Gynecological Healthcare: Unveiling Pelvic Masses Classification through Evolutionary Gravitational Neocognitron Neural Network Optimized with Nomadic People Optimizer
Abstract
:1. Introduction
- To find the gynecological abdominal pelvic masses at an early stage.
- To present a computer aided diagnosis (CAD) system basis on evolutionary gravitational neocognitron neural network (EGNNN) optimized with nomadic people optimizer (NPOA) using ultrasound images.
- To lessen the error during classification process.
- To increase a high area under curve value.
2. Materials and Methods
2.1. Image Acquisition
2.2. Image Augmentation Phase
2.3. Segmentation Using 3D Tsallis Entropy-Based Multilevel Thresholding
2.4. Feature Extraction Using Fast Discrete Curvelet Transform with Wrapping Method
2.5. Classification Utilizing EGNNN
Optimize the Parameters of EGNNN Utilizing Nomadic People Optimizer
3. Results
Performance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, X.; Yuan, T.; Wang, Z.; Song, K.; Li, R.; Yuan, C.; Kong, B. Two-dimensional light scattering anisotropy cytometry for label-free classification of ovarian cancer cells via machine learning. Cytom. Part A 2020, 97, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Graham, C.A.; Shamkhalichenar, H.; Browning, V.E.; Byrd, V.J.; Liu, Y.; Gutierrez-Wing, M.T.; Novelo, N.; Choi, J.W.; Tiersch, T.R. A practical evaluation of machine learning for classification of ultrasound images of ovarian development in channel catfish (Ictalurus punctatus). Aquaculture 2022, 552, 738039. [Google Scholar] [CrossRef]
- Rajesh, P.; Shajin, F.H.; Kannayeram, G. A novel intelligent technique for energy management in smart home using internet of things. Appl. Soft Comput. 2022, 128, 109442. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J. Classification and recognition of ovarian cells based on two-dimensional light scattering technology. J. Med. Syst. 2019, 43, 127. [Google Scholar] [CrossRef]
- Nougaret, S.; McCague, C.; Tibermacine, H.; Vargas, H.A.; Rizzo, S.; Sala, E. Radiomics and radiogenomics in ovarian cancer: A literature review. Abdom. Radiol. 2021, 46, 2308–2322. [Google Scholar] [CrossRef] [PubMed]
- Nougaret, S.; Tardieu, M.; Vargas, H.A.; Reinhold, C.; Perre, S.V.; Bonanno, N.; Sala, E.; Thomassin-Naggara, I. Ovarian cancer: An update on imaging in the era of radiomics. Diagn. Interv. Imaging 2019, 100, 647–655. [Google Scholar] [CrossRef]
- Pesenti, C.; Beltrame, L.; Velle, A.; Fruscio, R.; Jaconi, M.; Borella, F.; Cribiù, F.M.; Calura, E.; Venturini, L.V.; Lenoci, D.; et al. Copy number alterations in stage I epithelial ovarian cancer highlight three genomic patterns associated with prognosis. Eur. J. Cancer 2022, 171, 85–95. [Google Scholar] [CrossRef]
- Cordero Hernandez, Y.; Boskamp, T.; Casadonte, R.; Hauberg-Lotte, L.; Oetjen, J.; Lachmund, D.; Peter, A.; Trede, D.; Kriegsmann, K.; Kriegsmann, M.; et al. Targeted feature extraction in MALDI mass spectrometry imaging to discriminate proteomic profiles of breast and ovarian cancer. PROTEOMICS–Clin. Appl. 2019, 13, 1700168. [Google Scholar] [CrossRef]
- Shajin, F.H.; Aruna Devi, B.; Prakash, N.B.; Sreekanth, G.R.; Rajesh, P. Sailfish optimizer with Levy flight, chaotic and opposition-based multi-level thresholding for medical image segmentation. Soft Comput. 2023, 27, 12457–12482. [Google Scholar] [CrossRef]
