The Usefulness of the Ratio of Antigen–Autoantibody Immune Complexes to Their Free Antigens in the Diagnosis of Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. The Levels of AICs and Their Antigens for CYFRA21-1, ProGRP, NGAL, and NSE
3.2. Diagnostic Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society (ACS). Cancer Facts & Figures. 2022. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 1 June 2023).
- Jonas, D.E.; Reuland, D.S.; Reddy, S.M.; Nagle, M.; Clark, S.D.; Weber, R.P.; Enyioha, C.; Malo, T.L.; Brenner, A.T.; Armstrong, C.; et al. Screening for lung cancer with low-dose computed tomography: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2021, 325, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.W.; Li, W.; Han, F.J.; Liu, Y.D. Screening for lung cancer using low-dose computed tomography: Concerns about the application in low-risk individuals. Transl. Lung Cancer Res. 2015, 4, 275–286. [Google Scholar] [PubMed]
- International Early Lung Cancer Action Program Investigators; Henschke, C.I.; Yankelevitz, D.F.; Libby, D.M.; Pasmantier, M.W.; Smith, J.P.; Miettinen, O.S. Survival of patients with stage I lung cancer detected on CT screening. N. Engl. J. Med. 2006, 355, 1763–1771. [Google Scholar] [CrossRef]
- Goebel, C.; Louden, C.L.; Mckenna, R., Jr.; Onugha, O.; Wachtel, A.; Long, T. Blood test shows high accuracy in detecting stage I non-small cell lung cancer. BMC Cancer 2020, 20, 137. [Google Scholar] [CrossRef]
- Zamay, T.N.; Zamay, G.S.; Kolovskaya, O.S.; Zukov, R.A.; Petrova, M.M.; Gargaun, A.; Berezovski, M.V.; Kichkailo, A.S. Current and prospective protein biomarkers of lung cancer. Cancers 2017, 9, 155. [Google Scholar] [CrossRef]
- Pennell, N.A.; Arcila, M.E.; Gandara, D.R.; West, H. Biomarker testing for patients with advanced non-small cell lung cancer: Real-world issues and tough choices. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 531–542. [Google Scholar] [CrossRef]
- Duruisseaux, M.; Esteller, M. Lung cancer epigenetics: From knowledge to applications. Semin. Cancer Biol. 2018, 51, 116–128. [Google Scholar] [CrossRef]
- Qi, S.A.; Wu, Q.; Chen, Z.; Zhang, W.; Zhou, Y.; Mao, K.; Li, J.; Li, Y.; Chen, J.; Huang, Y.; et al. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci. Rep. 2021, 11, 11805. [Google Scholar] [CrossRef]
- Rossi, E.; Aieta, M.; Tartarone, A.; Pezzuto, A.; Facchinetti, A.; Santini, D.; Ulivi, P.; Ludovini, V.; Possidente, L.; Fiduccia, P.; et al. A fully automated assay to detect the expression of pan-cytokeratins and of EML4-ALK fusion protein in circulating tumour cells (CTCs) predicts outcome of non-small cell lung cancer (NSCLC) patients. Transl. Lung Cancer Res. 2021, 10, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zeng, N.; Yang, T.; Wan, C.; Chen, L.; Shen, Y.; Wen, F. Diagnostic value of autoantibodies in lung cancer: A systematic review and meta-analysis. Cell Physiol. Biochem. 