Derived Neutrophil-Lymphocyte Ratio and C-Reactive Protein as Prognostic Factors for Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiation Therapy
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patient Selection
2.2. Staging and Treatment Procedures
2.3. Follow-Up and Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Pre-Treatment dNLR and CRP as Prognostic Biomarkers
3.3. Post-Treatment CRP as a Prognostic Biomarker
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Timmerman, R.D.; Paulus, R.; Pass, H.I.; Gore, E.M.; Edelman, M.J.; Galvin, J.; Straube, W.L.; Nedzi, L.A.; McGarry, R.C.; Robinson, C.G.; et al. Stereotactic body radiation therapy for operable early-stage lung cancer: Findings from the NRG oncology RTOG 0618 trial. JAMA Oncol. 2018, 4, 1263–1266. [Google Scholar] [CrossRef]
- Chang, J.Y.; Mehran, R.J.; Feng, L.; Verma, V.; Liao, Z.; Welsh, J.W.; Lin, S.H.; O’Reilly, M.S.; Jeter, M.D.; A Balter, P.; et al. Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): Long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncol. 2021, 22, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010, 303, 1070–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Videtic, G.M.; Paulus, R.; Singh, A.K.; Chang, J.Y.; Parker, W.; Olivier, K.R.; Timmerman, R.D.; Komaki, R.R.; Urbanic, J.J.; Stephans, K.L.; et al. Long-term Follow-up on NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2018, 103, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Bezjak, A.; Paulus, R.; Gaspar, L.E.; Timmerman, R.D.; Straube, W.L.; Ryan, W.F.; Garces, Y.I.; Pu, A.T.; Singh, A.K.; Videtic, G.M.; et al. Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non–small-cell lung cancer: NRG oncology/RTOG 0813 trial. J. Clin. Oncol. 2019, 37, 1316. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, D.; Zhu, B.; Chen, W.; Xie, Q.; Wang, Y.; Tan, Q.; Yuan, B.; Zuo, X.; Huang, C.; et al. Stereotactic Body Radiotherapy Is Effective in Modifying the Tumor Genome and Tumor Immune Microenvironment in Non-Small Cell Lung Cancer or Lung Metastatic Carcinoma. Front. Immunol. 2021, 11, 594212. [Google Scholar] [CrossRef]
- Liu, C.; Sun, B.; Hu, X.; Zhang, Y.; Wang, Q.; Yue, J.; Yu, J. Stereotactic Ablative Radiation Therapy for Pulmonary Recurrence-Based Oligometastatic Non-Small Cell Lung Cancer: Survival and Prognostic Value of Regulatory T Cells. Int. J. Radiat. Oncol. 2019, 105, 1055–1064. [Google Scholar] [CrossRef]
- Brown, J.M.; Carlson, D.J.; Brenner, D.J. The tumor radiobiology of SRS and SBRT: Are more than the 5 Rs involved? Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Kazandjian, D.; Gong, Y.; Keegan, P.; Pazdur, R.; Blumenthal, G.M. Prognostic Value of the Lung Immune Prognostic Index for Patients Treated for Metastatic Non–Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 1481–1485. [Google Scholar] [CrossRef]
- Tanizaki, J.; Haratani, K.; Hayashi, H.; Chiba, Y.; Nakamura, Y.; Yonesaka, K.; Kudo, K.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; et al. Peripheral Blood Biomarkers Associated with Clinical Outcome in Non–Small Cell Lung Cancer Patients Treated with Nivolumab. J. Thorac. Oncol. 2017, 13, 97–105. [Google Scholar] [CrossRef]
- Mezquita, L.; Auclin, E.; Ferrara, R.; Charrier, M.; Remon, J.; Planchard, D.; Ponce, S.; Ares, L.P.; Leroy, L.; Audigier-Valette, C.; et al. Association of the Lung Immune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non–Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 351–357. [Google Scholar] [CrossRef]
