Diagnostic Superiority of Dual-Time Point [18F]FDG PET/CT to Differentiate Malignant from Benign Soft Tissue Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. [18F]FDG PET/CT Acquisitions and Analyses
2.3. Histopathological Analyses
2.4. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. SUVmax and RI in the Different Tumor Subtypes
3.3. Diagnostic Performance of DTPI in the Detection of Malignant ST Tumors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and perspectives. Pathologica 2021, 113, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Mannan, K.; Briggs, T.W. Soft tissue tumours of the extremities. BMJ 2005, 331, 590. [Google Scholar] [CrossRef]
- Kuhn, K.J.; Cloutier, J.M.; Boutin, R.D.; Steffner, R.; Riley, G. Soft tissue pathology for the radiologist: A tumor board primer with 2020 WHO classification update. Skelet. Radiol. 2021, 50, 29–42. [Google Scholar] [CrossRef]
- Katz, D.; Palmerini, E.; Pollack, S.M. More Than 50 Subtypes of Soft Tissue Sarcoma: Paving the Path for Histology-Driven Treatments. In Histology-Driven Treatments for Soft Tissue Sarcoma; American Society of Clinical Oncology Educational Book: Alexandria, VA, USA, 2018; Volume 28, pp. 925–938. [Google Scholar]
- Ray-Coquard, I.; Montesco, M.C.; Coindre, J.M.; Dei Tos, A.P.; Lurkin, A.; Ranchere-Vince, D.; Vecchiato, A.; Decouvelaere, A.V.; Mathoulin-Pelissier, S.; Albert, S.; et al. Sarcoma: Concordance between initial diagnosis and centralized expert review in a population-based study within three European regions. Ann. Oncol. 2012, 23, 2442–2449. [Google Scholar] [CrossRef] [PubMed]
- Thway, K.; Wang, J.; Mubako, T.; Fisher, C. Histopathological diagnostic discrepancies in soft tissue tumours referred to a specialist centre: Reassessment in the era of ancillary molecular diagnosis. Sarcoma 2014, 2014, 686902. [Google Scholar] [CrossRef] [PubMed]
- Rupani, A.; Hallin, M.; Jones, R.L.; Fisher, C.; Thway, K. Diagnostic Differences in Expert Second-Opinion Consultation Cases at a Tertiary Sarcoma Center. Sarcoma 2020, 2020, 9810170. [Google Scholar] [CrossRef]
- Gronchi, A.; Miah, A.B.; Dei Tos, A.P.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; et al. Soft tissue and visceral sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up(☆). Ann. Oncol. 2021, 32, 1348–1365. [Google Scholar] [CrossRef]
- Lim, H.J.; Johnny Ong, C.A.; Tan, J.W.; Ching Teo, M.C. Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: A systematic review. Crit. Rev. Oncol. Hematol. 2019, 143, 1–13. [Google Scholar] [CrossRef]
- Katal, S.; Gholamrezanezhad, A.; Kessler, M.; Olyaei, M.; Jadvar, H. PET in the Diagnostic Management of Soft Tissue Sarcomas of Musculoskeletal Origin. PET Clin. 2018, 13, 609–621. [Google Scholar] [CrossRef]
- Annovazzi, A.; Rea, S.; Zoccali, C.; Sciuto, R.; Baldi, J.; Anelli, V.; Petrongari, M.G.; Pescarmona, E.; Biagini, R.; Ferraresi, V. Diagnostic and Clinical Impact of 18F-FDG PET/CT in Staging and Restaging Soft-Tissue Sarcomas of the Extremities and Trunk: Mono-Institutional Retrospective Study of a Sarcoma Referral Center. J. Clin. Med. 2020, 9, 2549. [Google Scholar] [CrossRef]
