[68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Animal Model
2.2. Ethics
2.3. ASC Isolation and Culture
2.4. ASC Phenotype
2.5. Infarct Induction
2.6. Echocardiography
2.7. Tracer Synthesis
2.8. PET/CT Scan
2.9. Image Analysis
2.10. Treatment
2.11. Immunohistochemistry
2.12. Statistics
3. Results
3.1. Rat ASC Characterization and Injection
3.2. Tracer Uptake in the Infarct Area
3.3. Effect of ASC Treatment
3.4. Increased RGD Uptake in Hearts with Improved Pump Function
3.5. Increased [64Cu]Cu-DOTATATE Uptake in Hearts with Improved Pump Function
3.6. Immunohistochemistry
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golpanian, S.; Wolf, A.; Hatzistergos, K.E.; Hare, J.M. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol. Rev. 2016, 96, 1127–1168. [Google Scholar] [CrossRef] [Green Version]
- Awada, H.K.; Hwang, M.P.; Wang, Y. Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials 2016, 82, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Kastrup, J.; Haack-Sørensen, M.; Juhl, M.; Harary Søndergaard, R.; Follin, B.; Drozd Lund, L.; Mønsted Johansen, E.; Ali Qayyum, A.; Bruun Mathiasen, A.; Jørgensen, E.; et al. Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure-A Safety Study. Stem Cells Transl. Med. 2017, 6, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Borow, K.M.; Yaroshinsky, A.; Greenberg, B.; Perin, E.C. Phase 3 DREAM-HF Trial of Mesenchymal Precursor Cells in Chronic Heart Failure. Circ. Res. 2019, 125, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Sever, M.; Poglajen, G.; Lezaic, L.; Yang, P.; Maecker, H.; Davis, M.; Kuznetsova, T.; Wu, J.C.; Vrtovec, B. Immunologic Network and Response to Intramyocardial CD34+ Stem Cell Therapy in Patients With Dilated Cardiomyopathy. J. Card. Fail. 2015, 21, 572–582. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Cauwenberghs, N.; Kuznetsova, T.; Haddad, F.; Sweeney, T.; Hou, J.; Rosenberg-Hasson, Y.; Zhao, E.; Schutt, R.; Bolli, R.; et al. Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandic, L.; Traxler, D.; Gugerell, A.; Zlabinger, K.; Lukovic, D.; Pavo, N.; Goliasch, G.; Spannbauer, A.; Winkler, J.; Gyöngyösi, M. Molecular Imaging of Angiogenesis in Cardiac Regeneration. Curr. Cardiovasc. Imaging Rep. 2016, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, T.; Follin, B.; Kastrup, J.; Brandt-Larsen, M.; Madsen, J.; Emil Christensen, T.; Pharao Hammelev, K.; Hasbak, P.; Kjær, A. Angiogenesis PET Tracer Uptake ((68)Ga-NODAGA-E[(cRGDyK)]2) in Induced Myocardial Infarction in Minipigs. Diagnostics 2016, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, T.; Follin, B.; Kastrup, J.; Brandt-Larsen, M.; Madsen, J.; Emil Christensen, T.; Juhl, M.; Cohen, S.; Pharao Hammelev, K.; Holdflod Møller, C.; et al. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK)]2) in Induced Myocardial Infarction and Stromal Cell Treatment in Minipigs. Diagnostics 2018, 8, 33. [Google Scholar] [CrossRef]
- Menichetti, L.; Kusmic, C.; Panetta, D.; Arosio, D.; Petroni, D.; Matteucci, M.; Salvadori, P.A.; Casagrande, C.; L’Abbate, A.; Manzoni, L. MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1265–1274. [Google Scholar] [CrossRef]
- Sherif, H.M.; Saraste, A.; Nekolla, S.G.; Weidl, E.; Reder, S.; Tapfer, A.; Rudelius, M.; Higuchi, T.; Botnar, R.M.; Wester, H.J.; et al. Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J. Nucl. Med. 2012, 53, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Vagnozzi, R.J.; Maillet, M.; Sargent, M.A.; Khalil, H.; Johansen, A.K.; Schwanekamp, J.A.; York, A.J.; Huang, V.; Nahrendorf, M.; Sadayappan, S.; et al. An acute immune response underlies the benefit of cardiac adult stem cell therapy. bioRxiv 2018, 506626. [Google Scholar] [CrossRef] [Green Version]