- Sebastian, N.; Wu, T.; Bazan, J.; Driscoll, E.; Willers, H.; Yegya-Raman, N.; Bond, L.; Dwivedi, A.; Mo, X.; Tan, Y.; et al. Pre-treatment neutrophil-lymphocyte ratio is associated with overall mortality in localized non-small cell lung cancer treated with stereotactic body radiotherapy. Radiother. Oncol. 2019, 134, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Cannon, N.A.; Meyer, J.; Iyengar, P.; Ahn, C.; Westover, K.D.; Choy, H.; Timmerman, R. Neutrophil–lymphocyte and platelet–lymphocyte ratios as prognostic factors after stereotactic radiation therapy for early-stage non–small-cell lung cancer. J. Thorac. Oncol. 2015, 10, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Shaverdian, N.; Veruttipong, D.; Wang, J.; Schaue, D.; Kupelian, P.; Lee, P. Pretreatment Immune Parameters Predict for Overall Survival and Toxicity in Early-Stage Non–Small-Cell Lung Cancer Patients Treated with Stereotactic Body Radiation Therapy. Clin. Lung Cancer 2015, 17, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.; Sampson, L.; Wong, O.; Gay, J.; Le, L.; Cho, B.; Brade, A.; Sun, A.; Bezjak, A.; Hope, A. Prognostic Value of Pretreatment Circulating Neutrophils, Monocytes, and Lymphocytes on Outcomes in Lung Stereotactic Body Radiotherapy. Curr. Oncol. 2016, 23, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Ge, H.; Cui, Y.; Zhang, J.; Fan, R.; Zheng, A.; Zheng, X.; Sun, Y. Systemic Inflammation Biomarkers Predict Survival in Patients of Early Stage Non-Small Cell Lung Cancer Treated with Stereotactic Ablative Radiotherapy—A Single Center Experience. J. Cancer 2018, 9, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Rami-Porta, R.; Asamura, H.; Travis, W.D.; Rusch, V. Lung cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA A Cancer J. Clin. 2017, 67, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Zhu, X.; Shu, Z.; Ji, Y.; Lu, F.; Wang, J.; Chen, M. Video-Assisted Thoracoscopic Lobectomy Versus Stereotactic Body Radiotherapy Treatment for Early-Stage Non-Small Cell Lung Cancer: A Propensity Score-Matching Analysis. Front. Oncol. 2020, 10, 585709. [Google Scholar] [CrossRef]
- Dong, B.; Wang, J.; Zhu, X.; Chen, Y.; Xu, Y.; Shao, K.; Zheng, L.; Ying, H.; Chen, M.; Cao, J. Comparison of the outcomes of stereotactic body radiotherapy versus surgical treatment for elderly (≥70) patients with early-stage non-small cell lung cancer after propensity score matching. Radiat. Oncol. 2019, 14, 195. [Google Scholar] [CrossRef]
- Chang, J.Y.; Li, Q.-Q.; Xu, Q.-Y.; Allen, P.K.; Rebueno, N.; Gomez, D.R.; Balter, P.; Komaki, R.; Mehran, R.; Swisher, S.G.; et al. Stereotactic Ablative Radiation Therapy for Centrally Located Early Stage or Isolated Parenchymal Recurrences of Non-Small Cell Lung Cancer: How to Fly in a “No Fly Zone”. Int. J. Radiat. Oncol. 2014, 88, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- McFarland, D.C.; Jutagir, D.R.; Miller, A.H.; Breitbart, W.; Nelson, C.; Rosenfeld, B. Tumor Mutation Burden and Depression in Lung Cancer: Association with Inflammation. J. Natl. Compr. Cancer Netw. 2020, 18, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhuillier, C.; Rudqvist, N.-P.; Yamazaki, T.; Zhang, T.; Charpentier, M.; Galluzzi, L.; Dephoure, N.; Clement, C.C.; Santambrogio, L.; Zhou, X.K.; et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Herrera, F.G.; Ronet, C.; de Olza, M.O.; Barras, D.; Crespo, I.; Andreatta, M.; Corria-Osorio, J.; Spill, A.; Benedetti, F.; Genolet, R.; et al. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. Cancer Discov. 2021, 12, 108–133. [Google Scholar] [CrossRef]
