The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging
Abstract
:1. Introduction
2. Fundamentals and History of Domain Adaptation and Domain Shift
3. Application of Domain Adaptation GI Endoscopy and Medical Field
3.1. Using Triplet Loss for Domain Adaptation in Wireless Capsule Endoscopy (WCE)
3.2. Colonoscopy Polyp Detection: Domain Adaptation from Medical Report Images to Real-Time Videos
3.3. Unsupervised Adversarial Domain Adaptation for Barrett’s Segmentation
3.4. Domain Adaptation for Alzheimer’s Disease Classification
3.5. Semi-Supervised Learning with GANs for Chest X-ray Classification with the Ability of Data Domain Adaptation
3.6. UDA-Based Coronavirus Disease of 2019 (COVID-19) Infection Segmentation Network
Reference | Medical Instrument | Task | Module | Result |
---|---|---|---|---|
Laiz et al. (2019) [25] | Capsule endoscopy | Improve the generalization of a model over different datasets from different versions of WCE hardware. | Deep metric learning, based on the triplet loss function | Just a few labeled images from a newer camera set, a model that has been trained with images from older systems can be easily adapted to the new environment. |
Zhan et al. (2020) [28] | Colonoscopy | Colon polyp detection, images to real-time videos | Ivy-Net | Ivy-Net to alleviate the domain gap between colonoscopy images from historical medical reports and real-time videos. |
Celik et al. (2012) [32] | Gastroscopy | Barret’s esophagus area segmentation | UDA | UDA method generalizes on different imaging modalities showing improved segmentation accuracy. |
Wachinger et al. (2016) [35] | MRI | Alzheimer’s disease classification | Supervised domain adaptation(SDA) | Domain adaptation with instance weighting yields the best classification results |
Madani et al. (2018) [38] | Chest X-ray | Abnormality detection | GANs | Annotation effort is reduced to achieve similar performance through supervised training techniques. |
Chen et al. (2021) [39] | CT | Automatic segmentation of infection area | UDA | Segmentation network to learn the domain-invariant feature, so that the robust feature can be used for segmentation. |
4. Perspective and Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
AUC | area under the curve |
CNN | convolutional neural network. |
MRI | magnetic resonance imaging |
ROC | receiver operating characteristic |
GI | gastrointestinal |
CAD | computer-aided detection |
GAN | generative adversarial network |
WCE | wireless capsule endoscopy |
BE | Barrett’s esophagus |
UDA | unsupervised domain adaptation |
SDA | supervised domain adaptation |
NBI | narrow-band imaging |
PAA | post-acetic acid |
WL | white light |
AD | Alzheimer’s disease |
COVID-19 | Coronavirus disease of 2019 |
CT | computed tomography |
References
- Sumiyama, K.; Futakuchi, T.; Kamba, S.; Matsui, H.; Tamai, N. Artificial intelligence in endoscopy: Present and future perspectives. Dig. Endosc. 2021, 33, 218–230. [Google Scholar] [CrossRef]
- Nam, J.H.; Lee, K.H.; Lim, Y.J. Examination of Entire Gastrointestinal Tract: A Perspective of Mouth to Anus (M2A) Capsule Endoscopy. Diagnostics 2021, 11, 1367. [Google Scholar] [CrossRef]
- Sadagopan, R.; Ravi, S.; Adithya, S.V.; Vivekanandhan, S. PolyEffNetV1: A CNN based colorectal polyp detection in colonoscopy images. Proc. Inst. Mech. Eng. H 2023, 237, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, L.; Chen, Y.; Tian, L. Convolutional neural network-based artificial intelligence for the diagnosis of early esophageal cancer based on endoscopic images: A meta-analysis. Saudi J. Gastroenterol. 2022, 28, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.; Manh, X.H.; Duc, B.Q.; Ha, V.K.; Dao, V.H.; Nguyen, P.B.; Hoang, B.L.; Vu, T.H. Labelling stomach anatomical locations in upper gastrointestinal endoscopic images using a cnn. In Proceedings of the 10th International Symposium on Information and Communication Technology, Ha Long Bay, Vietnam, 4–6 December 2019; pp. 362–369. [Google Scholar]