- Shajin, F.H.; Rajesh, P.; Raja, M.R. An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC. Circuits Syst. Signal Process. 2022, 41, 1751–1774. [Google Scholar] [CrossRef]
- Rajesh, P.; Shajin, F. A multi-objective hybrid algorithm for planning electrical distribution system. Eur. J. Electr. Eng. 2020, 22, 224–509. [Google Scholar] [CrossRef]
- Rajesh, P.; Kannan, R.; Vishnupriyan, J.; Rajani, B. Optimally detecting and classifying the transmission line fault in power system using hybrid technique. ISA Trans. 2022, 130, 253–264. [Google Scholar] [CrossRef]
- Giamougiannis, P.; Morais, C.L.; Grabowska, R.; Ashton, K.M.; Wood, N.J.; Martin-Hirsch, P.L.; Martin, F.L. A comparative analysis of different biofluids towards ovarian cancer diagnosis using Raman microspectroscopy. Anal. Bioanal. Chem. 2021, 413, 911–922. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, M.K.; Kumar, R. A novel multi-neural ensemble approach for cancer diagnosis. Appl. Artif. Intell. 2022, 36, 2018182. [Google Scholar] [CrossRef]
- Sharma, N.; Saba, L.; Johri, A.M.; Paraskevas, K.; Nicolaides, A. Automated Hybrid Deep Learning-Based Paradigm for High-Risk Plaque Detection in B-mode Common Carotid Ultrasound Scans: An Asymptomatic Japanese Cohort Study. 2022 AIUM Award Win. 2022, 41, 125. [Google Scholar]
- Akazawa, M.; Hashimoto, K. Artificial intelligence in gynecologic cancers: Current status and future challenges–A systematic review. Artif. Intell. Med. 2021, 120, 102164. [Google Scholar] [CrossRef] [PubMed]
- Thanupillai, K.S.; Kamal Basha, R. Pulse coupled neural network optimized with chaotic grey wolf algorithm for breast cancer classification using mammogram images. Concurr. Comput. Pract. Exp. 2023, 35, e7448. [Google Scholar] [CrossRef]
- Prakash, T.S.; Kumar, A.S.; Durai, C.R.B.; Ashok, S. Enhanced Elman spike Neural network optimized with flamingo search optimization algorithm espoused lung cancer classification from CT images. Biomed. Signal Process. Control 2023, 84, 104948. [Google Scholar] [CrossRef]
- Christiansen, F.; Epstein, E.L.; Smedberg, E.; Åkerlund, M.; Smith, K.; Epstein, E. Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: Comparison with expert subjective assessment. Ultrasound Obstet. Gynecol. 2021, 57, 155–163. [Google Scholar] [CrossRef]
- Hsu, S.T.; Su, Y.J.; Hung, C.H.; Chen, M.J.; Lu, C.H.; Kuo, C.E. Automatic ovarian tumors recognition system based on ensemble convolutional neural network with ultrasound imaging. BMC Med. Inform. Decis. Mak. 2022, 22, 298. [Google Scholar] [CrossRef]
- Chiappa, V.; Bogani, G.; Interlenghi, M.; Salvatore, C.; Bertolina, F.; Sarpietro, G.; Signorelli, M.; Castiglioni, I.; Raspagliesi, F. The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study). J. Ultrasound 2021, 24, 429–437. [Google Scholar] [CrossRef]
- Arezzo, F.; Cormio, G.; La Forgia, D.; Santarsiero, C.M.; Mongelli, M.; Lombardi, C.; Cazzato, G.; Cicinelli, E.; Loizzi, V. A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients. Arch. Gynecol. Obstet. 2022, 306, 2143–2154. [Google Scholar] [CrossRef]
- Ravishankar, T.N.; Jadhav, H.M.; Kumar, N.S.; Ambala, S. A deep learning approach for ovarian cysts detection and classification (OCD-FCNN) using fuzzy convolutional neural network. Meas. Sens. 2023, 27, 100797. [Google Scholar] [CrossRef]