- Nolan, E.; Bridgeman, V.L.; Ombrato, L.; Karoutas, A.; Rabas, N.; Sewnath, C.A.N.; Vasquez, M.; Rodrigues, F.S.; Horswell, S.; Faull, P.; et al. Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat. Cancer 2022, 3, 173–187. [Google Scholar] [CrossRef]
- Ancey, P.-B.; Contat, C.; Boivin, G.; Sabatino, S.; Pascual, J.; Zangger, N.; Perentes, J.Y.; Peters, S.; Abel, E.D.; Kirsch, D.G.; et al. GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Res 2021, 81, 2345–2357. [Google Scholar] [CrossRef]
- Moreira, D.; Sampath, S.; Won, H.; White, S.V.; Su, Y.-L.; Alcantara, M.; Wang, C.; Lee, P.P.; Maghami, E.; Massarelli, E.; et al. Myeloid cell–targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell–mediated immunity. J. Clin. Investig. 2021, 131, e137001. [Google Scholar] [CrossRef]
- Ye, J.; Mills, B.N.; Zhao, T.; Han, B.J.; Murphy, J.D.; Patel, A.P.; Johnston, C.J.; Lord, E.M.; Belt, B.A.; Linehan, D.C.; et al. Assessing the Magnitude of Immunogenic Cell Death Following Chemotherapy and Irradiation Reveals a New Strategy to Treat Pancreatic Cancer. Cancer Immunol. Res. 2020, 8, 94–107. [Google Scholar] [CrossRef]
- Sharabi, A.B.; Nirschl, C.J.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Velarde, E.; Deweese, T.L.; Drake, C.G. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Anti-tumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunol. Res. 2015, 3, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Klümper, N.; Saal, J.; Berner, F.; Lichtensteiger, C.; Wyss, N.; Heine, A.; Bauernfeind, F.G.; Ellinger, J.; Brossart, P.; Diem, S.; et al. C reactive protein flare predicts response to checkpoint inhibitor treatment in non-small cell lung cancer. J. Immunother. Cancer 2022, 10, e004024. [Google Scholar] [CrossRef]
- Ji, M.; Du, L.; Ma, Z.; Xie, J.; Huang, Y.; Wei, X.; Jiang, X.; Xu, J.; Yin, R.; Wang, Y.; et al. Circulating C-reactive protein increases lung cancer risk: Results from a prospective cohort of UK Biobank. Int. J. Cancer 2022, 150, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kijima, T.; Yamamoto, H.; Saito, K.; Kusuhara, S.; Yoshida, S.; Yokoyama, M.; Matsuoka, Y.; Numao, N.; Sakai, Y.; Matsubara, N.; et al. Early C-reactive protein kinetics predict survival of patients with advanced urothelial cancer treated with pembrolizumab. Cancer Immunol. Immunother. 2021, 70, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Aires, F.; Rodrigues, D.; Lamas, M.P.; Herdeiro, M.T.; Figueiras, A.; Oliveira, M.J.; Marques, M.; Pinto, A.T. C-Reactive Protein as Predictive Biomarker for Response to Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Retrospective Study. Cancers 2022, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Rühle, A.; Stromberger, C.; Haehl, E.; Senger, C.; David, H.; Stoian, R.; Zamboglou, C.; Knopf, A.; Budach, V.; Grosu, A.-L.; et al. Development and validation of a novel prognostic score for elderly head-and-neck cancer patients undergoing radiotherapy or chemoradiation. Radiother. Oncol. 2020, 154, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Beitler, J.J.; Peng, G.; Levine, M.E.; Conneely, K.N.; Zhao, H.; Felger, J.C.; Wommack, E.C.; Chico, C.E.; Jeon, S.; et al. Epigenetic age acceleration, fatigue, and inflammation in patients undergoing radiation therapy for head and neck cancer: A longitudinal study. Cancer 2021, 127, 3361–3371. [Google Scholar] [CrossRef] [PubMed]
