The Relation of the Iron Metabolism Index to the Vulnerability Index of Carotid Plaque with Different Degrees of Stenosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Imaging and Analysis of CTA and hr-MRI
2.3. Immunohistochemistry
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Ordered Multiclass Logistic Regression Analysis of Stenosis Grading and Serum Iron Metabolism Indexes
3.3. Correlation Analysis between the Serum Iron Metabolism Index and Carotid Plaque Traits
3.4. Analysis of Differential Protein Expression in 20 Cases of Carotid Plaques
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAS | carotid atherosclerosis |
CEA | carotid endarterectomy |
CTA | computed tomography angiography |
hr-MRI | high resolution magnetic resonance imaging |
H-FT | H-type ferritin |
L-FT | L-type ferritin |
TfR1 | transferrin receptor 1 |
NWI | normalized wall index |
LRNC | ipid-rich necrotic core |
IPH | intraplaque hemorrhage |
CAS | carotid atherosclerosis |
hr-MRI | high resolution MRI |
VP | Vulnerable plaques |
SF | serum ferritin |
sTfR | serum transferrin receptor |
TfR | Transferrin receptor |
CRP | C-reactive protein |
cTnT | troponin T |
CK-MB | creatine kinase isoenzyme MB |
UIBC | unsaturated iron-binding capacity |
TIBC | total iron binding capacity |
ECST | European Carotid Surgery Trial |
AOD | average optical density |
References
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Kiechl, S.; Willeit, J.; Egger, G.; Poewe, W.; Oberhollenzer, F. Body iron stores and the risk of carotid atherosclerosis: Prospective results from the Bruneck study. Circulation 1997, 96, 3300–3307. [Google Scholar] [CrossRef] [PubMed]
- Bos, D.; van Dam-Nolen, D.H.K.; Gupta, A.; Saba, L.; Saloner, D.; Wasserman, B.A.; van der Lugt, A. Advances in Multimodality Carotid Plaque Imaging: Expert Panel Narrative Review. AJR Am. J. Roentgenol. 2021, 217, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Mu, C.; Yang, L.; Li, H.; Xiang, X.; Li, K.; Yang, Q. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis. Medicine 2020, 99, e19377. [Google Scholar] [CrossRef] [PubMed]
- Rafailidis, V.; Chryssogonidis, I.; Tegos, T.; Kouskouras, K.; Charitanti-Kouridou, A. Imaging of the ulcerated carotid atherosclerotic plaque: A review of the literature. Insights Imaging 2017, 8, 213–225. [Google Scholar] [CrossRef]
- Mushenkova, N.V.; Summerhill, V.I.; Zhang, D.; Romanenko, E.B.; Grechko, A.V.; Orekhov, A.N. Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int. J. Mol. Sci. 2020, 21, 2992. [Google Scholar] [CrossRef]
