Comparison of Diffusion Kurtosis Imaging and Standard Mono-Exponential Apparent Diffusion Coefficient in Diagnosis of Significant Prostate Cancer—A Correlation with Gleason Score Assessed on Whole-Mount Histopathology Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Acquisition
2.3. Data Analysis
2.4. Histopathology
3. Results
3.1. Tumor Characteristics
3.2. Tumor Detection
3.3. Prediction of Clinically Significant PCa
3.4. Goodness-of-Fit to DWI Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Matoso, A.; Epstein, J.I. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 2019, 74, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, L.P.; Lebastchi, A.H.; Horuz, R.; Rastinehad, A.R.; Siddiqui, M.M.; Grummet, J.; Kastner, C.; Ahmed, H.U.; Pinto, P.A.; Turkbey, B. Role of multiparametric prostate MRI in the management of prostate cancer. World J. Urol. 2020, 39, 651–659. [Google Scholar] [CrossRef]
- Schieda, N.; Lim, C.S.; Zabihollahy, F.; Abreu-Gomez, J.; Krishna, S.; Woo, S.; Melkus, G.; Ukwatta, E.; Turkbey, B. Quantitative Prostate MRI. J. Magn. Reson. Imaging 2020, 53, 1632–1645. [Google Scholar] [CrossRef]
- De Cobelli, F.; Ravelli, S.; Esposito, A.; Giganti, F.; Gallina, A.; Montorsi, F.; Del Maschio, A. Apparent Diffusion Coefficient Value and Ratio as Noninvasive Potential Biomarkers to Predict Prostate Cancer Grading: Comparison with Prostate Biopsy and Radical Prostatectomy Specimen. Am. J. Roentgenol. 2015, 204, 550–557. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, C.K.; Park, B.K.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Lee, H.M.; Choi, H.Y.; Jeon, S.S. Relationship between Gleason score and apparent diffusion coefficients of diffusion-weighted magnetic resonance imaging in prostate cancer patients. Can. Urol. Assoc. J. 2016, 10, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Hambrock, T.; Somford, D.M.; Huisman, H.J.; Van Oort, I.M.; Witjes, J.A.; De Kaa, C.A.H.-V.; Scheenen, T.; Barentsz, J.O. Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer. Radiology 2011, 259, 453–461. [Google Scholar] [CrossRef]
- Vos, E.K.; Kobus, T.; Litjens, G.J.; Hambrock, T.; de Kaa, C.A.H.-V.; Barentsz, J.O.; Maas, M.C.; Scheenen, T.W. Multiparametric Magnetic Resonance Imaging for Discriminating Low-Grade from High-Grade Prostate Cancer. Investig. Radiol. 2015, 50, 490–497. [Google Scholar] [CrossRef]
- Donati, O.F.; Mazaheri, Y.; Afaq, A.; Vargas, H.A.; Zheng, J.; Moskowitz, C.S.; Hricak, H.; Akin, O. Prostate Cancer Aggressiveness: Assessment with Whole-Lesion Histogram Analysis of the Apparent Diffusion Coefficient. Radiology 2014, 271, 143–152. [Google Scholar] [CrossRef]
- Le Bihan, D. Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging Can Tell Us about Tissue Structure. Radiology 2013, 268, 318–322. [Google Scholar] [CrossRef]
- Koh, D.-M.; Collins, D.J. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am. J. Roentgenol. 2007, 188, 1622–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef]