- Bestvina, C.M.; Pointer, K.B.; Karrison, T.; Al-Hallaq, H.; Hoffman, P.C.; Jelinek, M.J.; Juloori, A.; Melotek, J.M.; Murgu, S.; Partouche, J.; et al. A phase 1 trial of concurrent or sequential ipilimumab, nivolumab, and stereotactic body radiotherapy in patients with stage IV NSCLC study. J. Thorac. Oncol. 2022, 17, 130–140. [Google Scholar] [CrossRef]
- Bernstein, M.B.; Krishnan, S.; Hodge, J.W.; Chang, J.Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): A curative approach? Nat. Rev. Clin. Oncol. 2016, 13, 516–524. [Google Scholar] [CrossRef]
- Hörner-Rieber, J.; Bernhardt, D.; Dern, J.; König, L.; Adeberg, S.; Paul, A.; Heussel, C.P.; Kappes, J.; Hoffmann, H.; Herth, F.J.; et al. Histology of non-small cell lung cancer predicts the response to stereotactic body radiotherapy. Radiother. Oncol. 2017, 125, 317–324. [Google Scholar] [CrossRef]
- Abel, S.; Hasan, S.; White, R.; Schumacher, L.; Finley, G.; Colonias, A.; Wegner, R.E. Stereotactic ablative radiotherapy (SABR) in early stage non-small cell lung cancer: Comparing survival outcomes in adenocarcinoma and squamous cell carcinoma. Lung Cancer 2019, 128, 127–133. [Google Scholar] [CrossRef]
Characteristic | n | % | Characteristic | n | % |
---|---|---|---|---|---|
Age (years) | T-stage | ||||
Median (range) | 75.5 (47.2–89.0) | T1a | 7 | 4.7 | |
Gender | T1b | 71 | 48.0 | ||
Female | 42 | 28.4 | T1c | 51 | 34.5 |
Male | 106 | 71.6 | T2a | 14 | 9.5 |
ECOG PS | T2b | 5 | 3.4 | ||
0 | 35 | 23.6 | Location | ||
1 | 86 | 58.1 | Central | 5 | 3.4 |
2 | 22 | 14.9 | Peripheral | 143 | 96.6 |
3 | 5 | 3.4 | Site | ||
CCI | Superior or middle lobe of right lung | 40 | 27.0 | ||
Median (range) | 3 (2–8) | Inferior lobe of right lung | 21 | 14.2 | |
Histologic subtype | Superior lobe of left lung | 59 | 39.9 | ||
Adenocarcinoma | 48 | 32.5 | Inferior lobe of left lung | 28 | 18.9 |
Squamous cell carcinoma | 27 | 18.2 | Radiotherapy | ||
NSCLC, NOS | 21 | 14.2 | 50 Gy in 4 or 5 fractions | 132 | 89.2 |
No pathologic diagnosis | 52 | 35.1 | 60 Gy in 8 fractions | 5 | 3.4 |
Smoking Status | 70 Gy in 10 fractions | 8 | 5.4 | ||
Never smoker | 59 | 39.9 | Other | 3 | 2.0 |
Former/current smoker | 89 | 60.1 | BED (Gy) | ||
FEV1 Measured (L) | Median (range) | 100 (100–132) | |||
<1.5 | 60 | 40.5 | WBC (×109/L) | ||
1.5–2.4 | 39 | 26.4 | Median (range) | 5.7 (2.8–13.3) | |
≥2.5 | 6 | 4.0 | Neutrophil Count (×109/L) | ||
Unknow | 43 | 29.1 | Median (range) | 3.5 (0.9–9.6) | |
FEV1/FVC (%) | Lymphocyte Count (×109/L) | ||||
<70 | 19 | 12.8 | Median (range) | 1.5 (0.6–5.4) | |
≥70 | 86 | 58.1 | Monocyte count (×109/L) | ||
Unknown | 43 | 29.1 | Median (range) | 0.4 (0.0–1.6) | |
DLCO Measured/Predicted (%) | Platelet count (×109/L) | ||||
<60 | 27 | 18.2 | Median (range) | 194 (73–554) | |
60–79 | 25 | 16.9 | Serum albumin level (g/L) | ||
≥80 | 57 | 38.5 | Median (range) | 42.4 (31.2–67.0) | |
Unknow | 39 | 26.4 | LDH (U/L) | ||
PET/CT | Median (range) | 186 (109–354) | |||
Yes | 115 | 77.7 | CRP (mg/L) | ||
No | 33 | 22.3 | Median (range) | 2.18 (0.02–89.49) |
Covariables | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (year) | 1.03 (0.99–1.06) | 0.171 | 0.98 (0.94–1.03) | 0.504 |
Gender | ||||
Female | 1 [Reference] | 1 [Reference] | ||
Male | 3.52 (1.50–8.28) | 0.004 | 4.45 (1.43–13.90) | 0.010 |
ECOG PS | ||||
0–1 | 1 [Reference] | 1 [Reference] | ||
2–3 | 2.97 (1.03–8.57) | 0.044 | 5.57 (1.50–20.68) | 0.010 |
Charlson Comorbidity Index | ||||
2 | 1 [Reference] | 1 [Reference] | ||
3–4 | 1.09 (0.60–1.97) | 0.784 | 0.73 (0.39–1.39) | 0.343 |
≥5 | 1.25 (0.43–3.64) | 0.689 | 0.71 (0.22–2.30) | 0.567 |
Smoking Status | ||||
Never smoker | 1 [Reference] | 1 [Reference] | ||
Former/current smoker | 2.05 (1.07–3.89) | 0.027 | 0.78 (0.34–1.80) | 0.563 |