- Akter, L.; Akhter, N. Ovarian cancer prediction from ovarian cysts based on TVUS using machine learning algorithms. In Proceedings of the International Conference on Big Data, IoT, and Machine Learning: BIM 2021, Cox’s Bazar, Bangladesh, 23–25 September 2021; Springer: Singapore, 2022; pp. 51–61. [Google Scholar] [CrossRef]
- Athithan, S.; Sachi, S.; Singh, A.K. Ultrasound-Based Ovarian Cysts Detection with Improved Machine-Learning Techniques and Stage Classification Using Enhanced Classifiers. SN Comput. Sci. 2023, 4, 571. [Google Scholar] [CrossRef]
- Narmatha, C.; Manimegalai, P.; Krishnadass, J.; Valsalan, P.; Manimurugan, S.; Mustafa, M. Ovarian cysts classification using novel deep reinforcement learning with Harris Hawks Optimization method. J. Supercomput. 2023, 79, 1374–1397. [Google Scholar] [CrossRef]
- Oyelade, O.N.; Ezugwu, A.E. A deep learning model using data augmentation for detection of architectural distortion in whole and patches of images. Biomed. Signal Process. Control 2021, 65, 102366. [Google Scholar] [CrossRef]
- Jena, B.; Naik, M.K.; Panda, R.; Abraham, A. Maximum 3D Tsallis entropy based multilevel thresholding of brain MR image using attacking Manta Ray foraging optimization. Eng. Appl. Artif. Intell. 2021, 103, 104293. [Google Scholar] [CrossRef]
- Muduli, D.; Dash, R.; Majhi, B. Fast discrete curvelet transform and modified PSO based improved evolutionary extreme learning machine for breast cancer detection. Biomed. Signal Process. Control 2021, 70, 102919. [Google Scholar] [CrossRef]
- Gomathi, P.; Baskar, S.; Shakeel, P.M.; Dhulipala, V.S. Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network. Multimed. Tools Appl. 2020, 79, 10609–10628. [Google Scholar] [CrossRef]
- Salih, S.Q.; Alsewari, A.A. A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer. Neural Comput. Appl. 2020, 32, 10359–10386. [Google Scholar] [CrossRef]
Histological Output | Every Cases (n = 634) | After Augmentation | |
---|---|---|---|
Benign | 325 | 20,475 | |
Benign Types | Endometrioma | 46 | 2898 |
Dermoid | 74 | 4662 | |
Simple/functional cyst | 31 | 1953 | |
Paraovarian cyst | 12 | 756 | |
Rare benign | 9 | 567 | |
(Hydro-)pyosalpinx | 14 | 882 | |
Fibroma/myoma | 25 | 1575 | |
Cystadenoma/cystadenofibroma | 108 | 6804 | |
Peritoneal/inclusion cyst | 6 | 378 | |
Borderline | 55 | 3465 | |
Borderline Types | Serous | 35 | 2205 |
Mucinous | 20 | 1260 | |
Malignant | 254 | 16,002 | |
Malignant Types | Epithelial ovarian cancer | 169 | 10,647 |
Non-epithelial ovarian cancer | 28 | 1764 | |
Metastatic ovarian tumor | 57 | 3591 | |
Total | 634 | 39,942 |
Predicted | Benign | Borderline (Serous and Mucinous) | Malignant |
---|---|---|---|
Actual: Benign | 7977 | 2 | 1 |
Actual: Borderline (Serous and Mucinous) | 1 | 2076 | 0 |
Actual: Malignant | 1 | 2 | 5917 |
Methods | Benign (Values in %) | Borderline (Serous and Mucinous) (Values in %) | Malignant (Values in %) |
---|---|---|---|
DNN-VGG16-ResNet50-MobileNet-PM-UI | 75.5 | 78.8 | 81.5 |
CNN-Grad-CAM-PM-UI | 79.2 | 82.5 | 78.5 |
SVM-PM-UI | 81.5 | 84.6 | 83.5 |
LR-RFF-KNN-PM-UI | 84.8 | 81.2 | 79.5 |
FCNN-PM-UI | 77.4 | 79.2 | 84 |
RF-KNN-XGBoost-PM-UI | 86.3 | 87.2 | 82.5 |
ANN-DC-SVM-PM-UI | 85 | 76 | 79 |
DQN-HHOA-PM-UI | 87.8 | 86 | 85.3 |
EGNNN-NPOA-PM-UI (Proposed) | 99.96 | 99.95 | 99.49 |
Methods | Benign (Values in %) | Borderline (Serous and Mucinous) (Values in %) | Malignant (Values in %) |
