Multi-Slice CT Features Predict Pathological Risk Classification in Gastric Stromal Tumors Larger Than 2 cm: A Retrospective Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. CT Technique
2.3. Imaging Interpretation
2.4. Statistical Analyses
3. Results
3.1. Clinical Information (Table 2)
Groups | Gender | Age (Years Old) | Gastrointestinal Bleeding | ||
---|---|---|---|---|---|
Male (n = 223) | Female (n = 201) | Yes (n = 96) | No (n = 328) | ||
Low-risk group (n = 282) | 146(51.8) | 138 (48.2) | 61.00 (54.00, 69.00) | 55 (19.5) | 227 (80.5) |
Moderate-risk group (n = 72) | 32 (44.4) | 40 (55.6) | 60.50 (52.50, 68.00) | 19 (26.4) | 53 (73.6) |
High-risk group (n = 70) | 45 (64.3) | 25 (35.7) | 60.00 (52.00, 67.00) | 22 (31.4) | 48 (68.6) |
Statistical Value | 5.832 # | 1.181 * | 5.248 # | ||
p value | 0.054 | 0.554 | 0.072 |
3.2. CT Features (Table 3, Figure 2)
Parameters | Low-Risk Group (n = 282) | Moderate-Risk Group (n = 72) | High-Risk Group (n = 70) | Statistical Value | p Value |
---|---|---|---|---|---|
Morphology | |||||
Regular (n = 239) | 178 (63.1) a | 46 (63.9) a | 15 (21.4) b | 41.629 # | <0.001 |
Irregular (n = 185) | 104 (36.9) | 26 (36.1) | 55 (78.6) | ||
Calcification | |||||
No (n = 346) | 232 (82.3) | 61 (84.7) | 53 (75.7) | 44.338 # | 0.338 |
Yes (n = 78) | 50 (17.7) | 11 (15.3) | 17 (24.3) | ||
Ulceration | |||||
No (n = 299) | 228 (80.9) a | 42 (58.3) b | 29 (41.4) c | 48.116 # | <0.001 |
Yes (n = 125) | 54 (19.1) | 30 (41.7) | 41 (58.6) | ||
Feeding artery | |||||
No (n = 294) | 216 (76.6) a | 55 (76.4) a | 23 (32.9) b | 52.490 # | <0.001 |
Yes (n = 130) | 66 (23.4) | 17 (23.6) | 47 (67.1) | ||
Vascular-like enhancement | |||||
No (n = 321) | 233 (82.6) a | 57 (79.2) a | 31 (44.3) b | 45.383 # | <0.001 |
Yes (n = 103) | 49 (17.4) | 15 (20.8) | 39 (55.7) | ||
Fat-positive sign around lesion | |||||
No (n = 394) | 275 (97.5) a | 69 (95.8) a | 50 (71.4) b | 59.171 # | <0.001 |
Yes (n = 30) | 7 (2.5) | 3 (4.2) | 20 (28.6) | ||
Necrosis | |||||
No (n = 183) | 142 (50.4) a | 36 (50.0) a | 5 (7.1) b | 44.338 # | <0.001 |
Yes (n = 241) | 140 (49.6) | 36 (50.0) | 65 (92.9) | ||
Location | |||||
Gastric fundus (n = 157) | 90 (31.9) a | 38 (52.8) b | 29 (41.4) ab | 29.563 # | <0.001 |
Gastric cardi (n = 10) | 4 (1.4) a | 1 (1.4) ab | 5 (7.1) b | ||
Gastric body (n = 215) | 149 (52.8) a | 31 (43.1) a | 35 (50.0) a | ||
Gastric antrum (n = 42) | 39 (13.8) a | 2 (2.8) b | 1 (1.4) b | ||
Growth pattern | |||||
Endophytic (n = 133) | 81 (28.7) a | 25 (34.7) a | 7 (10.0) b | 19.755 # | 0.001 |
Exophytic (n = 179) | 124 (44.0) a | 27 (37.5) a | 28 (40.0) a | ||
Mixed (n = 132) | 77 (27.3) a | 20 (27.8) a | 35 (50.0) b | ||
Maximal short diameter (cm) | 2.87 (2.30, 3.84) a | 3.07 (2.36, 3.99) a | 6.06 (4.34, 8.29) b | 98.088 * | <0.001 |
CT value in non-contrast (HU) | 32.45 (29.00, 36.00) | 32.85 (29.45, 34.60) | 33.55 (30.30, 36.00) | 1.740 * | 0.419 |
CT value in arterial phase (HU) | 52.75 (46.00, 60.70) | 48.95 (46.13, 57.15) | 49.95 (44.40, 58.00) | 3.504 * | 0.173 |