- Folpe, A.L.; Lyles, R.H.; Sprouse, J.T.; Conrad, E.U., 3rd; Eary, J.F. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin. Cancer Res. 2000, 6, 1279–1287. [Google Scholar]
- Ioannidis, J.P.; Lau, J. 18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: A meta-analysis. J. Nucl. Med. 2003, 44, 717–724. [Google Scholar]
- Choi, Y.Y.; Kim, J.Y.; Yang, S.O. PET/CT in benign and malignant musculoskeletal tumors and tumor-like conditions. Semin. Musculoskelet. Radiol. 2014, 18, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Houshmand, S.; Salavati, A.; Basu, S.; Khiewvan, B.; Alavi, A. The role of dual and multiple time point imaging of FDG uptake in both normal and disease states. Clin. Transl. Imaging 2014, 2, 281–293. [Google Scholar] [CrossRef]
- Goyal, S.; Rangankar, V.; Deshmukh, S.; Prabhu, A.; Johnson, S. MRI Evaluation of Soft Tissue Tumors and Tumor-Like Lesions of Extremities. Cureus 2023, 15, e37047. [Google Scholar] [CrossRef]
- Chung, W.J.; Chung, H.W.; Shin, M.J.; Lee, S.H.; Lee, M.H.; Lee, J.S.; Kim, M.J.; Lee, W.K. MRI to differentiate benign from malignant soft-tissue tumours of the extremities: A simplified systematic imaging approach using depth, size and heterogeneity of signal intensity. Br. J. Radiol. 2012, 85, e831–e836. [Google Scholar] [CrossRef]
- Church, D.J.; Krumme, J.; Kotwal, S. Evaluating Soft-Tissue Lumps and Bumps. Mo. Med. 2017, 114, 289–294. [Google Scholar] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Meyer, H.J.; Wienke, A.; Surov, A. Associations between GLUT expression and SUV values derived from FDG-PET in different tumors-A systematic review and meta analysis. PLoS ONE 2019, 14, e0217781. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.T.; Wale, D.J.; Viglianti, B.L.; Townsend, D.M.; Manganaro, M.S.; Gross, M.D.; Wong, K.K.; Rubello, D. The impact of infection and inflammation in oncologic (18)F-FDG PET/CT imaging. Biomed. Pharmacother. 2019, 117, 109168. [Google Scholar] [CrossRef]
- Basu, S.; Kwee, T.C.; Surti, S.; Akin, E.A.; Yoo, D.; Alavi, A. Fundamentals of PET and PET/CT imaging. Ann. N. Y. Acad. Sci. 2011, 1228, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lodge, M.A.; Lucas, J.D.; Marsden, P.K.; Cronin, B.F.; O’Doherty, M.J.; Smith, M.A. A PET study of 18FDG uptake in soft tissue masses. Eur. J. Nucl. Med. 1999, 26, 22–30. [Google Scholar] [CrossRef]
- Cheng, G.; Alavi, A.; Werner, T.J.; Del Bello, C.V.; Akers, S.R. Serial changes of FDG uptake and diagnosis of suspected lung malignancy: A lesion-based analysis. Clin. Nucl. Med. 2014, 39, 147–155. [Google Scholar] [CrossRef]
- Kaneko, K.; Sadashima, E.; Irie, K.; Hayashi, A.; Masunari, S.; Yoshida, T.; Omagari, J. Assessment of FDG retention differences between the FDG-avid benign pulmonary lesion and primary lung cancer using dual-time-point FDG-PET imaging. Ann. Nucl. Med. 2013, 27, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Okizaki, A.; Ishitoya, S.; Sakaguchi, M.; Sato, J.; Aburano, T. Dual-time-point F-18 FDG PET/CT imaging for differentiating the lymph nodes between malignant lymphoma and benign lesions. Ann. Nucl. Med. 2013, 27, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, T.; Park, S.; Pahk, K.; Rhee, S.; Cho, J.; Jeong, E.; Kim, S.; Choe, J.G. The Clinical Role of Dual-Time-Point (18)F-FDG PET/CT in Differential Diagnosis of the Thyroid Incidentaloma. Nucl. Med. Mol. Imaging 2014, 48, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K.; Yoo, I.R.; Kim, S.H.; Hyun, O.J.; Choi, W.H.; Na, S.J.; Park, S.Y. The clinical value of dual-time point 18F-FDG PET/CT for differentiating extrahepatic cholangiocarcinoma from benign disease. Clin. Nucl. Med. 2013, 38, e106–e111. [Google Scholar] [CrossRef]