---|---|---|---|
DNN-VGG16-ResNet50-MobileNet-PM-UI | 81.2 | 84.4 | 83.4 |
CNN-Grad-CAM-PM-UI | 79.2 | 82.5 | 78.5 |
SVM-PM-UI | 75 | 78.2 | 81.3 |
LR-RFF-KNN-PM-UI | 84.8 | 81.2 | 79 |
FCNN-PM-UI | 77.4 | 79.2 | 84 |
RF-KNN-XGBoost-PM-UI | 86 | 82.8 | 82.4 |
ANN-DC-SVM-PM-UI | 87.8 | 88 | 85.3 |
DQN-HHOA-PM-UI | 85 | 76 | 79 |
EGNNN-NPOA-PM-UI (Proposed) | 99.96 | 99.955 | 99.95 |
Methods | Benign (Values in %) | Borderline (Serous and Mucinous) (Values in %) | Malignant (Values in %) |
---|---|---|---|
DNN-VGG16-ResNet50-MobileNet-PM-UI | 77.4 | 79.2 | 84 |
CNN-Grad-CAM-PM-UI | 86 | 88 | 82.5 |
SVM-PM-UI | 87.2 | 86.8 | 85.3 |
LR-RFF-KNN-PM-UI | 85 | 76 | 79 |
FCNN-PM-UI | 81.4 | 84.4 | 83.1 |
RF-KNN-XGBoost-PM-UI | 75.3 | 78.2 | 82.3 |
ANN-DC-SVM-PM-UI | 79.5 | 82.5 | 79.5 |
DQN-HHOA-PM-UI | 84.1 | 81.2 | 79 |
EGNNN-NPOA-PM-UI (Proposed) | 99.93 | 99.91 | 99.94 |
Methods | Benign (Values in %) | Borderline (Serous and Mucinous) (Values in %) | Malignant (Values in %) |
---|---|---|---|
DNN-VGG16-ResNet50-MobileNet-PM-UI | 77.5 | 79.5 | 83.5 |
CNN-Grad-CAM-PM-UI | 85.5 | 83.2 | 81.5 |
SVM-PM-UI | 75.5 | 76.2 | 79.3 |
LR-RFF-KNN-PM-UI | 83.2 | 81.2 | 78.1 |
FCNN-PM-UI | 81.3 | 82.5 | 84.5 |
RF-KNN-XGBoost-PM-UI | 87.2 | 86 | 88 |
ANN-DC-SVM-PM-UI | 79 | 83.5 | 81.1 |
DQN-HHOA-PM-UI | 85.5 | 80.5 | 82.8 |
EGNNN-NPOA-PM-UI (Proposed) | 99.91 | 99.91 | 99.43 |
Methods | Benign (Values in %) | Borderline (Serous and Mucinous) (Values in %) | Malignant (Values in %) |
---|---|---|---|
DNN-VGG16-ResNet50-MobileNet-PM-UI | 73 | 75 | 77.2 |
CNN-Grad-CAM-PM-UI | 75 | 79.5 | 74.8 |
SVM-PM-UI | 81 | 82 | 84.5 |
LR-RFF-KNN-PM-UI | 79.4 | 84.7 | 81.9 |
FCNN-PM-UI | 84 | 85.2 | 88.4 |
RF-KNN-XGBoost-PM-UI | 85 | 87.4 | 89.3 |
ANN-DC-SVM-PM-UI | 78 | 79.5 | 83.5 |
DQN-HHOA-PM-UI | 82 | 87 | 86 |
EGNNN-NPOA-PM-UI (Proposed) | 99.965 | 99.96 | 99.955 |
Methods | Computation Time (ms) |
---|---|
CNN-Grad-CAM-PM-UI | 287 |
CNN-Grad-CAM-PM-UI | 265 |
SVM-PM-UI | 235 |
LR-RFF-KNN-PM-UI | 251 |
FCNN-PM-UI | 225 |
RF-KNN-XGBoost-PM-UI | 155 |
ANN-DC-SVM-PM-UI | 195 |
DQN-HHOA-PM-UI | 178 |
EGNNN-NPOA-PM-UI (Proposed) | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deeparani, M.; Kalamani, M. Gynecological Healthcare: Unveiling Pelvic Masses Classification through Evolutionary Gravitational Neocognitron Neural Network Optimized with Nomadic People Optimizer. Diagnostics 2023, 13, 3131. https://doi.org/10.3390/diagnostics13193131
Deeparani M, Kalamani M. Gynecological Healthcare: Unveiling Pelvic Masses Classification through Evolutionary Gravitational Neocognitron Neural Network Optimized with Nomadic People Optimizer. Diagnostics. 2023; 13(19):3131. https://doi.org/10.3390/diagnostics13193131
Chicago/Turabian StyleDeeparani, M., and M. Kalamani. 2023. "Gynecological Healthcare: Unveiling Pelvic Masses Classification through Evolutionary Gravitational Neocognitron Neural Network Optimized with Nomadic People Optimizer" Diagnostics 13, no. 19: 3131. https://doi.org/10.3390/diagnostics13193131
APA StyleDeeparani, M., & Kalamani, M. (2023). Gynecological Healthcare: Unveiling Pelvic Masses Classification through Evolutionary Gravitational Neocognitron Neural Network Optimized with Nomadic People Optimizer. Diagnostics, 13(19), 3131. https://doi.org/10.3390/diagnostics13193131