CT value in venous phase (HU) | 64.10 (57.40, 74.20) a | 61.05 (54.80, 67.75) b | 59.50 (54.05, 69.40) b | 9.208 * | 0.010 |
ΔCTarterial | 19.50 (13.39, 26.70) | 17.83 (12.65, 24.38) | 16.50 (11.75, 23.93) | 4.193 * | 0.123 |
ΔCTvenous | 31.00 (24.60, 41.49) a | 27.55 (21.50, 37.60) b | 26.25 (21.12, 36.15) b | 8.557 * | 0.014 |
3.3. Construction of Binary Logistic Regression and Nomogram Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFIP | Armed Forces Institute of Pathology |
NIH | National Institutes of Health |
GSTs | Gastric stromal tumors |
GISTs | Gastrointestinal stromal tumors |
MSCT | Multi-slice CT |
AUC | Area under the receiver operating characteristic curve |
TKI | Tyrosine kinase inhibitor |
ΔCTarterial | CT value increment in arterial phase |
ΔCTvenous | CT value increment in venous phase |
References
- Parab, T.M.; DeRogatis, M.J.; Boaz, A.M.; Grasso, S.A.; Issack, P.S.; Duarte, D.A.; Urayeneza, O.; Vahdat, S.; Qiao, J.-H.; Hinika, G.S. Gastrointestinal stromal tumors: A comprehensive review. J. Gastrointest. Oncol. 2019, 10, 144–154. [Google Scholar] [CrossRef]
- Ao, W.; Cheng, G.; Lin, B.; Yang, R.; Liu, X.; Zhou, S.; Wang, W.; Fang, Z.; Tian, F.; Yang, G.; et al. A novel CT-based radiomic nomogram for predicting the recurrence and metastasis of gastric stromal tumors. Am. J. Cancer Res. 2021, 11, 3123–3134. [Google Scholar]
- Chen, T.; Qiou, H.B.; Feng, X.Y.; Zhang, P.; Ye, L.Y.; Hu, Y.Y.; Liu, H.; Yu, J.; Tao, K.; Li, Y.; et al. Comparison of modified NIH and AFIP risk-stratification criteria for gastrointestinal stromal tumors:Amulticenter retrospective study. Chin. J. Gastrointest. Surg. 2017, 20, 845–851. [Google Scholar]
- Chen, T.; Ye, L.-Y.; Feng, X.-Y.; Qiu, H.-B.; Zhang, P.; Luo, Y.-X.; Yuan, L.-Y.; Chen, X.-H.; Hu, Y.-F.; Liu, H.; et al. Performance of risk stratification systems for gastrointestinal stromal tumors: A multicenter study. World J. Gastroenterol. 2019, 25, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Belfiori, G.; Sartelli, M.; Cardinali, L.; Tranà, C.; Bracci, R.; Gesuita, R.; Marmorale, C. Risk stratification systems for surgically treated localized primary Gastrointestinal Stromal Tumors (GIST). Review of literature and comparison of the three prognostic criteria: MSKCC Nomogramm, NIH-Fletcher and AFIP-Miettinen. Ann. Ital. Chir. 2015, 86, 219–227. [Google Scholar] [PubMed]
- Khoo, C.Y.; Chai, X.; Quek, R.; Teo, M.C.C.; Goh, B.K.P. Systematic review of current prognostication systems for primary gastrointestinal stromal tumors. Eur. J. Surg. Oncol. 2018, 44, 388–394. [Google Scholar] [CrossRef]
- Miettinen, M.; Lasota, J. Gastrointestinal stromal tumors: Pathology and prognosis at different sites. Semin. Diagn. Pathol. 2006, 23, 70–83. [Google Scholar] [CrossRef]
- Chen, T.; Xu, L.; Dong, X.; Li, Y.; Yu, J.; Xiong, W.; Li, G. The roles of CT and EUS in the preoperative evaluation of gastric gastrointestinal stromal tumors larger than 2 cm. Eur. Radiol. 2019, 29, 2481–2489. [Google Scholar] [CrossRef]