2018, 51, 2631–2646. [Google Scholar] [CrossRef]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Solassol, J.; Maudelonde, T.; Mange, A.; Pujol, J.L. Clinical relevance of autoantibody detection in lung cancer. J. Thorac. Oncol. 2011, 6, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.W.; Wandall, H.H. Autoantibodies as biomarkers in cancer. Lab. Med. 2011, 42, 623–628. [Google Scholar] [CrossRef]
- Chapman, C.J.; Murray, A.; McElveen, J.E.; Sahin, U.; Luxemburger, U.; Türeci, O.; Wiewrodt, R.; Barnes, A.C.; Robertson, J.F. Autoantibodies in lung cancer: Possibilities for early detection and subsequent cure. Thorax 2008, 63, 228–233. [Google Scholar] [CrossRef]
- Rohayem, J.; Diestelkoetter, P.; Weigle, B.; Oehmichen, A.; Schmitz, M.; Mehlhorn, J.; Conrad, K.; Rieber, E.P. Antibody to the tumor-associated inhibitor of apoptosis protein survivin in cancer patients. Cancer Res. 2000, 60, 1815–1817. [Google Scholar]
- Yang, B.; Li, X.; Ren, T.; Yin, Y. Autoantibodies as diagnostic biomarkers for lung cancer: A systematic review. Cell Death Discov. 2019, 5, 126. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.; Chapman, C.J.; Holdenrieder, S.; Murray, A.; Robertson, C.; Wood, W.C.; Maddison, P.; Healey, G.; Fairley, G.H.; Barnes, A.C.; et al. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol. 2011, 22, 383–389. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Casiano, C.A.; Peng, X.X.; Koziol, J.A.; Chan, E.K.; Tan, E.M. Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol. Biomark. Prev. 2003, 12, 136–143. [Google Scholar]
- Zhong, L.; Coe, S.P.; Stromberg, A.J.; Khattar, N.H.; Jett, J.R.; Hirschowitz, E.A. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol. 2006, 1, 513–519. [Google Scholar] [CrossRef]
- Broodman, I.; Lindemans, J.; van Sten, J.; Bischoff, R.; Luider, T. Serum protein markers for the early detection of lung cancer: A focus on autoantibodies. J. Proteome Res. 2017, 16, 3–13. [Google Scholar] [CrossRef]
- Dai, N.; Cao, X.J.; Li, M.X.; Qing, Y.; Liao, L.; Lu, X.F.; Zhang, S.H.; Li, Z.; Yang, Y.X.; Wang, D. Serum APE1 autoantibodies: A novel potential tumor marker and predictor of chemotherapeutic efficacy in non-small cell lung cancer. PLoS ONE 2013, 8, e58001. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.; Wen, S.W.C.; Nederby, L.; Hansen, T.F.; Jakobsen, A.; Andersen, R.F.; Weinreich, U.M.; Hilberg, O. Performance of the EarlyCDT® Lung test in detection of lung cancer and pulmonary metastases in a high-risk cohort. Lung Cancer 2021, 158, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Nimse, S.B.; Warkad, S.D.; Oh, A.C.; Kim, T.; Hong, Y.J. Quantification of CYFRA 21–1 and a CYFRA 21–1–anti-CYFRA 21–1 autoantibody immune complex for detection of early stage lung cancer. Chem. Commun. 2019, 55, 10060–10063. [Google Scholar] [CrossRef]