- Wang, W.; Knovich, M.A.; Coffman, L.G.; Torti, F.M.; Torti, S.V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 2010, 1800, 760–769. [Google Scholar] [CrossRef]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Antal-Szalmás, P.; Agarwal, A.; Balla, G.; Balla, J. Ferritin prevents calcification and osteoblastic differentiation of vascular smooth muscle cells. J. Am. Soc. Nephrol. 2009, 20, 1254–1263. [Google Scholar] [CrossRef]
- You, S.A.; Archacki, S.R.; Angheloiu, G.; Moravec, C.S.; Rao, S.; Kinter, M.; Topol, E.J.; Wang, Q. Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: Evidence consistent with iron hypothesis in atherosclerosis. Physiol. Genom. 2003, 13, 25–30. [Google Scholar] [CrossRef]
- Naito, Y.; Tsujino, T.; Masuyama, T.; Ishihara, M. Crosstalk between Iron and Arteriosclerosis. J. Atheroscler. Thromb. 2022, 29, 308–314. [Google Scholar] [CrossRef]
- Skikne, B.S.; Flowers, C.H.; Cook, J.D. Serum transferrin receptor: A quantitative measure of tissue iron deficiency. Blood 1990, 75, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Knovich, M.A.; Storey, J.A.; Coffman, L.G.; Torti, S.V.; Torti, F.M. Ferritin for the clinician. Blood Rev. 2009, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.-M.; Ward, L.J.; Forssell, C.; Siraj, N.; Li, W. Carotid Atheroma From Men Has Significantly Higher Levels of Inflammation and Iron Metabolism Enabled by Macrophages. Stroke 2018, 49, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.T.; Nyyssönen, K.; Korpela, H.; Tuomilehto, J.; Seppänen, R.; Salonen, R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 1992, 86, 803–811. [Google Scholar] [CrossRef]
- Huo, R.; Xu, H.; Yang, D.; Qiao, H.; Li, J.; Han, H.; Liu, Y.; Wang, T.; Yuan, H.; Zhao, X. Associations Between Carotid Plaque Characteristics and Improvement of Cerebral Blood Perfusion in Patients With Moderate to Severe Carotid Stenosis Undergoing Carotid Endarterectomy. J. Magn. Reson. Imaging 2021, 53, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhao, Y.; Jia, J.; Chao, T.; Wang, H.; Liang, Y.; Lou, Y.; Zheng, Q.; Wang, H. Myeloid-restricted CD68 deficiency attenuates atherosclerosis via inhibition of ROS-MAPK-apoptosis axis. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166698. [Google Scholar]
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 7–23. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Arosio, P.; Elia, L.; Poli, M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017, 69, 414–422. [Google Scholar] [CrossRef]
- Rauramaa, R.; Väisänen, S.; Mercuri, M.; Rankinen, T.; Penttila, I.; Bond, M.G. Association of risk factors and body iron status to carotid atherosclerosis in middle-aged eastern Finnish men. Eur. Heart J. 1994, 15, 1020–1027. [Google Scholar] [CrossRef]