- Costantini, D.L.; Vali, R.; Chan, J.; McQuattie, S.; Charron, M. Dual-time-point FDG PET/CT for the evaluation of pediatric tumors. Am. J. Roentgenol. 2013, 200, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Husain, N.; Verma, N. Curent concepts in pathology of soft tissue sarcoma. Indian J. Surg. Oncol. 2011, 2, 302–308. [Google Scholar] [CrossRef]
- Koea, J.B.; Leung, D.; Lewis, J.J.; Brennan, M.F. Histopathologic type: An independent prognostic factor in primary soft tissue sarcoma of the extremity? Ann. Surg. Oncol. 2003, 10, 432–440. [Google Scholar] [CrossRef]
- von Konow, A.; Ghanei, I.; Styring, E.; von Steyern, F.V. Late Local Recurrence and Metastasis in Soft Tissue Sarcoma of the Extremities and Trunk Wall: Better Outcome After Treatment of Late Events Compared with Early. Ann. Surg. Oncol. 2021, 28, 7891–7902. [Google Scholar] [CrossRef]
- Sawamura, C.; Matsumoto, S.; Shimoji, T.; Okawa, A.; Ae, K. How long should we follow patients with soft tissue sarcomas? Clin. Orthop. Relat. Res. 2014, 472, 842–848. [Google Scholar] [CrossRef]
- Zagars, G.K.; Ballo, M.T.; Pisters, P.W.; Pollock, R.E.; Patel, S.R.; Benjamin, R.S. Prognostic factors for disease-specific survival after first relapse of soft-tissue sarcoma: Analysis of 402 patients with disease relapse after initial conservative surgery and radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 739–747. [Google Scholar] [CrossRef]
- Zagars, G.K.; Ballo, M.T.; Pisters, P.W.; Pollock, R.E.; Patel, S.R.; Benjamin, R.S.; Evans, H.L. Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: An analysis of 1225 patients. Cancer 2003, 97, 2530–2543. [Google Scholar] [CrossRef]
- Coindre, J.M. Grading of soft tissue sarcomas: Review and update. Arch. Pathol. Lab. Med. 2006, 130, 1448–1453. [Google Scholar] [CrossRef]
- Ballhause, T.M.; Reiter, A.; Korthaus, A.; Frosch, K.H.; Schlickewei, C.W.; Priemel, M.H. Diagnostic delay in soft tissue tumors: A single-center study of a university cancer center with a focus on health services research. BMC Health Serv. Res. 2022, 22, 452. [Google Scholar] [CrossRef]
- Bannasch, H.; Eisenhardt, S.U.; Grosu, A.L.; Heinz, J.; Momeni, A.; Stark, G.B. The diagnosis and treatment of soft tissue sarcomas of the limbs. Dtsch. Arztebl. Int. 2011, 108, 32–38. [Google Scholar] [CrossRef]
- Okazaki, E.; Seura, H.; Hasegawa, Y.; Okamura, T.; Fukuda, H. Prognostic Value of the Volumetric Parameters of Dual-Time-Point (18)F-FDG PET/CT in Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy. Am. J. Roentgenol. 2019, 213, 1366–1373. [Google Scholar] [CrossRef]
- Ikejiri, H.; Sasada, S.; Emi, A.; Masumoto, N.; Kadoya, T.; Okada, M. Dual-phase FDG PET/CT for predicting prognosis in operable breast cancer. Breast 2022, 65, 98–103. [Google Scholar] [CrossRef]