- Choe, W.; Chae, J.D.; Lee, B.H.; Kim, S.H.; Park, S.Y.; Nimse, S.B.; Kim, J.; Warkad, S.D.; Song, K.S.; Oh, A.C.; et al. 9G TestTM cancer/lung: A desirable companion to LDCT for lung cancer screening. Cancers 2020, 12, 3192. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Nimse, S.B.; Warkad, S.D.; Kim, J.H.; Kim, H.J.; Kim, T. Detection and quantification of Tp53 and p53-anti-p53 autoantibody immune complex: Promising biomarkers in early stage lung cancer diagnosis. Biosensors 2022, 12, 127. [Google Scholar] [CrossRef]
- Zaenker, P.; Gray, E.S.; Ziman, M.R. Autoantibody production in cancer—The humoral immune response toward autologous antigens in cancer patients. Autoimmun. Rev. 2016, 15, 477–483. [Google Scholar] [CrossRef]
- Pujol, J.L.; Molinier, O.; Ebert, W.; Daurès, J.P.; Barlesi, F.; Buccheri, G.; Paesmans, M.; Quoix, E.; Moro-Sibilot, D.; Szturmowicz, M.; et al. CYFRA 21–1 is a prognostic determinant in non-small-cell lung cancer: Results of a meta-analysis in 2063 patients. Br. J. Cancer 2004, 90, 2097–2105. [Google Scholar] [CrossRef]
- Karnak, D.; Ulubay, G.; Kayacan, O.; Beder, S.; Ibis, E.; Oflaz, G. Evaluation of Cyfra 21–1: A potential tumor marker for non-small cell lung carcinomas. Lung 2001, 179, 57–65. [Google Scholar] [CrossRef]
- Wieskopf, B.; Demangeat, C.; Purohit, A.; Stenger, R.; Gries, P.; Kreisman, H.; Quoix, E. Cyfra 21–1 as a biologic marker of non-small cell lung cancer. Evaluation of sensitivity, specificity, and prognostic role. Chest 1995, 108, 163–169. [Google Scholar] [CrossRef]
- Crescenzi, E.; Leonardi, A.; Pacifico, F. NGAL as a potential target in tumor microenvironment. Int. J. Mol. Sci. 2021, 22, 12333. [Google Scholar] [CrossRef]
- Shibayama, T.; Ueoka, H.; Nishii, K.; Kiura, K.; Tabata, M.; Miyatake, K.; Kitajima, T.; Harada, M. Complementary roles of pro-gastrin-releasing peptide (ProGRP) and neuron specific enolase (NSE) in diagnosis and prognosis of small-cell lung cancer (SCLC). Lung Cancer 2001, 32, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.; Auge, J.M.; Filella, X.; Viñolas, N.; Alicarte, J.; Domingo, J.M.; Ballesta, A.M. Pro-gastrin-releasing peptide (proGRP) in patients with benign and malignant diseases: Comparison with CEA, SCC, CYFRA 21–1 and NSE in patients with lung cancer. Anticancer Res. 2005, 25, 1773–1778. [Google Scholar] [PubMed]
- Molina, R.; Holdenrieder, S.; Auge, J.M.; Schalhorn, A.; Hatz, R.; Stieber, P. Diagnostic relevance of circulating biomarkers in patients with lung cancer. Cancer Biomark. 2010, 6, 163–178. [Google Scholar] [CrossRef]
- Unal, I. Defining an optimal cut-point value in ROC analysis: An alternative approach. Comput. Math. Methods Med. 2017, 2017, 3762651. [Google Scholar] [CrossRef]
- Tan, E.M.; Zhang, J. Autoantibodies to tumor-associated antigens: Reporters from the immune system. Immunol. Rev. 2008, 222, 328–340. [Google Scholar] [CrossRef]