- Maldonado, F.J.; Sheedy, S.P.; Iyer, V.R.; Hansel, S.L.; Bruining, D.H.; McCollough, C.H.; Harmsen, W.S.; Barlow, J.M.; Fletcher, J.G. Reproducible imaging features of biologically aggressive gastrointestinal stromal tumors of the small bowel. Abdom. Radiol. 2018, 43, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Iannicelli, E.; Carbonetti, F.; Federici, G.F.; Martini, I.; Caterino, S.; Pilozzi, E.; Panzuto, F.; Briani, C.; David, V. Evaluation of the Relationships Between Computed Tomography Features, Pathological Findings, and Prognostic Risk Assessment in Gastrointestinal Stromal Tumors. J. Comput. Assist. Tomogr. 2017, 41, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Grazzini, G.; Guerri, S.; Cozzi, D.; Danti, G.; Gasperoni, S.; Pradella, S.; Miele, V. Gastrointestinal stromal tumors: Relationship between preoperative CT features and pathologic risk stratification. Tumori 2021, 107, 556–563. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.H.; Jin, E. Gastric sub-epithelial tumors: Identification of gastrointestinal stromal tumors using CT with a practical scoring method. Gastric Cancer 2019, 22, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Ota, S.; Nitta, N.; Murata, K.; Shimizu, T.; Sonoda, H.; Tani, M.; Ban, H.; Inatomi, O.; Ando, A.; et al. Difference of computed tomographic characteristic findings between gastric and intestinal gastrointestinal stromal tumors. Jpn. J. Radiol. 2020, 38, 771–781. [Google Scholar] [CrossRef]
- Joensuu, H.; Hohenberger, P.; Corless, C.L. Gastrointestinal stromal tumour. Lancet 2013, 382, 973–983. [Google Scholar] [CrossRef]
- Zhou, C.; Duan, X.H.; Zhang, X.; Hu, H.J.; Wang, D.; Shen, J. Predictive features of CT for risk stratifications in patients with primary gastrointestinal stromal tumour. Eur. Radiol. 2016, 26, 3086–3093. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, J.; Wang, X.; Fan, S.; Huang, X.; Xie, X.; Yu, R. A multi-class scoring system based on CT features for preoperative prediction in gastric gastrointestinal stromal tumors. Am. J. Cancer Res. 2020, 10, 3867–3881. [Google Scholar]
- Su, Q.; Wang, Q.; Zhang, H.; Yu, D.; Wang, Y.; Liu, Z.; Zhang, X. Computed tomography findings of small bowel gastrointestinal stromal tumors with different histologic risks of progression. Abdom. Radiol. 2018, 43, 2651–2658. [Google Scholar] [CrossRef]
- Jumniensuk, C.; Charoenpitakchai, M. Gastrointestinal stromal tumor: Clinicopathological characteristics and pathologic prognostic analysis. World J. Surg. Oncol. 2018, 16, 231. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ren, G.; Cai, R.; Chen, J.; Wu, X.R.; Zhao, J.X. A correlation research of Ki67 index, CT features, and risk stratification in gastrointestinal stromal tumor. Cancer Med. 2018, 7, 4467–4474. [Google Scholar] [CrossRef]