Pulmonary Function | ||||
Normal/Mild | 1 [Reference] | 1 [Reference] | ||
Moderate | 3.12 (0.99–9.83) | 0.051 | 1.05 (0.29–3.80) | 0.938 |
Severe | 2.71 (0.92–7.98) | 0.070 | 1.21 (0.37–4.03) | 0.753 |
Unknown | 1.90 (0.60–5.95) | 0.274 | 1.09 (0.32–3.74) | 0.895 |
T-stage | ||||
T1 | 1 [Reference] | 1 [Reference] | ||
T2 | 1.19 (0.67–2.09) | 0.551 | 0.93 (0.49–1.76) | 0.822 |
Histologic subtype | ||||
Adenocarcinoma | 1 [Reference] | 1 [Reference] | ||
Squamous cell carcinoma | 2.53 (1.13–5.67) | 0.024 | 1.24 (0.50–3.04) | 0.646 |
NSCLC, NOS | 1.28 (0.47–3.47) | 0.626 | 0.71 (0.23–2.21) | 0.549 |
No pathologic diagnosis | 1.65 (0.78–3.50) | 0.190 | 1.85 (0.82–4.15) | 0.138 |
BED (Gy) | 0.95 (0.90–1.00) | 0.033 | 0.92 (0.87–0.97) | 0.004 |
dNLR | ||||
<1.4 | 1 [Reference] | 1 [Reference] | ||
≥1.4 | 3.38 (1.51–7.58) | 0.003 | 4.62 (1.89–11.27) | 0.001 |
MLR | ||||
<0.3 | 1 [Reference] | |||
≥0.3 | 1.63 (0.88–2.99) | 0.119 | ||
PLR | ||||
<128 | 1 [Reference] | |||
≥128 | 1.05 (0.60–1.85) | 0.868 | ||
Serum albumin level (g/L) | ||||
<43.0 | 1 [Reference] | 1 [Reference] | ||
≥43.0 | 0.40 (0.21–0.77) | 0.006 | 0.57 (0.27–1.22) | 0.148 |
LDH (U/L) | ||||
<240 | 1 [Reference] | |||
≥240 | 1.03 (0.37–2.87) | 0.954 | ||
CRP | ||||
<2.9 | 1 [Reference] | 1 [Reference] | ||
≥2.9 | 1.85 (1.05–3.27) | 0.033 | 2.92 (1.49–5.70) | 0.002 |
Covariables | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
OS | ||||
dNLR | 1.46 (0.43–4.91) | 0.546 | 0.71 (0.17–2.94) | 0.640 |
Serum albumin level | 0.34 (0.08–1.43) | 0.140 | 0.11 (0.02–0.81) | 0.030 |
CRP | 4.20 (1.56–11.33) | 0.005 | 1.76 (0.48–6.41) | 0.393 |
PFS | ||||
dNLR | 1.06 (0.36–3.16) | 0.915 | 0.43 (0.11–1.72) | 0.232 |
Serum albumin level | 0.44 (0.10–1.90) | 0.272 | 0.27 (0.05–1.57) | 0.146 |
CRP | 4.02 (1.46–11.06) | 0.007 | 4.83 (1.28–18.25) | 0.020 |
LRR | ||||
dNLR | 0.45 (0.11–1.80) | 0.257 | 0.14 (0.02–1.22) | 0.075 |
Serum albumin level | 0.48 (0.06–3.87) | 0.493 | 0.24 (0.02–2.54) | 0.238 |
CRP | 4.29 (0.89–20.70) | 0.070 | 5.99 (0.94–38.19) | 0.058 |
DM | ||||
dNLR | 0.89 (0.30–2.70) | 0.842 | 0.45 (0.10–2.07) | 0.305 |
Serum albumin level | 0.22 (0.03–1.66) | 0.143 | 0.11 (0.01–1.54) | 0.078 |
CRP | 4.73 (1.56–14.38) | 0.006 | 5.56 (1.39–22.21) | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, B.; Zhu, X.; Chen, R.; Wu, Q.; Jin, J.; Wang, L.; Xu, Y.; Chen, M. Derived Neutrophil-Lymphocyte Ratio and C-Reactive Protein as Prognostic Factors for Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiation Therapy. Diagnostics 2023, 13, 313. https://doi.org/10.3390/diagnostics13020313
Dong B, Zhu X, Chen R, Wu Q, Jin J, Wang L, Xu Y, Chen M. Derived Neutrophil-Lymphocyte Ratio and C-Reactive Protein as Prognostic Factors for Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiation Therapy. Diagnostics. 2023; 13(2):313. https://doi.org/10.3390/diagnostics13020313
Chicago/Turabian StyleDong, Baiqiang, Xuan Zhu, Runzhe Chen, Qing Wu, Jia’nan Jin, Lin Wang, Yujin Xu, and Ming Chen. 2023. "Derived Neutrophil-Lymphocyte Ratio and C-Reactive Protein as Prognostic Factors for Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiation Therapy" Diagnostics 13, no. 2: 313. https://doi.org/10.3390/diagnostics13020313
APA StyleDong, B., Zhu, X., Chen, R., Wu, Q., Jin, J., Wang, L., Xu, Y., & Chen, M. (2023). Derived Neutrophil-Lymphocyte Ratio and C-Reactive Protein as Prognostic Factors for Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiation Therapy. Diagnostics, 13(2), 313. https://doi.org/10.3390/diagnostics13020313