- Taffel, M.; Johnson, E.J.; Chandarana, H. Diffusion Quantification in Body Imaging. Top. Magn. Reson. Imaging 2017, 26, 243–249. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Padhani, A.R.; Chenevert, T.L.; Koh, D.-M.; Msc, F.D.K.; Taouli, B.; Le Bihan, D. Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J. Magn. Reson. Imaging 2015, 42, 1190–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Roethke, M.C.; Kuder, T.A.; Kuru, T.H.; Fenchel, M.; Hadaschik, B.; Laun, F.B.; Schlemmer, H.-P.; Stieltjes, B. Evaluation of Diffusion Kurtosis Imaging Versus Standard Diffusion Imaging for Detection and Grading of Peripheral Zone Prostate Cancer. Investig. Radiol. 2015, 50, 483–489. [Google Scholar] [CrossRef]
- Tamada, T.; Prabhu, V.; Li, J.; Babb, J.S.; Taneja, S.S.; Rosenkrantz, A.B. Prostate Cancer: Diffusion-weighted MR Imaging for Detection and Assessment of Aggressiveness—Comparison between Conventional and Kurtosis Models. Radiology 2017, 284, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Kim, S.H.; Lee, Y.; Son, J.H. Comparison of diagnostic performance between diffusion kurtosis imaging parameters and mono-exponential ADC for determination of clinically significant cancer in patients with prostate cancer. Abdom. Radiol. 2020, 45, 4235–4243. [Google Scholar] [CrossRef]
- Toivonen, J.; Merisaari, H.; Pesola, M.; Taimen, P.; Boström, P.J.; Pahikkala, T.; Aronen, H.J.; Jambor, I. Mathematical models for diffusion-weighted imaging of prostate cancer using b values up to 2000 s/mm2: Correlation with Gleason score and repeatability of region of interest analysis. Magn. Reson. Med. 2014, 74, 1116–1124. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Sigmund, E.; Johnson, G.; Babb, J.S.; Mussi, T.; Melamed, J.; Taneja, S.S.; Lee, V.S.; Jensen, J. Prostate Cancer: Feasibility and Preliminary Experience of a Diffusional Kurtosis Model for Detection and Assessment of Aggressiveness of Peripheral Zone Cancer. Radiology 2012, 264, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, Y.; Hötker, A.M.; Shukla-Dave, A.; Akin, O.; Hricak, H. Model selection for high b-value diffusion-weighted MRI of the prostate. Magn. Reson. Imaging 2017, 46, 21–27. [Google Scholar] [CrossRef]
- Suo, S.; Chen, X.; Wu, L.; Zhang, X.; Yao, Q.; Fan, Y.; Wang, H.; Xu, J. Non-Gaussian water diffusion kurtosis imaging of prostate cancer. Magn. Reson. Imaging 2014, 32, 421–427. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Yan, X.; Wu, C.-J.; Liu, X.-S.; Shi, H.-B.; Zhang, Y.-D. Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic Gleason grade of prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 337.e15–337.e24. [Google Scholar] [CrossRef] [PubMed]
- ACR. PI-RADS ® v2.1 PI-RADS® Prostate Imaging-Reporting and Data System 2019 Version 2.1 PI-RADS ® Prostate Imaging-Reporting and Data System 2019 Version 2.1 ACKNOWLEDGEMENTS. Available online: www.acr.org/-/media/ACR/Files/RADS/Pi-RADS/PIRADS-V2-1.pdf?la=en (accessed on 12 November 2019).
- Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part B: Prostate and Bladder Tumours. Eur. Urol. 2016, 70, 106–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hempel, J.-M.; Brendle, C.; Adib, S.; Behling, F.; Tabatabai, G.; Vega, S.C.; Schittenhelm, J.; Ernemann, U.; Klose, U. Glioma-Specific Diffusion Signature in Diffusion Kurtosis Imaging. J. Clin. Med. 2021, 10, 2325. [Google Scholar] [CrossRef]
- Van Cauter, S.; Veraart, J.; Sijbers, J.; Peeters, R.R.; Himmelreich, U.; De Keyzer, F.; Van Gool, S.W.; Van Calenbergh, F.; De Vleeschouwer, S.; Van Hecke, W.; et al. Gliomas: Diffusion Kurtosis MR Imaging in Grading. Radiology 2012, 263, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.; Chen, X.; Chai, W.; Fei, X.; Fu, C.; Yan, X.; Zhan, Y.; Chen, K.; Shen, K.; Yan, F. Breast Cancer: Diffusion Kurtosis MR Imaging—Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors. Radiology 2015, 277, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.M.; Liu, X.; Gan, H.M.; Gao, H.M.; Zhang, Y.; Zhou, L.; Gu, Y. Differentiation of Prostate Cancer and Stromal Hyperplasia in the Transition Zone with Monoexponential, Stretched-Exponential Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging in a Reduced Number of b Values: Correlation with Whole-Mount Pathology. J. Comput. Assist. Tomogr. 2022, 46, 545–550. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of patients | 155 |
Age (years) mean | 66.14 |
range | 51–81 |
Prostate specific antigen level (ng/mL) mean | 9.4 |
range | 2.2–37 |
Number of tumors studied | 178 |
PIRADS 3 | 4 |
PIRADS 4 | 86 |
PIRADS 5 | 88 |
Tumor location N (%) Peripheral Zone | 132 (74%) |
Transitional Zone | 46 (26%) |
Gleason score at prostatectomy: score [Grade group]—number of tumors | |
3 + 3 [1] | 15 |
3 + 4 [2] | 53 |
4 + 3 [3] | 76 |
4 + 4 [4] | 15 |
4 + 5 and 5 + 4 [5] | 19 |
PCa Mean Value ± SD | Normal Prostatic Tissue Mean Value ± SD | Student t Test | p-Value | |
---|---|---|---|---|
Dapp | 0.982 ± 0.197 | 2.205 ± 0.297 | 44.7 | <0.001 |
K | 1.267 ± 0.187 | 0.668 ± 0.092 | −35.5 | <0.001 |
ADC1200 | 0.760 ± 0.140 | 1.743 ± 0.266 | 42.1 | <0.001 |
ADC2000 | 0.663 ± 0.127 | 1.664 ± 0.282 | 41.2 | <0.001 |
GS < 3 + 3 | GS ≥ 3 + 4 | Mann–Whitney U Test | p-Value | |
---|---|---|---|---|
Dapp | 1.221 ± 0.223 | 0.960 ± 0.179 | 2013.5 | <0.001 |
K | 1.051 ± 0.120 | 1.288 ± 0.179 | 307.5 | <0.001 |
ADC1200 | 0.934 ± 0.137 | 0.744 ± 0.129 | 2048 | <0.001 |
ADC2000 | 0.824 ± 0.129 | 0.649 ± 0.117 | 2054 | <0.001 |
Cut-Off | Sens. | Spec. | Acc. | AUC (95% CI) | Adjusted p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Dapp | K | ADC1200 | ADC2000 | K + D | ||||||
Dapp | 1.16 | 0.864 | 0.667 | 0.865 | 0.806 (0.770; 0.849) | |||||
K | 1.17 | 0.730 | 0.733 | 0.852 | 0.861 (0.830; 0.885) | 0.344 | ||||
ADC1200 | 0.85 | 0.861 | 0.733 | 0.851 | 0.822 (0.785; 0.863) | 1.000 | 0.916 | |||
ADC2000 | 0.77 | 0.770 | 0.787 | 0.771 | 0.823 (0.787; 0.861) | 1.000 | 0.917 | 1.000 | ||
K + D | 0.820 | 0.727 | 0.812 | 0.848 (0.818; 0.879) | 0.664 | 1.000 | 1.000 | 1.000 | ||
K + D + ADC1200 + ADC2000 | 0.902 | 0.733 | 0.888 | 0.856 (0.824; 0.888) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
PZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cut-off | Sens. | Spec. | Acc. | AUC (95% CI) | Adjusted p-Value | |||||
Dapp | K | ADC1200 | ADC2000 | K + D | ||||||
Dapp | 1.12 | 0.851 | 0.6 | 0.824 | 0.853 (0.815; 0.735) | |||||
K | 1.10 | 0.802 | 0.8 | 0.802 | 0.847 (0.804; 0.891) | 1.000 | ||||
ADC1200 | 0.85 | 0.932 | 0.6 | 0.836 | 0.873 (0.836; 0.910) | 1.000 | 1.000 | |||
ADC2000 | 0.74 | 0.905 | 0.6 | 0.724 | 0.875 (0.844; 0.907) | 1.000 | 1.000 | 1.000 | ||
K + D | 0.775 | 0.80 | 0.777 | 0.864 (0.826; 0.901) | 1.000 | 1.000 | 1.000 | 1.000 | ||
K + D + ADC1200 + ADC2000 | 0.859 | 0.79 | 0.854 | 0.848 (0.802; 0.894) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
TZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cut-Off | Sens. | Spec. | Acc. | AUC (95% CI) | Adjusted p-Value | |||||
Dapp | K | ADC1200 | ADC2000 | K + D | ||||||
Dapp | 1.16 | 0.827 | 0.60 | 0.802 | 0.624 (0.523; 0.726) | |||||
K | 1.24 | 0.610 | 1.00 | 0.652 | 0.849 (0.807; 0.892) | <0.001 | ||||
ADC1200 | 0.91 | 0.929 | 0.60 | 0.893 | 0.675 (0.576; 0.774) | 0.160 | 0.018 | |||
ADC2000 | 0.78 | 0.905 | 0.60 | 0.872 | 0.685 (0.592; 0.777) | 0.127 | 0.019 | 1.000 | ||
K + D | 0.563 | 1.00 | 0.611 | 0.811 (0.764; 0.858) | 0.022 | 0.741 | 1.000 | 1.000 | ||
K + D + ADC1200 + ADC2000 | 0.912 | 0.78 | 0.898 | 0.773 (0.680; 0.866) | 0.387 | 0.893 | 0.970 | 0.971 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żurowska, A.; Pęksa, R.; Grzywińska, M.; Panas, D.; Sowa, M.; Skrobisz, K.; Matuszewski, M.; Szurowska, E. Comparison of Diffusion Kurtosis Imaging and Standard Mono-Exponential Apparent Diffusion Coefficient in Diagnosis of Significant Prostate Cancer—A Correlation with Gleason Score Assessed on Whole-Mount Histopathology Specimens. Diagnostics 2023, 13, 173. https://doi.org/10.3390/diagnostics13020173
Żurowska A, Pęksa R, Grzywińska M, Panas D, Sowa M, Skrobisz K, Matuszewski M, Szurowska E. Comparison of Diffusion Kurtosis Imaging and Standard Mono-Exponential Apparent Diffusion Coefficient in Diagnosis of Significant Prostate Cancer—A Correlation with Gleason Score Assessed on Whole-Mount Histopathology Specimens. Diagnostics. 2023; 13(2):173. https://doi.org/10.3390/diagnostics13020173
Chicago/Turabian StyleŻurowska, Anna, Rafał Pęksa, Małgorzata Grzywińska, Damian Panas, Marek Sowa, Katarzyna Skrobisz, Marcin Matuszewski, and Edyta Szurowska. 2023. "Comparison of Diffusion Kurtosis Imaging and Standard Mono-Exponential Apparent Diffusion Coefficient in Diagnosis of Significant Prostate Cancer—A Correlation with Gleason Score Assessed on Whole-Mount Histopathology Specimens" Diagnostics 13, no. 2: 173. https://doi.org/10.3390/diagnostics13020173
APA StyleŻurowska, A., Pęksa, R., Grzywińska, M., Panas, D., Sowa, M., Skrobisz, K., Matuszewski, M., & Szurowska, E. (2023). Comparison of Diffusion Kurtosis Imaging and Standard Mono-Exponential Apparent Diffusion Coefficient in Diagnosis of Significant Prostate Cancer—A Correlation with Gleason Score Assessed on Whole-Mount Histopathology Specimens. Diagnostics, 13(2), 173. https://doi.org/10.3390/diagnostics13020173