- Kim, S.H.; Hwang, Y.; Oh, D.J.; Nam, J.H.; Kim, K.B.; Park, J.; Song, H.J.; Lim, Y.J. Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy. Sci. Rep. 2021, 11, 17479. [Google Scholar] [CrossRef]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Choudhary, A.; Tong, L.; Zhu, Y.; Wang, M.D. Advancing medical imaging informatics by deep learning-based domain adaptation. Yearb. Med. Inform. 2020, 29, 129–138. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Rampasek, L.; Goldenberg, A. TensorFlow: Biology’s Gateway to Deep Learning? Cell Syst. 2016, 2, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Ziller, A.; Usynin, D.; Braren, R.; Makowski, M.; Rueckert, D.; Kaissis, G. Medical imaging deep learning with differential privacy. Sci. Rep. 2021, 11, 13524. [Google Scholar] [CrossRef]
- Mishra, P. CNN and RNN Using PyTorch. In PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models; Springer: Berlin/Heidelberg, Germany, 2022; pp. 49–115. [Google Scholar]
- Huang, X.; Liu, M.-Y.; Belongie, S.; Kautz, J. Multimodal unsupervised image-to-image translation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 172–189. [Google Scholar]
- Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1857–1865. [Google Scholar]
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; Choo, J. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8789–8797. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Lee, H.-Y.; Tseng, H.-Y.; Huang, J.-B.; Singh, M.; Yang, M.-H. Diverse image-to-image translation via disentangled representations. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 35–51. [Google Scholar]
- Baek, K.; Choi, Y.; Uh, Y.; Yoo, J.; Shim, H. Rethinking the truly unsupervised image-to-image translation. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, Montreal, BC, Canada, 11–17 October 2021; pp. 14154–14163. [Google Scholar]
- Pons, G.; El Ali, A.; Cesar, P. ET-CycleGAN: Generating thermal images from images in the visible spectrum for facial emotion recognition. In Proceedings of the Companion Publication of the 2020 International Conference on Multimodal Interaction, Virtual Event, The Netherlands, 25–29 October 2020; pp. 87–91. [Google Scholar]
- Sushma, B.; Aparna, P. Recent developments in wireless capsule endoscopy imaging: Compression and summarization techniques. Comput. Biol. Med. 2022, 149, 106087. [Google Scholar] [CrossRef]
- Muhammad, K.; Khan, S.; Kumar, N.; Del Ser, J.; Mirjalili, S. Vision-based personalized wireless capsule endoscopy for smart healthcare: Taxonomy, literature review, opportunities and challenges. Future Gener. Comput. Syst. 2020, 113, 266–280. [Google Scholar] [CrossRef]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Fujisawa, G.; Odawara, N.; Kondo, R.; Tsuboi, A.; Ishibashi, R.; Nakada, A.; et al. Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Dig. Endosc. 2020, 32, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lim, Y.J. Artificial Intelligence in Capsule Endoscopy: A Practical Guide to Its Past and Future Challenges. Diagnostics 2021, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.J.; Hwang, Y.; Lim, Y.J. A Current and Newly Proposed Artificial Intelligence Algorithm for Reading Small Bowel Capsule Endoscopy. Diagnostics 2021, 11, 1183. [Google Scholar] [CrossRef]
- Laiz, P.; Vitria, J.; Seguí, S. Using the triplet loss for domain adaptation in WCE. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Chen, P.J.; Lin, M.C.; Lai, M.J.; Lin, J.C.; Lu, H.H.; Tseng, V.S. Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis. Gastroenterology 2018, 154, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Kalogeiton, V.; Ferrari, V.; Schmid, C. Analysing Domain Shift Factors between Videos and Images for Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2327–2334. [Google Scholar] [CrossRef]