- de Couto, G.; Liu, W.; Tseliou, E.; Sun, B.; Makkar, N.; Kanazawa, H.; Arditi, M.; Marbán, E. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J. Clin. Investig. 2015, 125, 3147–3162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Follin, B.; Hoeeg, C.; Højgaard, L.D.; Juhl, M.; Lund, K.B.; Døssing, K.B.V.; Bentsen, S.; Hunter, I.; Nielsen, C.H.; Ripa, R.S.; et al. The Initial Cardiac Tissue Response to Cryopreserved Allogeneic Adipose Tissue-Derived Mesenchymal Stromal Cells in Rats with Chronic Ischemic Cardiomyopathy. Int. J. Mol. Sci. 2021, 22, 11758. [Google Scholar] [CrossRef]
- Toner, Y.C.; Ghotbi, A.A.; Naidu, S.; Sakurai, K.; van Leent, M.M.T.; Jordan, S.; Ordikhani, F.; Amadori, L.; Sofias, A.M.; Fisher, E.L.; et al. Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Sci. Rep. 2022, 12, 1–5. [Google Scholar] [CrossRef]
- Jensen, J.K.; Zobel, E.H.; von Scholten, B.J.; Rotbain Curovic, V.; Hansen, T.W.; Rossing, P.; Kjaer, A.; Ripa, R.S. Effect of 26 Weeks of Liraglutide Treatment on Coronary Artery Inflammation in Type 2 Diabetes Quantified by [ 64 Cu]Cu-DOTATATE PET/CT: Results from the LIRAFLAME Trial. Front. Endocrinol. 2021, 12, 1576. [Google Scholar] [CrossRef]
- Follin, B.; Ghotbi, A.A.; Clemmensen, A.E.; Bentsen, S.; Juhl, M.; Søndergaard, R.H.; Lund, L.D.; Haack-Sørensen, M.; Hasbak, P.; Cohen, S.; et al. Retention and Functional Effect of Adipose-Derived Stromal Cells Administered in Alginate Hydrogel in a Rat Model of Acute Myocardial Infarction. Stem Cells Int. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ghotbi, A.A.; Clemmensen, A.; Kyhl, K.; Follin, B.; Hasbak, P.; Engstrøm, T.; Ripa, R.S.; Kjaer, A. Rubidium-82 PET imaging is feasible in a rat myocardial infarction model. J. Nucl. Cardiol. 2017, 26, 798–809. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.F.; Sandholt, B.V.; Keller, S.H.; Hansen, A.E.; Clemmensen, A.E.; Sillesen, H.; Højgaard, L.; Ripa, R.S.; Kjær, A. 64Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques: Studies in Patients Undergoing Endarterectomy. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1696–1703. [Google Scholar] [CrossRef]
- Jenkins, W.S.A.; Vesey, A.T.; Stirrat, C.; Connell, M.; Lucatelli, C.; Neale, A.; Moles, C.; Vickers, A.; Fletcher, A.; Pawade, T.; et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart 2017, 103, 607–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozid, A.M.; Holstensson, M.; Choudhury, T.; Ben-Haim, S.; Allie, R.; Martin, J.; Sinusas, A.J.; Hutton, B.F.; Mathur, A. Clinical feasibility study to detect angiogenesis following bone marrow stem cell transplantation in chronic ischaemic heart failure. Nucl. Med. Commun. 2014, 35, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Makowski, M.R.; Rischpler, C.; Ebersberger, U.; Keithahn, A.; Kasel, M.; Hoffmann, E.; Rassaf, T.; Kessler, H.; Wester, H.J.; Nekolla, S.G.; et al. Multiparametric PET and MRI of myocardial damage after myocardial infarction: Correlation of integrin αvβ3 expression and myocardial blood flow. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1070–1080. [Google Scholar] [CrossRef]
- Huang, C.-C.; Wei, H.-J.; Lin, K.-J.; Lin, W.-W.; Wang, C.-W.; Pan, W.-Y.; Hwang, S.-M.; Chang, Y.; Sung, H.-W. Multimodality noninvasive imaging for assessing therapeutic effects of exogenously transplanted cell aggregates capable of angiogenesis on acute myocardial infarction. Biomaterials 2015, 73, 12–22. [Google Scholar] [CrossRef]
- Lang, C.I.; Döring, P.; Gäbel, R.; Vasudevan, P.; Lemcke, H.; Müller, P.; Stenzel, J.; Lindner, T.; Joksch, M.; Kurth, J.; et al. [68 Ga]-NODAGA-RGD Positron Emission Tomography (PET) for Assessment of Post Myocardial Infarction Angiogenesis as a Predictor for Left Ventricular Remodeling in Mice after Cardiac Stem Cell Therapy. Cells 2020, 9, 1358. [Google Scholar] [CrossRef]