- Lee, J.Y.; Song, H.S.; Choi, J.H.; Hyun, C.L. Dual-Time-Point FDG Uptake Correlates with Prognostic Factors of Invasive Breast Cancer: Clinical Usefulness of Early Delayed Scanning. Diagnostics 2019, 9, 40. [Google Scholar] [CrossRef]
- Lim, D.H.; Lee, J.H. Relationship Between Dual Time Point FDG PET/CT and Clinical Prognostic Indexes in Patients with High Grade Lymphoma: A Pilot Study. Nucl. Med. Mol. Imaging 2017, 51, 323–330. [Google Scholar] [CrossRef]
- Abgral, R.; Le Roux, P.Y.; Rousset, J.; Querellou, S.; Valette, G.; Nowak, E.; Turzo, A.; Tissot, V.; Marianowski, R.; Salaun, P.Y. Prognostic value of dual-time-point 18F-FDG PET-CT imaging in patients with head and neck squamous cell carcinoma. Nucl. Med. Commun. 2013, 34, 551–556. [Google Scholar] [CrossRef]
- Lewis, S.; Edmonds, L.; Wolin, E. Hot shoulder PET/CT lesion: Unusual presentation of tenosynovial giant cell tumor. Radiol. Case Rep. 2018, 13, 559–562. [Google Scholar] [CrossRef]
- Pallas, A.; Hagge, R.; Borys, D.; Hunter, J. Intense FDG uptake in an intra-articular localized giant-cell tumor of the tendon sheath (pigmented villonodular synovitis) mimics metastatic melanoma. Radiol. Case Rep. 2009, 4, 343. [Google Scholar] [CrossRef]
- Burkholz, K.J.; Roberts, C.C.; Lidner, T.K. Posttraumatic Pseudolipoma (Fat Necrosis) Mimicking Atypical Lipoma or Liposarcoma on MRI. Radiol. Case Rep. 2007, 2, 56–60. [Google Scholar] [CrossRef]
- Yu, W.Y.; Lu, P.X.; Assadi, M.; Huang, X.L.; Skrahin, A.; Rosenthal, A.; Gabrielian, A.; Tartakovsky, M.; Wang, Y.X.J. Updates on (18)F-FDG-PET/CT as a clinical tool for tuberculosis evaluation and therapeutic monitoring. Quant. Imaging Med. Surg. 2019, 9, 1132–1146. [Google Scholar] [CrossRef]
- Huang, Y.E.; Huang, Y.J.; Ko, M.; Hsu, C.C.; Chen, C.F. Dual-time-point (18)F-FDG PET/CT in the diagnosis of solitary pulmonary lesions in a region with endemic granulomatous diseases. Ann. Nucl. Med. 2016, 30, 652–658. [Google Scholar] [CrossRef]
- Robert, M.; Farese, H.; Miossec, P. Update on Tenosynovial Giant Cell Tumor, an Inflammatory Arthritis with Neoplastic Features. Front. Immunol. 2022, 13, 820046. [Google Scholar] [CrossRef]
- Mizuta, K.; Oshiro, H.; Tsuha, Y.; Tome, Y.; Nishida, K. Imaging characteristics of tenosynovial giant cell tumors on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography: A retrospective observational study. BMC Musculoskelet. Disord. 2023, 24, 593. [Google Scholar] [CrossRef]
- Kasper, B.; Dimitrakopoulou-Strauss, A.; Pilz, L.R.; Strauss, L.G.; Sachpekidis, C.; Hohenberger, P. Positron emission tomography as a surrogate marker for evaluation of treatment response in patients with desmoid tumors under therapy with imatinib. Biomed. Res. Int. 2013, 2013, 389672. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Feng, H.; Xie, J.; Li, C.; Zhang, Y.; Wang, S. Differentiation of soft tissue and bone sarcomas from benign lesions utilizing (18)F-FDG PET/CT-derived parameters. BMC Med. Imaging 2020, 20, 85. [Google Scholar] [CrossRef] [PubMed]
Malignant Tumor Subtypes | Frequency (%) | SUVmax Median (IQR) | RI Median (IQR) |
---|---|---|---|