- Zhan, Z.-Q.; Fu, H.; Yang, Y.-Y.; Chen, J.; Liu, J.; Jiang, Y.-G. Colonoscopy polyp detection: Domain adaptation from medical report images to real-time videos. arXiv 2020, arXiv:2012.15531. [Google Scholar]
- Hamade, N.; Sharma, P. ‘Artificial intelligence in Barrett’s Esophagus’. Ther. Adv. Gastrointest. Endosc. 2021, 14, 26317745211049964. [Google Scholar] [CrossRef]
- Dumoulin, F.L.; Rodriguez-Monaco, F.D.; Ebigbo, A.; Steinbruck, I. Artificial Intelligence in the Management of Barrett’s Esophagus and Early Esophageal Adenocarcinoma. Cancers 2022, 14, 1918. [Google Scholar] [CrossRef]
- Ohmori, M.; Ishihara, R.; Aoyama, K.; Nakagawa, K.; Iwagami, H.; Matsuura, N.; Shichijo, S.; Yamamoto, K.; Nagaike, K.; Nakahara, M.; et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest. Endosc. 2020, 91, 301–309.e1. [Google Scholar] [CrossRef]
- Celik, N.; Gupta, S.; Ali, S.; Rittscher, J. Unsupervised Adversarial Domain Adaptation For Barrett’s Segmentation. arXiv 2020, arXiv:2012.05316. [Google Scholar]
- Orbes-Arteaga, M.; Varsavsky, T.; Sudre, C.H.; Eaton-Rosen, Z.; Haddow, L.J.; Sorensen, L.; Nielsen, M.; Pai, A.; Ourselin, S.; Modat, M.; et al. Multi-domain Adaptation in Brain MRI Through Paired Consistency and Adversarial Learning. Domain Adapt. Represent. Transf. Med. Image Learn. Less Labels Imperfect Data 2019, 2019, 54–62. [Google Scholar] [CrossRef]
- Yu, M.; Guan, H.; Fang, Y.; Yue, L.; Liu, M. Domain-Prior-Induced Structural MRI Adaptation for Clinical Progression Prediction of Subjective Cognitive Decline. Med. Image Comput. Comput. Assist. Interv. 2022, 13431, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Wachinger, C.; Reuter, M.; Alzheimer’s Disease Neuroimaging, I.; Australian Imaging, B.; Lifestyle flagship study of, a. Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage 2016, 139, 470–479. [Google Scholar] [CrossRef]
- Çallı, E.; Sogancioglu, E.; van Ginneken, B.; van Leeuwen, K.G.; Murphy, K. Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 2021, 72, 102125. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef]
- Madani, A.; Moradi, M.; Karargyris, A.; Syeda-Mahmood, T. Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1038–1042. [Google Scholar]
- Chen, H.; Jiang, Y.; Loew, M.; Ko, H. Unsupervised domain adaptation based COVID-19 CT infection segmentation network. Appl. Intell. 2022, 52, 6340–6353. [Google Scholar] [CrossRef]
- Xu, G.X.; Liu, C.; Liu, J.; Ding, Z.; Shi, F.; Guo, M.; Zhao, W.; Li, X.; Wei, Y.; Gao, Y.; et al. Cross-Site Severity Assessment of COVID-19 From CT Images via Domain Adaptation. IEEE Trans. Med. Imaging 2022, 41, 88–102. [Google Scholar] [CrossRef]
- Feuz, K.D.; Cook, D.J. Transfer Learning across Feature-Rich Heterogeneous Feature Spaces via Feature-Space Remapping (FSR). ACM Trans. Intell. Syst. Technol. 2015, 6, 1–27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.J.; Kim, S.H.; Kim, S.M.; Nam, J.H.; Hwang, Y.B.; Lim, Y.J. The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging. Diagnostics 2023, 13, 3023. https://doi.org/10.3390/diagnostics13193023
Kim MJ, Kim SH, Kim SM, Nam JH, Hwang YB, Lim YJ. The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging. Diagnostics. 2023; 13(19):3023. https://doi.org/10.3390/diagnostics13193023
Chicago/Turabian StyleKim, Min Ji, Sang Hoon Kim, Suk Min Kim, Ji Hyung Nam, Young Bae Hwang, and Yun Jeong Lim. 2023. "The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging" Diagnostics 13, no. 19: 3023. https://doi.org/10.3390/diagnostics13193023
APA StyleKim, M. J., Kim, S. H., Kim, S. M., Nam, J. H., Hwang, Y. B., & Lim, Y. J. (2023). The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging. Diagnostics, 13(19), 3023. https://doi.org/10.3390/diagnostics13193023