- Borchert, T.; Beitar, L.; Langer, L.B.N.; Polyak, A.; Wester, H.J.; Ross, T.L.; Hilfiker-Kleiner, D.; Bengel, F.M.; Thackeray, J.T. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J. Nucl. Cardiol. 2021, 28, 1636–1645. [Google Scholar] [CrossRef]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef]
- Vagnozzi, R.J.; Kasam, R.K.; Sargent, M.A.; Molkentin, J.D. Cardiac Cell Therapy Fails to Rejuvenate the Chronically Scarred Rodent Heart. Circulation 2021, 144, 328–331. [Google Scholar] [CrossRef]
- Mouton, A.J.; DeLeon-Pennell, K.Y.; Rivera Gonzalez, O.J.; Flynn, E.R.; Freeman, T.C.; Saucerman, J.J.; Garrett, M.R.; Ma, Y.; Harmancey, R.; Lindsey, M.L. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res. Cardiol. 2018, 113, 26. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Bengel, F.M.; Seidl, S.; Watzlowik, P.; Kessler, H.; Hegenloh, R.; Reder, S.; Nekolla, S.G.; Wester, H.J.; Schwaiger, M. Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc. Res. 2008, 78, 395–403. [Google Scholar] [CrossRef]
- Tarkin, J.M.; Calcagno, C.; Dweck, M.R.; Evans, N.R.; Chowdhury, M.M.; Gopalan, D.; Newby, D.E.; Fayad, Z.A.; Bennett, M.R.; Rudd, J.H.F. 68Ga-DOTATATE PET Identifies Residual Myocardial Inflammation and Bone Marrow Activation After Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2489. [Google Scholar] [CrossRef] [PubMed]
ASC (n = 18) | Saline (n = 9) | |||
Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment | |
LVEF (%) | 48.4 ± 9.3 | 48.5 ± 12.0 | 48.4 ± 9.1 | 48.8 ± 10.2 |
LVESV (µL) | 296.9 ± 119.8 | 294.4 ± 88.8 | 289.2 ± 78.6 | 249.5 ± 109.5 |
LVEDV (µL) | 573.5 ± 166.4 | 582.6 ± 163.1 | 561.0 ± 103.5 | 626.7 ± 377.4 |
[68Ga]Ga-RGD SUVmax | 0.88 ± 0.25 | 0.83 ± 0.14 | 0.89 ± 0.15 | 0.76 ± 0.18 |
[64Cu]Cu-DOTATATE SUVmax | 0.43 ± 0.08 | 0.48 ± 0.13 | 0.41 ± 0.07 | 0.41 ± 0.12 |
Improved (n = 8) | Not Improved (n = 19) | |||
Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment | |
LVEF (%) | 42.4 ± 9.5 | 55.1 ± 7.3 | 51.0 ± 7.8 | 45.8 ± 11.7 |
LVESV (µL) | 353.2 ± 157.0 | 270.4 ± 113.1 | 269.5 ± 63.9 | 283.2 ± 91.4 |
LVEDV (µL) | 598.2 ± 196.9 | 597.1 ± 181.5 | 557.2 ± 120.5 | 597.4 ± 281.8 |
[68Ga]Ga-RGD SUVmax | 0.81 ± 0.29 | 0.91 ± 0.17 | 0.93 ± 0.13 | 0.75 ± 0.14 |
[64Cu]Cu-DOTATATE SUVmax | 0.40 ± 0.08 | 0.56 ± 0.14 | 0.43 ± 0.08 | 0.41 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Follin, B.; Hoeeg, C.; Hunter, I.; Bentsen, S.; Juhl, M.; Jensen, J.K.; Binderup, T.; Nielsen, C.H.; Ripa, R.S.; Kastrup, J.; et al. [68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy. Diagnostics 2023, 13, 268. https://doi.org/10.3390/diagnostics13020268
Follin B, Hoeeg C, Hunter I, Bentsen S, Juhl M, Jensen JK, Binderup T, Nielsen CH, Ripa RS, Kastrup J, et al. [68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy. Diagnostics. 2023; 13(2):268. https://doi.org/10.3390/diagnostics13020268
Chicago/Turabian StyleFollin, Bjarke, Cecilie Hoeeg, Ingrid Hunter, Simon Bentsen, Morten Juhl, Jacob Kildevang Jensen, Tina Binderup, Carsten Haagen Nielsen, Rasmus Sejersten Ripa, Jens Kastrup, and et al. 2023. "[68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy" Diagnostics 13, no. 2: 268. https://doi.org/10.3390/diagnostics13020268
APA StyleFollin, B., Hoeeg, C., Hunter, I., Bentsen, S., Juhl, M., Jensen, J. K., Binderup, T., Nielsen, C. H., Ripa, R. S., Kastrup, J., Ekblond, A., & Kjaer, A. (2023). [68Ga]Ga-NODAGA-E[(cRGDyK)]2 and [64Cu]Cu-DOTATATE PET Predict Improvement in Ischemic Cardiomyopathy. Diagnostics, 13(2), 268. https://doi.org/10.3390/diagnostics13020268