Point-of-Care Testing to Differentiate Various Acid–Base Disorders in Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenves, A.Z.; Emmett, M. Approach to Patients With High Anion Gap Metabolic Acidosis: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Funes, S.; de Morais, H.A. A Quick Reference on Hyperchloremic Metabolic Acidosis. Vet. Clin. North. Am. Small Anim. Pract. 2017, 47, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Eustace, J.A.; Astor, B.; Muntner, P.M.; Ikizler, T.A.; Coresh, J. Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int. 2004, 65, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Widmer, B.; Gerhardt, R.E.; Harrington, J.T.; Cohen, J.J. Serum electrolyte and acid base composition. The influence of graded degrees of chronic renal failure. Arch. Intern. Med. 1979, 139, 1099–1102. [Google Scholar] [CrossRef]
- Nagami, G.T.; Hamm, L.L. Regulation of Acid-Base Balance in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2017, 24, 274–279. [Google Scholar] [CrossRef]
- Lim, S. Metabolic acidosis. Acta Med. Indones. 2007, 39, 145–150. [Google Scholar]
- Palmer, B.F.; Kelepouris, E.; Clegg, D.J. Renal Tubular Acidosis and Management Strategies: A Narrative Review. Adv. Ther. 2021, 38, 949–968. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Sakamoto, H.; Mishina, T.; Marumo, F. Hyperchloremia in patients with chronic renal failure. Tohoku J. Exp. Med. 1986, 149, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Moranne, O.; Froissart, M.; Rossert, J.; Gauci, C.; Boffa, J.J.; Haymann, J.P.; M’Rad, M.B.; Jacquot, C.; Houillier, P.; Stengel, B.; et al. Timing of onset of CKD-related metabolic complications. J. Am. Soc. Nephrol. 2009, 20, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Berend, K. Review of the Diagnostic Evaluation of Normal Anion Gap Metabolic Acidosis. Kidney Dis. 2017, 3, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Bonar, P.T.; Casey, J.R. Plasma membrane Cl−/HCO3− exchangers: Structure, mechanism and physiology. Channels 2008, 2, 337–345. [Google Scholar] [CrossRef]
- Hamm, L.L.; Hering-Smith, K.S.; Vehaskari, V.M. Control of bicarbonate transport in collecting tubules from normal and remnant kidneys. Am. J. Physiol. 1989, 256, F680–F687. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chertow, G.M. Elevations of serum phosphorus and potassium in mild to moderate chronic renal insufficiency. Nephrol. Dial. Transpl. 2002, 17, 1419–1425. [Google Scholar] [CrossRef]
- Abramowitz, M.K.; Hostetter, T.H.; Melamed, M.L. The serum anion gap is altered in early kidney disease and associates with mortality. Kidney Int. 2012, 82, 701–709. [Google Scholar] [CrossRef]
- Atoh, K.; Itoh, H.; Haneda, M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: Relation to renal function. Diabetes Res. Clin. Pract. 2009, 83, 220–226. [Google Scholar] [CrossRef]