- Niculescu, R.; Russu, E.; Arbănași, E.M.; Kaller, R.; Arbănași, E.M.; Melinte, R.M.; Coșarcă, C.M.; Cocuz, I.G.; Sabău, A.H.; Tinca, A.C.; et al. Carotid Plaque Features and Inflammatory Biomarkers as Predictors of Restenosis and Mortality Following Carotid Endarterectomy. Int. J. Environ. Res. Public Health 2022, 19, 13934. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, N.; Kočí, K.; Seidlová, A.; Mandys, V.; Suttnar, J.; Hlaváčková, A.; Kučerka, O.; Netuka, D.; Malý, M. Oxidative Stress as a Reliable Biomarker of Carotid Plaque Instability: A Pilot Study. Antioxidants 2023, 12, 506. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alvarez, V.; Linares-Sánchez, M.; Suárez, C.; López, F.; Guntinas-Lichius, O.; Mäkitie, A.A.; Bradley, P.J.; Ferlito, A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023, 13, 1236. [Google Scholar] [CrossRef]
- Cao, X.; Yang, Q.; Tang, Y.; Pan, L.; Lai, M.; Yu, Z.; Geng, D.; Zhang, J. Normalized wall index, intraplaque hemorrhage and ulceration of carotid plaques correlate with the severity of ischemic stroke. Atherosclerosis 2020, 315, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Saba, L.; Saam, T.; Jäger, H.R.; Yuan, C.; Hatsukami, T.S.; Saloner, D.; Wasserman, B.A.; Bonati, L.H.; Wintermark, M. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 2019, 18, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhang, J.; Huo, R.; Hou, C.; Yang, J.; Wang, T. Intraperitoneal Injection of Human Ferritin Heavy Chain Attenuates the Atherosclerotic Process in APOE-Knockout Mice. J. Cardiovasc. Dev. Dis. 2023, 10, 309. [Google Scholar] [CrossRef] [PubMed]
Indexes | Mean ± SD, n (%) | p-Value | |||||
---|---|---|---|---|---|---|---|
All Patients (n = 100) | Group A (n = 15) | Group B (n = 30) | Group C (n = 33) | Group D (n = 13) | Group E (n = 9) | ||
Age, years | 65.9 ± 7.8 | 67.9 ± 1.3 | 65.5 ± 1.6 | 66.2 ± 1.3 | 63.5 ± 2.0 | 66.6 ± 0.8 | 0.672 |
SF, µmol/L | 18.6 ± 7.5 | 22.0 ± 10.0 | 18.8 ± 6.4 | 16.5 ± 6.6 | 17.8 ± 7.1 | 21.3 ± 8.0 | 0.127 |
sTfR, nmol/L | 38.3 ± 28.4 | 35.5 ± 9.2 | 33.0 ± 11.8 | 43.2 ± 43.9 | 45.5 ± 27.7 | 32.6 ± 13.0 | 0.505 |
UIBC, µmol/L | 37.3 ± 11.4 | 31.5 ± 10.5 | 36.2 ± 8.9 | 41.1 ± 11.7 | 42.1 ± 14.3 | 30.0 ± 6.0 | 0.006 |
cTnT, ng/mL | 0.02 ± 0.05 | 0.04 ± 0.10 | 0.01 ± 0.01 | 0.02 ± 0.05 | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.330 |
CRP, mg/L | 6.3 ± 16.5 | 4.7 ± 9.3 | 6.1 ± 9.0 | 9.1 ± 26.5 | 3.6 ± 4.4 | 3.3 ± 4.4 | 0.792 |
CK-MB, U/L | 48.3 ± 44.5 | 54.4 ± 37.6 | 35.3 ± 26.0 | 55.3 ± 57.2 | 29.6 ± 18.4 | 82.3 ± 44.5 | 0.021 |
Serum Cholesterol, mmol/L | 4.1 ± 1.1 | 3.9 ± 1.0 | 4.0 ± 1.0 | 4.4 ± 1.2 | 4.3 ± 1.0 | 3.8 ± 1.2 | 0.363 |