- Anderson, K.S.; LaBaer, J. The sentinel within: Exploiting the immune system for cancer biomarkers. J. Proteome Res. 2005, 4, 1123–1133. [Google Scholar] [CrossRef]
- Mongre, R.K.; Sodhi, S.S.; Sharma, N.; Ghosh, M.; Kim, J.H.; Kim, N.; Park, Y.H.; Shin, Y.G.; Kim, S.J.; Jiao, Z.J.; et al. Epigenetic induction of epithelial to mesenchymal transition by LCN2 mediates metastasis and tumorigenesis, which is abrogated by NF-κB inhibitor BRM270 in a xenograft model of lung adenocarcinoma. Int. J. Oncol. 2016, 48, 84–98. [Google Scholar] [CrossRef]
- Wojcik, E.; Kulpa, J.K. Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer 2017, 8, 231–240. [Google Scholar] [CrossRef]
- Rosiek, V.; Kogut, A.; Kos-Kudła, B. Pro-Gastrin-Releasing Peptide as a biomarker in lung neuroendocrine neoplasm. Cancers 2023, 15, 3282. [Google Scholar] [CrossRef]
- Trivers, G.E.; De Benedetti, V.M.; Cawley, H.L.; Caron, G.; Harrington, A.M.; Bennett, W.P.; Jett, J.R.; Colby, T.V.; Tazelaar, H.; Pairolero, P.; et al. Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. Clin. Cancer Res. 1996, 2, 1767–1775. [Google Scholar]
- Mathew, J.; Healey, G.; Jewell, W.; Murray, A.; Chapman, C.; Peek, L.; Barnes, A.; Wood, W.; Robertson, J.F.; Boyle, P. Demographics of populations at high risk of lung cancer and results of the Early CDT-Lung test. J. Clin. Oncol. 2010, 28, 7033. [Google Scholar] [CrossRef]
- Heineman, D.J.; Daniels, J.M.; Schreurs, W.H. Clinical staging of NSCLC: Current evidence and implications for adjuvant chemotherapy. Ther. Adv. Med. Oncol. 2017, 9, 599–609. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Patients with NSCLC (n = 85) | Healthy Controls (n = 120) |
---|---|---|
Age, years (median, range) | 66 (39–82) | 42 (25–66) |
Male gender, n (%) | 70 (82.35%) | 60 (50%) |
Stage | - | |
-CIS (0) | 2 (2.35%) | |
-I | 39 (45.88%) | |
-II | 16 (18.82%) | |
-III | 24 (28.24%) | |
-IV | 4 (4.71%) | |
Pathologic diagnosis | ||
-Adenocarcinoma | 39 (45.88%) | |
-Squamous cell carcinoma | 38 (44.71%) | |
-Other types | 8 (9.41%) | |
Pleomorphic carcinoma | 4 (4.71%) | |
Adenosquamous carcinoma | 1 (1.18%) | |
High-grade mucoepidermoid carcinoma | 1 (1.18%) | |
Mucinous carcinoma | 1 (1.18%) | |
Non-small cell carcinoma * | 1 (1.18%) |
Variable | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|---|
CIC/CYFRA21-1 | 81.2 (71.8–88.8) | 77.5 (69.0–84.6) | 79.0 (72.8–84.4) | 71.9 (61.8–80.6) | 85.3 (77.3–91.4) |
PrGIC/ProGRP | 67.1 (56.0–76.9) | 79.2 (70.8–86.0) | 74.2 (67.6–80.0) | 69.5 (58.4–68.8) | 77.2 (68.8–84.3) |
NGIC/NGAL | 69.4 (58.5–79.0) | 70.8 (61.8–78.8) | 70.2 (63.5–76.4) | 62.8 (52.2–72.5) | 76.6 (67.6–84.1) |
NSIC/NSE | 63.5 (52.4–73.7) | 60.8 (51.5–69.6) | 62.0 (54.9–68.6) | 53.5 (43.3–63.5) | 70.2 (60.4–78.8) |
C2-1 | 85.9 (76.6–92.5) | 80.0 (71.7–86.8) | 82.4 (76.5–87.4) | 75.3 (65.5–83.5) | 88.9 (81.4–94.1) |