- Neill, A.C.; Shinagare, A.B.; Kurra, V.; Tirumani, S.H.; Jagannathan, J.P.; Baheti, A.D.; Hornick, J.L.; George, S.; Ramaiya, N.H. Assessment of metastatic risk of gastric GIST based on treatment-naïve CT features. Eur. J. Surg. Oncol. 2016, 42, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Lee, J.M.; Kim, K.W.; Park, S.H.; Kim, S.H.; Lee, J.Y.; Han, J.K.; Choi, B.I. Gastrointestinal stromal tumors of the stomach: CT findings and prediction of malignancy. Am. J. Roentgenol. 2004, 183, 893–898. [Google Scholar] [CrossRef] [PubMed]
Tumor Parameters | Characterization of Risk for Metastasis | Proportion of Patients with Progressive Disease (%) | |
---|---|---|---|
Size | Mitotic Count | ||
>2 cm ≤ 5 cm | ≤5 per 50 HPFs | Very low | 1.9 |
>2 cm ≤ 5 cm | >5 per 50 HPFs | Moderate | 16 |
>5 cm ≤ 10 cm | ≤5 per 50 HPFs | Low | 3.6 |
>5 cm ≤ 10 cm | >5 per 50 HPFs | High | 55 |
>10 cm | ≤5 per 50 HPFs | Moderate | 12 |
>10 cm | >5 per 50 HPFs | High | 86 |
Risk Factor | β Value | Standard Error | Wald Value | p Value | OR Value (95% CI) | |
---|---|---|---|---|---|---|
Location | Gastric antrum * | |||||
Gastric fundus | 2.476 | 1.146 | 4.671 | 0.031 | 11.895 (1.259, 112.345) | |
Gastric cardia | 4.135 | 1.572 | 6.914 | 0.009 | 62.467 (2.865, 1361.919) | |
Gastric body | 2.191 | 1.135 | 3.728 | 0.054 | 8.946 (0.967, 82.716) | |
Ulceration | No * | |||||
Yes | 1.190 | 0.384 | 9.586 | 0.002 | 3.286 (1.547, 6.980) | |
Longest diameter | No * | |||||
Yes | 0.569 | 0.090 | 40.251 | <0.001 | 1.767 (1.482, 2.106) | |
Vascular-like enhancement | No * | |||||
Yes | 0.658 | 0.419 | 2.468 | 0.116 | 1.931 (0.850, 4.390) |
Risk Factor | β Value | Standard Error | Wald Value | p Value | OR Value (95% CI) | |
---|---|---|---|---|---|---|
Morphology | Regular * | |||||
Irregular | 1.256 | 0.436 | 8.288 | 0.004 | 3.511 (1.493, 8.255) | |
Necrosis | No * | |||||
Yes | 1.994 | 0.554 | 12.938 | <0.001 | 7.342 (2.478, 1.757) | |
Feeding artery | No * | |||||
Yes | 1.173 | 0.433 | 7.357 | 0.007 | 3.233 (1.385, 7.549) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Dai, P.; Si, G.; Zeng, M.; Wang, M. Multi-Slice CT Features Predict Pathological Risk Classification in Gastric Stromal Tumors Larger Than 2 cm: A Retrospective Study. Diagnostics 2023, 13, 3192. https://doi.org/10.3390/diagnostics13203192
Wang S, Dai P, Si G, Zeng M, Wang M. Multi-Slice CT Features Predict Pathological Risk Classification in Gastric Stromal Tumors Larger Than 2 cm: A Retrospective Study. Diagnostics. 2023; 13(20):3192. https://doi.org/10.3390/diagnostics13203192
Chicago/Turabian StyleWang, Sikai, Ping Dai, Guangyan Si, Mengsu Zeng, and Mingliang Wang. 2023. "Multi-Slice CT Features Predict Pathological Risk Classification in Gastric Stromal Tumors Larger Than 2 cm: A Retrospective Study" Diagnostics 13, no. 20: 3192. https://doi.org/10.3390/diagnostics13203192
APA StyleWang, S., Dai, P., Si, G., Zeng, M., & Wang, M. (2023). Multi-Slice CT Features Predict Pathological Risk Classification in Gastric Stromal Tumors Larger Than 2 cm: A Retrospective Study. Diagnostics, 13(20), 3192. https://doi.org/10.3390/diagnostics13203192