Serum Triglyceride, mmol/L | 1.4 ± 0.7 | 1.4 ± 0.7 | 1.3 ± 0.6 | 1.5 ± 0.8 | 1.4 ± 0.7 | 1.6 ± 0.6 | 0.787 |
Glycosylated Hemoglobin, g/dL | 6.7 ± 1.1 | 6.8 ± 1.4 | 6.5 ± 0.8 | 6.7 ± 1.2 | 6.5 ± 0.8 | 6.9 ± 1.1 | 0.853 |
Homocysteine, μmol/L | 15.5 ± 8.4 | 14.6 ± 8.5 | 15.8 ± 8.5 | 17.0 ± 9.5 | 12.9 ± 4.8 | 14.6 ± 8.8 | 0.660 |
Gender, male | 83 (83.0) | 13 (86.7) | 25 (83.3) | 25 (75.8) | 11 (84.6) | 9 (100) | 0.326 |
Hypertension, no | 36 (36.0) | 3 (20.0) | 11 (36.7) | 12 (36.4) | 5 (38.5) | 5 (55.6) | 0.510 |
Diabetes, no | 55 (55.0) | 8 (53.3) | 18 (60.0) | 19 (57.6) | 5 (38.5) | 5 (55.6) | 0.764 |
Coronary Disease, no | 84 (84.0) | 11 (73.3) | 24 (80.0) | 29 (87.9) | 12 (92.3) | 8 (88.9) | 0.591 |
Hyperlipidemia, no | 65 (65.0) | 11 (73.3) | 19 (63.3) | 22 (66.7) | 8 (61.5) | 5 (55.6) | 0.915 |
Hyperhomocysteinemia, no | 67 (67.0) | 10 (66.7) | 21 (70.0) | 20 (60.6) | 9 (69.2) | 7 (77.8) | 0.869 |
History of Stroke, no | 72 (72.0) | 12 (80.0) | 18 (60.0) | 27 (81.8) | 9 (69.2) | 7 (77.8) | 0.497 |
History of Smoke, no | 82 (82.0) | 12 (80.0) | 25 (83.3) | 27 (81.8) | 12 (92.3) | 6 (66.7) | 0.657 |
History of Alcohol, no | 93 (93.0) | 14 (93.3) | 30 (100.0) | 29 (87.9) | 13 (100) | 7 (77.8) | 0.100 |
Blood Type | 0.608 | ||||||
A-Type | 25 (25.0) | 5 (33.3) | 11 (36.7) | 7 (21.2) | 1 (7.7) | 1 (11.1) | |
B-Type | 29 (29.0) | 4 (26.7) | 6 (20.0) | 11 (33.3) | 6 (46.2) | 2 (22.2) | |
AB-Type | 16 (16.0) | 3 (20.0) | 4 (13.3) | 4 (12.1) | 2 (15.4) | 3 (33.3) |
Indexes | p-Value | OR | 95% CI |
---|---|---|---|
Age, years | 0.507 | 1019 | −0.038–0.076 |
SF, µmol/L | 0.039 | 1.100 | 0.004–0.165 |
sTfR, nmol/L | 0.689 | 1.004 | −0.014–0.022 |
UIBC, µmol/L | 0.031 | 1.050 | 0.005–0.094 |
cTnT, ng/mL | 0.237 | 0.050 | −14.104–3.494 |
CRP, mg/L | 0.843 | 1.003 | −0.028–0.034 |
CK-MB, U/L | 0.171 | 1.008 | −0.004–0.021 |
Serum Cholesterol, mmol/L | 0.499 | 0.850 | −0.633–0.308 |
Serum Triglyceride, mmol/L | 0.483 | 1.293 | −0.461–0.974 |
Glycosylated Hemoglobin, g/dL | 0.255 | 1.339 | −0.796–0.212 |
Homocysteine, μmol/L | 0.357 | 0.970 | −0.093–0.033 |
Gender, male | 0.625 | 1.362 | −0.931–1.549 |
Hypertension, no | 0.503 | 1.324 | −0.542–1.104 |
Diabetes, no | 0.322 | 0.591 | −1.567–0.516 |
Coronary Disease, no | 0.295 | 1.925 | −0.570–1.881 |
Hyperlipidemia, no | 0.786 | 1.153 | −0.885–1.169 |
Hyperhomocysteinemia, no | 0.820 | 1.477 | −1.065–0.344 |
History of Stroke, no | 0.589 | 0.260 | −6.226–3.535 |
History of Smoke, no | 0.158 | 2.940 | −0.362–2.230 |
History of Alcohol, no | 0.018 | 0.093 | −4.341–−0.400 |
Indexes | SF | sTfR | TIBC | UIBC | ||||
---|---|---|---|---|---|---|---|---|
R | p-Value | R | p-Value | R | p-Value | R | p-Value | |