C2-2 | 81.9 (71.2–88.8) | 78.3 (69.9–85.3) | 79.5 (73.3–84.8) | 72.6 (62.5–81.3) | 85.5 (77.5–91.5) |
C2-3 | 76.5 (66.0–85.0) | 76.7 (68.1–83.9) | 76.6 (70.2–82.2) | 69.9 (59.5–79.0) | 82.1 (73.8–88.7) |
C3-1 | 85.9 (76.6–92.5) | 85.0 (77.3–90.9) | 85.4 (79.8–89.9) | 80.2 (70.6–87.8) | 89.5 (82.3–94.4) |
C3-2 | 84.7 (75.3–91.6) | 77.5 (69.0–84.6) | 80.5 (74.4–85.7) | 72.7 (62.9–81.2) | 87.7 (80.0–93.3) |
C3-3 | 75.2 (64.8–84.0) | 76.7 (68.1–83.9) | 76.1 (69.7–81.8) | 69.6 (59.1–78.7) | 81.4 (73.0–88.1) |
C4-1 | 85.9 (76.6–92.5) | 86.7 (79.3–92.2) | 86.3 (80.9–90.7) | 82.0 (72.5–89.4) | 89.7 (82.6–94.5) |
Stage (Number) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|
CIS (n = 2) | 100 (19.8–100) | 86.7 (79.3–92.2) | 11.1 (1.9–36.1) | 100 (95.6–100) |
Stage I (n = 39) | 89.7 (74.8–96.7) | 68.6 (54.0–80.5) | 96.3 (90.2–98.8) | |
Stage II (n = 16) | 62.5 (35.9–83.7) | 38.5 (20.9–59.3) | 94.5 (88.0–97.8) | |
Stage III (n = 24) | 91.7 (71.5–98.5) | 57.9 (40.9–73.2) | 98.1 (92.7–99.7) | |
Stage IV (n = 4) | 100 (39.6–100) | 20.0 (6.6–44.3) | 100 (55.7–93.4) | |
Very early stage CIS (0)–I (n = 41) | 90.2 (75.9–96.8) | 86.7 (79.3–92.2) | 69.8 (55.5–81.3) | 96.3 (90.2–98.8) |
Stage II–IV (n = 44) | 81.8 (64.2–89.7) | 69.2 (54.7–80.9) | 92.9 (86.0–96.6) |
Type (Number) | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
---|---|---|---|---|
NSCLC (n = 85) | 85.9 (76.6–92.5) | 86.7 (79.3–92.2) | 82.0 (72.5–89.4) | 89.7 (82.6–94.5) |
Adenocarcinoma (n = 39, 25/4/9/1 *) | 89.7 (74.8–96.6) | 68.6 (54.0–80.5) | 96.3 (90.2–98.8) | |
Squamous cell carcinoma (n = 38, 14/10/12/2 *) | 81.6 (65.1–91.7) | 66.0 (50.6–78.7) | 93.7 (87.0–97.2) | |
Other NSCLCs (n = 8, 2/2/3/1 *) | 87.5 (46.7–99.3) | 30.4 (14.1–53.0) | 99.0 (94.0–100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, J.K.; Oh, A.-C.; Kim, H.-R.; Hong, Y.J. The Usefulness of the Ratio of Antigen–Autoantibody Immune Complexes to Their Free Antigens in the Diagnosis of Non-Small Cell Lung Cancer. Diagnostics 2023, 13, 2999. https://doi.org/10.3390/diagnostics13182999
Kim H, Lee JK, Oh A-C, Kim H-R, Hong YJ. The Usefulness of the Ratio of Antigen–Autoantibody Immune Complexes to Their Free Antigens in the Diagnosis of Non-Small Cell Lung Cancer. Diagnostics. 2023; 13(18):2999. https://doi.org/10.3390/diagnostics13182999
Chicago/Turabian StyleKim, Heyjin, Jin Kyung Lee, Ae-Chin Oh, Hye-Ryoun Kim, and Young Jun Hong. 2023. "The Usefulness of the Ratio of Antigen–Autoantibody Immune Complexes to Their Free Antigens in the Diagnosis of Non-Small Cell Lung Cancer" Diagnostics 13, no. 18: 2999. https://doi.org/10.3390/diagnostics13182999
APA StyleKim, H., Lee, J. K., Oh, A. -C., Kim, H. -R., & Hong, Y. J. (2023). The Usefulness of the Ratio of Antigen–Autoantibody Immune Complexes to Their Free Antigens in the Diagnosis of Non-Small Cell Lung Cancer. Diagnostics, 13(18), 2999. https://doi.org/10.3390/diagnostics13182999