamburro, R.F.; Kneyber, M.C.; Pediatric Acute Lung Injury Consensus Conference, G. Pulmonary specific ancillary treatment for pediatric acute respiratory distress syndrome: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015, 16 (Suppl. S1), S61–S72. [Google Scholar] [CrossRef] [PubMed]
- Willson, D.F.; Thomas, N.J.; Tamburro, R.; Truemper, E.; Truwit, J.; Conaway, M.; Traul, C.; Egan, E.E.; Pediatric Acute Lung and Sepsis Investigators Network. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr. Crit. Care Med. 2013, 14, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Zenri, H.; Rodriquez-Capote, K.; McCaig, L.; Yao, L.J.; Brackenbury, A.; Possmayer, F.; Veldhuizen, R.; Lewis, J. Hyperoxia exposure impairs surfactant function and metabolism. Crit. Care Med. 2004, 32, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Dombrowsky, H.; Tschernig, T.; Vieten, G.; Rau, G.A.; Ohler, F.; Acevedo, C.; Behrens, C.; Poets, C.F.; von der Hardt, H.; Bernhard, W. Molecular and functional changes of pulmonary surfactant in response to hyperoxia. Pediatr. Pulmonol. 2006, 41, 1025–1039. [Google Scholar] [CrossRef]
- De Luca, D.; Autilio, C. Strategies to protect surfactant and enhance its activity. Biomed. J. 2021, 44, 654–662. [Google Scholar] [CrossRef]
- Dushianthan, A.; Cusack, R.; Goss, V.; Postle, A.D.; Grocott, M.P. Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome--where do we go from here? Crit. Care 2012, 16, 238. [Google Scholar] [CrossRef]
- Pérez-Gil, J. A recipe for a good clinical pulmonary surfactant. Biomed. J. 2022, 45, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Matalon, S.; Holm, B.A.; Notter, R.H. Mitigation of pulmonary hyperoxic injury by administration of exogenous surfactant. J. Appl. Physiol. 1987, 62, 756–761. [Google Scholar] [CrossRef]
- Ghio, A.J.; Fracica, P.J.; Young, S.L.; Piantadosi, C.A. Synthetic surfactant scavenges oxidants and protects against hyperoxic lung injury. J. Appl. Physiol. 1994, 77, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.S.; Ramos, C.O.; Castro, T.F.; Araujo, N.; de Souza, A.B.F.; Bandeira, A.C.B.; Costa, G.P.; Cartelle, C.T.; Talvani, A.; Cangussu, S.D.; et al. Exogenous surfactant prevents hyperoxia-induced lung injury in adult mice. Intensive Care Med. Exp. 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Buonocore, G.; Longini, M.; Felici, C.; Rodriguez, A.; Corsini, I.; Rubaltelli, F.F. Superoxide dismutase and catalase activity in naturally derived commercial surfactants. Pediatr. Pulmonol. 2009, 44, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Corsini, I.; Longini, M.; Burchielli, S.; Dichiara, G.; Cantile, C.; Buonocore, G. Natural surfactant combined with superoxide dismutase and catalase decreases oxidative lung injury in the preterm lamb. Pediatr. Pulmonol. 2014, 49, 898–904. [Google Scholar] [CrossRef]
- Dani, C.; Corsini, I.; Burchielli, S.; Cangiamila, V.; Longini, M.; Paternostro, F.; Buonocore, G.; Rubaltelli, F.F. Natural surfactant combined with beclomethasone decreases oxidative lung injury in the preterm lamb. Pediatr. Pulmonol. 2009, 44, 1159–1167. [Google Scholar] [CrossRef]
Study | Number of Patients | Delivery Method | Dose of Therapy | Type of Surfactant | Outcomes |
---|---|---|---|---|---|
Spragg RC 1994 [63] | N = 6 Mix ARDS Cross over design | Bronchoscopy | Single dose 50–60 mg/kg | Natural porcine surfactant |