Arterial lumen volume, mm3 | 0.522 | 0.018 | 0.026 | 0.914 | 0.008 | 0.973 | 0.439 | 0.053 |
Arterial lumen area, mm2 | 0.272 | 0.246 | 0.110 | 0.643 | 0.066 | 0.781 | 0.201 | 0.396 |
Arterial vessel wall volume, mm3 | 0.118 | 0.622 | 0.521 | 0.018 | 0.127 | 0.594 | 0.169 | 0.476 |
Arterial vessel wall area, mm2 | 0.198 | 0.402 | 0.481 | 0.032 | 0.027 | 0.910 | 0.148 | 0.534 |
Arterial volume, mm3 | 0.409 | 0.074 | 0.358 | 0.122 | 0.078 | 0.744 | 0.390 | 0.090 |
Arterial area, mm2 | 0.009 | 0.972 | 0.381 | 0.098 | 0.016 | 0.948 | 0.006 | 0.980 |
Arterial wall thickness, mm | 0.427 | 0.060 | 0.488 | 0.030 | 0.234 | 0.320 | 0.231 | 0.328 |
NWI, % | 0.470 | 0.036 | 0.449 | 0.047 | 0.176 | 0.458 | 0.299 | 0.201 |
LRNC maximum area percentage, % | 0.213 | 0.368 | 0.033 | 0.888 | 0.020 | 0.934 | 0.186 | 0.432 |
LRNC volume, mm3 | 0.038 | 0.874 | 0.250 | 0.288 | 0.076 | 0.748 | 0.091 | 0.704 |
Ulcer maximum area percentage, % | 0.007 | 0.978 | 0.227 | 0.334 | 0.431 | 0.058 | 0.172 | 0.468 |
Ulcer volume, mm3 | 0.095 | 0.690 | 0.311 | 0.182 | 0.367 | 0.112 | 0.186 | 0.432 |
IPH maximum area percentage, % | 0.107 | 0.652 | 0.003 | 0.988 | 0.058 | 0.808 | 0.048 | 0.840 |
IPH volume, mm3 | 0.110 | 0.644 | 0.038 | 0.874 | 0.083 | 0.730 | 0.042 | 0.860 |
Calcification maximum area percentage, % | 0.119 | 0.618 | 0.041 | 0.866 | 0.187 | 0.430 | 0.191 | 0.420 |
Calcification volume, mm3 | 0.219 | 0.354 | 0.052 | 0.828 | 0.215 | 0.364 | 0.292 | 0.212 |
Indexes | Univariate Regression | Multivariate Regression Model * | ||||
---|---|---|---|---|---|---|
R | Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | Standardized Beta | |
Age, years | 0.196 | 0.216 (−0.320–0.751) | 0.409 | - | - | - |
Gender, male | 0.089 | 3.558 (−16.253–23.369) | 0.701 | - | - | - |
SF, µmol/L | 0.470 | −0.460 (−0.888–−0.033) | 0.036 | −0.433 (−0.823–−0.044) | 0.031 | −0.443 |
sTfR, nmol/L | 0.449 | 0.418 (0.006–0.829) | 0.047 | 0.391 (0.021–0.761) | 0.040 | 0.420 |
UIBC, µmol/L | 0.299 | 0.261 (−0.152–0.673) | 0.201 | - | - | - |
TIBC, µmol/L | 0.176 | −0.285 (−1.075–0.504) | 0.458 | - | - | - |
Indexes | All Patients’ AOD (n = 19) | Group A (n = 3) | Group B (n = 4) | Group C (n = 4) | Group D (n = 4) | Group E (n = 4) | p-Value |
---|---|---|---|---|---|---|---|
H-FT | 0.411 ± 0.076 | 0.343 ± 0.055 | 0.342 ± 0.026 | 0.385 ± 0.040 | 0.445 ± 0.191 | 0.523 ± 0.150 | <0.001 |
L-FT | 0.283 ± 0.052 | 0.240 ± 0.040 | 0.227 ± 0.028 | 0.278 ± 0.009 | 0.318 ± 0.039 | 0.340 ± 0.038 | 0.001 |
TfR1 | 0.202 ± 0.053 | 0.177 ± 0.042 | 0.162 ± 0.005 | 0.180 ± 0.008 | 0.235 ± 0.029 | 0.250 ± 0.081 | 0.032 |
CD68 | 0.219 ± 0.070 | 0.163 ± 0.035 | 0.155 ± 0.038 | 0.230 ± 0.029 | 0.213 ± 0.190 | 0.323 ± 0.056 | 0.028 |