- Liabeuf, S.; Barreto, D.V.; Barreto, F.C.; Meert, N.; Glorieux, G.; Schepers, E.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transpl. 2010, 25, 1183–1191. [Google Scholar] [CrossRef]
- Vanholder, R.; Eloot, S.; Schepers, E.; Neirynck, N.; Glorieux, G.; Massy, Z. an Obituary for GFR as the main marker for kidney function? Semin. Dial. 2012, 25, 9–14. [Google Scholar] [CrossRef]
- Mehrotra, R.; Kopple, J.D.; Wolfson, M. Metabolic acidosis in maintenance dialysis patients: Clinical considerations. Kidney Int. Suppl. 2003, 64, S13–S25. [Google Scholar] [CrossRef] [PubMed]
- Kuczera, P.; Ciaston-Mogilska, D.; Oslizlo, B.; Hycki, A.; Wiecek, A.; Adamczak, M. The Prevalence of Metabolic Acidosis in Patients with Different Stages of Chronic Kidney Disease: Single-Centre Study. Kidney Blood Press. Res. 2020, 45, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Melamed, M.L.; Horwitz, E.J.; Dobre, M.A.; Abramowitz, M.K.; Zhang, L.; Lo, Y.; Mitch, W.E.; Hostetter, T.H. Effects of Sodium Bicarbonate in CKD Stages 3 and 4: A Randomized, Placebo-Controlled, Multicenter Clinical Trial. Am. J. Kidney Dis. 2020, 75, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Amodu, A.; Abramowitz, M.K. Dietary acid, age, and serum bicarbonate levels among adults in the United States. Clin. J. Am. Soc. Nephrol. 2013, 8, 2034–2042. [Google Scholar] [CrossRef] [PubMed]
- Scialla, J.J.; Appel, L.J.; Astor, B.C.; Miller, E.R., 3rd; Beddhu, S.; Woodward, M.; Parekh, R.S.; Anderson, C.A. Net endogenous acid production is associated with a faster decline in GFR in African Americans. Kidney Int. 2012, 82, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Kalani, R. Metabolic Acidosis in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 263–275. [Google Scholar] [CrossRef]
- Gołębiowski, T.; Kusztal, M.; Konieczny, A.; Kuriata-Kordek, M.; Gawryś, A.; Augustyniak-Bartosik, H.; Letachowicz, K.; Zielińska, D.; Wiśniewska, M.; Krajewska, M. Exhausted Capacity of Bicarbonate Buffer in Renal Failure Diagnosed Using Point of Care Analyzer. Diagnostics 2021, 11, 226. [Google Scholar] [CrossRef]
non-MA N = 24 | AGMA N = 48 | HAGMA N = 44 | F | p * | All Study Patients N = 116 | |
---|---|---|---|---|---|---|
Age (y.) | 63.52 ± 14.78 | 62.48 ± 16.88 | 62.02 ± 18.5 | 0.06 | >0.05 | 62.52 ± 16.98 |
BMI (kg/m2) | 28.62 ± 6.61 | 26.63 ± 4.61 | 26.3 ± 4.75 | 1.64 | >0.05 | 26.92 ± 5.17 |
pH | 7.39 ± 0.03 a | 7.32 ± 0.05 b | 7.31 ± 0.06 b | 25.36 | <0.01 | 7.33 ± 0.06 |
pCO2 (mmHg) | 39.88 ± 2.86 a | 33.44 ± 4.94 b | 32.19 ± 4.38 b | 25.66 | <0.01 | 34.30 ± 5.22 |
pO2 (mmHg) | 78.19 ± 13.97 a | 83.29 ± 13.25 a | 91.3 ± 19.6 b | 5.78 | <0.05 | 85.27 ± 16.75 |
HCO3− (mmol/L) | 24.20 ± 1.41 a | 17.51 ± 2.97 b | 16.23 ± 2.89 b | 72.79 | <0.01 | 18.41 ± 4.03 |
ABE (mmol/L) | −0.51 ± 1.64 a | −7.64 ± 3.27 b | −9.07 ± 3.28 b | 66.56 | <0.01 | −6.70 ± 4.4 |