Liposarcoma | 12 (25%) | 4.9(11.2) | +18.3% (43.5%) |
Undifferentiated high-grade sarcoma | 10 (20.8%) | 12.6 (13.2) | +20.5% (22.7%) |
Myxofibrosarcoma | 7 (14.6%) | 3.9 (12.9) | +17.6% (30.7%) |
Spindle cell sarcoma | 3 (6.2%) | 3.9 (10.6) | +30.8% (10.4%) |
Ewing sarcoma of soft tissue | 2 (4.2%) | 5.2 (2.9) | +24.6% (13.2%) |
Leiomyosarcoma | 2 (4.2%) | 11.6 (9) | +16% (2.8%) |
Synovial sarcoma | 1 (2%) | 1.5 | −26.8% |
Angiosarcoma | 1 (2%) | 5.7 | +24.6% |
Clear cell sarcoma | 1 (2%) | 16 | +67.8% |
Follicular dendritic cell sarcoma | 1 (2%) | 22.1 | +18.2% |
Chondrosarcoma (ST metastasis) | 1 (2%) | 2.7 | −14.2% |
Osteosarcoma | 1 (2%) | 6.2 | +33.5% |
Ileal GIST | 1 (2%) | 4.5 | +23.8% |
Chordoma (ST pelvis metastasis) | 1 (2%) | 2.6 | +6.2% |
Lymphoma (marginal zone) | 1 (2%) | 3.6 | +30.6% |
Melanoma (metastasis) | 1(2%) | 13 | +33.2% |
Malignant pecoma | 2 (4%) | 17.1 (16.1) | +23.1% (4%) |
Total | 48 (100%) | 6.8 (12.6) | +21.8% (23.3%) |
Benign Lesions/Tumors Subtypes | Frequency (%) | SUVmax Median (IQR) | RI Median (IQR) |
---|---|---|---|
Desmoid tumor | 4 (20%) | 5.1 (3.9) | +3.4% (15.5%) |
Vascular malformation | 4 (20%) | 1.9 (0.4) | −5.6% (12.9%) |
Myxoma | 3 (15%) | 2.9 (1.6) | −0.7% (29%) |
Lipoma | 2 (10%) | 0.9 (0.2) | −47.2% (6%) |
Tenosynovial giant cell tumor | 2 (10%) | 13.6 (3.6) | +16.1% (3.6%) |
Hibernoma | 1 (5%) | 4.5 | +11.1% |
Granuloma | 1 (5%) | 2.1 | −3.3% |
Schwannoma | 1 (5%) | 3.2 | −5.6% |
Steatonecrosis | 1 (5%) | 2.1 | +28.1% |
Fibroma | 1 (5%) | 2.2 | −22.7% |
Total | 20 | 2.9 (2.4) | −0.7% (31.5%) |
Low Grade (Grade 1–2) | High Grade (Grade 3) | p-Value | |
---|---|---|---|
Frequency (%) | 16 (40%) | 24 (60%) | |
SUVmax Median (IQR) | 2.6 (1.8) | 13.7 (9.9) | p < 0.001 |
RI Median (IQR) | +0.4% (22.8%) | +26.9% (14.5%) | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Abadie, P.; Gheysens, O.; Lhommel, R.; Jamar, F.; Kirchgesner, T.; Mazzeo, F.; Coubeau, L.; Yildiz, H.; De Roo, A.-K.; Schubert, T. Diagnostic Superiority of Dual-Time Point [18F]FDG PET/CT to Differentiate Malignant from Benign Soft Tissue Tumors. Diagnostics 2023, 13, 3202. https://doi.org/10.3390/diagnostics13203202
d’Abadie P, Gheysens O, Lhommel R, Jamar F, Kirchgesner T, Mazzeo F, Coubeau L, Yildiz H, De Roo A-K, Schubert T. Diagnostic Superiority of Dual-Time Point [18F]FDG PET/CT to Differentiate Malignant from Benign Soft Tissue Tumors. Diagnostics. 2023; 13(20):3202. https://doi.org/10.3390/diagnostics13203202
Chicago/Turabian Styled’Abadie, Philippe, Olivier Gheysens, Renaud Lhommel, François Jamar, Thomas Kirchgesner, Filomena Mazzeo, Laurent Coubeau, Halil Yildiz, An-Katrien De Roo, and Thomas Schubert. 2023. "Diagnostic Superiority of Dual-Time Point [18F]FDG PET/CT to Differentiate Malignant from Benign Soft Tissue Tumors" Diagnostics 13, no. 20: 3202. https://doi.org/10.3390/diagnostics13203202
APA Styled’Abadie, P., Gheysens, O., Lhommel, R., Jamar, F., Kirchgesner, T., Mazzeo, F., Coubeau, L., Yildiz, H., De Roo, A. -K., & Schubert, T. (2023). Diagnostic Superiority of Dual-Time Point [18F]FDG PET/CT to Differentiate Malignant from Benign Soft Tissue Tumors. Diagnostics, 13(20), 3202. https://doi.org/10.3390/diagnostics13203202