|
Walmrath D 1996 [64] | N = 12 Septic ARDS | Bronchoscopy | Single dose of 300 mg/kg Second dose of 200 mg/kg if improvement not sustained | Natural bovine surfactant (Alveofact) |
|
Wiswell TE 1999 [65] | N = 12 Mix ARDS | Bronchoscopy | 3 groups 30 mL/segment (2.5 mg/mL) + 30 mL/segment (10 mg/mL) or 60 mL/segment of 2.5 mg/mL + 30 mL/segment (10 mg/mL) Or 60 mL/segment of 2.5 mg/mL + 30 mL/segment (10 mg/mL) + repeat dosing (6–24 h) | Synthetic KL4 peptide (DPPC + POPG + palmitic acid) |
|
Walmrath D 2002 [66] Gunther A 2002 [67] | N = 27 Septic ARDS | Bronchoscopy | Single dose of 300 mg/kg Second dose of 200 mg/kg if improvement not sustained | Natural bovine surfactant (Alveofact) |
|
Tsangaris I 2007 [68] | N = 16 Trauma and severe refractory hypoxemia RCT | Bronchoscopy | Single dose of 200 mg/kg | Natural bovine surfactant (Alveofact) |
|
Study | Cohort | Surfactant Preparation, Doses, and Delivery Methods | Outcome | Potential Issues |
---|---|---|---|---|
Weg 1994 [81] | N = 51 Sepsis induced ARDS | Synthetic surfactant (Exosurf) Aerosolized Dose: 21.9 mg or 43.5 mg DPPC/kg/day Continuous Duration: 120 h |
|
|
Anzueto 1996 [61] | N = 725 Sepsis induced ARDS | Synthetic surfactant (Exosurf) Aerosolized Dose: 112 mg DPPC/kg/day Continuous Duration: 120 h |
|
|
Gregory 1997 [62] | N = 59 Mixed ARDS | Bovine natural surfactant (Survanta) Intratracheal instillation Dose: 50 mg or 100 mg/kg Duration: 96 h |
|
|
Spragg 2003 [73] | N = 40 Mixed ARDS | rSP-C based synthetic surfactant (Venticute) Intratracheal instillation Dose: 0.5 mL/kg or 1 mL/kg (1 mL = 1 mg of rSP-C and 50 mg PL) Duration: 24 h |
|
|
Spragg 2004 [74] | N = 448 Mixed ARDS | rSP-C based synthetic surfactant (Venticute) Intratracheal instillation Dose: 1 mL/kg (1 mL = 1 mg of rSP-C and 50 mg PL) Duration: 24 h |
|
|
Kesecioglu 2009 [77] | N = 418 Mixed ARDS | Natural freeze-dried porcine surfactant (HL-10) Intratracheal instillation Dose: 600 mg/kg Duration: 36 h |
|
|
Spragg 2011 [76] | N = 843 Direct ARDS | rSP-C based synthetic surfactant (Venticute) Intratracheal instillation Dose: 1 mL/kg (1 mL = 1 mg of rSP-C and 50 mg PL) Duration: 96 h |
|
|
Willson 2015 [79] | N = 308 Direct ARDS | Natural calf Calfactant (Pneumasurf) Intratracheal instillation Dose: 30 mg/cm height Duration: 12–24 h (Most < 12 h) N = 151 had 1 dose (0 h) N = 78 had 2 doses (12 h) N = 3 had 3 doses (24 h) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dushianthan, A.; Grocott, M.P.W.; Murugan, G.S.; Wilkinson, T.M.A.; Postle, A.D. Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics 2023, 13, 2964. https://doi.org/10.3390/diagnostics13182964
Dushianthan A, Grocott MPW, Murugan GS, Wilkinson TMA, Postle AD. Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics. 2023; 13(18):2964. https://doi.org/10.3390/diagnostics13182964
Chicago/Turabian StyleDushianthan, Ahilanandan, Michael P. W. Grocott, Ganapathy Senthil Murugan, Tom M. A. Wilkinson, and Anthony D. Postle. 2023. "Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions" Diagnostics 13, no. 18: 2964. https://doi.org/10.3390/diagnostics13182964
APA StyleDushianthan, A., Grocott, M. P. W., Murugan, G. S., Wilkinson, T. M. A., & Postle, A. D. (2023). Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics, 13(18), 2964. https://doi.org/10.3390/diagnostics13182964