Indexes | H-FT | L-FT | TfR1 | CD-68 | ||||
---|---|---|---|---|---|---|---|---|
R | p-Value | R | p-Value | R | p-Value | R | p-Value | |
Arterial lumen volume, mm3 | 0.274 | 0.075 | 0.203 | 0.405 | 0.255 | 0.292 | 0.466 | 0.044 |
Arterial lumen area, mm2 | 0.085 | 0.729 | 0.060 | 0.807 | 0.004 | 0.988 | 0.299 | 0.213 |
Arterial vessel wall volume, mm3 | 0.256 | 0.289 | 0.168 | 0.493 | 0.001 | 0.996 | 0.314 | 0.191 |
Arterial vessel wall area, mm2 | 0.359 | 0.131 | 0.359 | 0.131 | 0.227 | 0.349 | 0.406 | 0.084 |
Arterial volume, mm3 | 0.005 | 0.984 | 0.019 | 0.937 | 0.179 | 0.464 | 0.097 | 0.693 |
Arterial area, mm2 | 0.219 | 0.368 | 0.296 | 0.218 | 0.169 | 0.488 | 0.140 | 0.567 |
Arterial wall thickness, mm | 0.315 | 0.189 | 0.189 | 0.439 | 0.144 | 0.557 | 0.070 | 0.185 |
NWI, % | 0.502 | 0.028 | 0.327 | 0.172 | 0.199 | 0.414 | 0.590 | 0.008 |
LRNC maximum area percentage, % | 0.437 | 0.062 | 0.439 | 0.060 | 0.479 | 0.038 | 0.549 | 0.015 |
LRNC volume, mm3 | 0.468 | 0.043 | 0.546 | 0.016 | 0.496 | 0.031 | 0.638 | 0.003 |
Ulcer maximum area percentage, % | 0.097 | 0.693 | 0.014 | 0.954 | 0.162 | 0.678 | 0.157 | 0.520 |
Ulcer volume, mm3 | 0.057 | 0.817 | 0.051 | 0.835 | 0.093 | 0.705 | 0.177 | 0.468 |
IPH maximum area percentage, % | 0.411 | 0.081 | 0.447 | 0.055 | 0.625 | 0.002 | 0.629 | 0.004 |
IPH volume, mm3 | 0.553 | 0.014 | 0.570 | 0.011 | 0.642 | 0.003 | 0.736 | <0.01 |
Calcification maximum area percentage, % | 0.153 | 0.532 | 0.126 | 0.608 | 0.216 | 0.375 | 0.025 | 0.919 |
Calcification volume, mm3 | 0.140 | 0.567 | 0.102 | 0.677 | 0.213 | 0.381 | 0.049 | 0.842 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Huo, R.; Hou, C.; Bai, W.; Yang, J.; Wang, T. The Relation of the Iron Metabolism Index to the Vulnerability Index of Carotid Plaque with Different Degrees of Stenosis. Diagnostics 2023, 13, 3196. https://doi.org/10.3390/diagnostics13203196
Yuan W, Huo R, Hou C, Bai W, Yang J, Wang T. The Relation of the Iron Metabolism Index to the Vulnerability Index of Carotid Plaque with Different Degrees of Stenosis. Diagnostics. 2023; 13(20):3196. https://doi.org/10.3390/diagnostics13203196
Chicago/Turabian StyleYuan, Wanzhong, Ran Huo, Chaofan Hou, Wenbin Bai, Jun Yang, and Tao Wang. 2023. "The Relation of the Iron Metabolism Index to the Vulnerability Index of Carotid Plaque with Different Degrees of Stenosis" Diagnostics 13, no. 20: 3196. https://doi.org/10.3390/diagnostics13203196
APA StyleYuan, W., Huo, R., Hou, C., Bai, W., Yang, J., & Wang, T. (2023). The Relation of the Iron Metabolism Index to the Vulnerability Index of Carotid Plaque with Different Degrees of Stenosis. Diagnostics, 13(20), 3196. https://doi.org/10.3390/diagnostics13203196