SBE (mmol/L) | −0.53 ± 1.74 a | −8.54 ± 3.54 b | −10.06 ± 3.55 b | 71.05 | <0.01 | −7.46 ± 4.85 |
sO2 (%) | 94.90 ± 3.76 | 95.49 ± 3.6 | 96.23 ± 3.37 | 1.17 | >0.05 | 95.65 ± 3.55 |
K+ (mmol/L) | 4.23 ± 0.98 | 4.48 ± 0.7 | 4.41 ± 0.77 | 0.76 | >0.05 | 4.4 ± 0.79 |
Na+ (mmol/L) | 139.54 ± 3.82 a | 139.81 ± 3.75 a | 141.68 ± 2.02 b | 5.11 | <0.05 | 140.47 ± 3.33 |
Ca2+ (mmol/L) | 1.11 ± 0.14 | 1.16 ± 0.09 | 1.13 ± 0.1 | 1.27 | >0.05 | 1.13 ± 0.11 |
Cl− (mmol/L) | 105.38 ± 4.17 a | 113.56 ± 5.69 b | 114.23 ± 4.03 b | 29.90 | <0.01 | 112.12 ± 5.9 |
Anion gap (mmol/L) | 9.82 ± 2.81 a | 8.21 ± 1.72 b | 11.31 ± 1,72 c | 27.87 | <0.01 | 9.72 ± 2.41 |
Anion gap (K+) (mmol/L) | 14.06 ± 2.83 a | 12.72 ± 1.77 b | 15.71 ± 1.96 c | 23.29 | <0.01 | 14.13 ± 2.47 |
Glucose (mg/dL) | 137.67 ± 61.69 | 116.58 ± 41.05 | 111.22 ± 38 | 2.79 | >0.05 | 118.91 ± 45.7 |
TSH (iuU/mL) | 1.94 ± 1.62 | 1.72 ± 1.21 | 1.87 ± 1.34 | 0.20 | >0.05 | 1.82 ± 1.35 |
Total protein (g/dL) | 5.9 ± 1.13 | 6.1 ± 0.82 | 5.79 ± 0.95 | 1.35 | >0.05 | 5.94 ± 0.94 |
Albumin (g/dL) | 3.22 ± 0.73 | 3.56 ± 0.48 a | 3.2 ± 0.63 b | 4.83 | <0.05 | 3.35 ± 0.61 |
TC (mg/dL) | 208.45 ± 74.57 | 183.49 ± 63.58 | 189.53 ± 69.5 | 0.99 | >0.05 | 191.02 ± 68.23 |
TG (mg/dL) | 180.76 ± 111.45 | 143.16 ± 76.58 | 156.28 ± 66.25 | 1.51 | >0.05 | 155.8 ± 81.6 |
CRP (mg/L) | 6.54 ± 11.93 | 11.29 ± 19.17 | 7.7 ± 9.64 | 1.07 | >0.05 | 8.96 ± 14.77 |
Pi (mg/dL) | 5.55 ± 1.45 | 5.21 ± 1.06 | 5.67 ± 1.42 | 1.57 | >0.05 | 5.46 ± 1.29 |
Alkaline phosphatase (IU/L) | 84.62 ± 33.27 | 71.92 ± 23.49 | 72.85 ± 33.58 | 1.24 | >0.05 | 74.40 ± 29.54 |
BNP (pg/mL) | 500.54 ± 749.09 | 486.87 ± 510.89 | 696.52 ± 1050.93 | 0.56 | >0.05 | 555.54 ± 768.88 |
Troponin I (ng/L) | 127.28 ± 249.58 | 138.34 ± 367.99 | 85.54 ± 207.12 | 0.18 | >0.05 | 117.31 ± 292.96 |
Hemoglobin (g/dL) | 10.16 ± 1.21 | 9.97 ± 1.44 | 9.99 ± 1,63 | 0.14 | >0.05 | 10.02 ± 1.46 |
Creatinine (mg/dL) | 5.65 ± 2.43 | 4.75 ± 1.15 a | 5.99 ± 1.95 b | 5.86 | <0.01 | 5.39 ± 1.85 |
eGFR (mL/min/1.73 m2) | 12.21 ± 4.22 | 12.73 ± 4.86 a | 9.97 ± 2.78 b | 5.49 | <0.01 | 11.61 ± 4.23 |
Urea (mg/dL) | 146.33 ± 47.61 | 131.83 ± 35.91 a | 164.97 ± 39.19 b | 7.86 | <0.05 | 146.96 ± 42.08 |
PWV (m/s) | 8.34 ± 1.81 | 10.87 ± 2.22 | 9.77 ± 3.02 | 1.79 | >0.05 | 9.9 ± 2.5 |
Smoking (pack-year) | 12.71 ± 17.86 | 8.92 ± 14.32 | 9.15 ± 14.49 | 0.55 | >0.05 | 9.84 ± 15.15 |
Comorbidities *** | ||||||
non-MA N = 24 | AGMA N = 48 | HAGMA N = 44 | F | p * | All study patients N = 116 | |
CCI (points) | 5.83 ± 2.78 | 6.35 ± 3.23 | 6.77 ± 3.13 | 0.72 | >0.05 | 6.4 ± 3.1 |
non-MA N = 24 | AGMA N = 48 | HAGMA N = 44 | H | p ** | No (%) | |
Heart diseases (%) | 12 (10) | 19 (16) | 15 (13) | 1.34 | >0.05 | 46 (40) |
Peripheral vascular disease (%) | 9 (8) | 10 (9) | 8 (7) | 5.54 | >0.05 | 27 (23) |
Cerebrovascular accident (%) | 6 (5) | 7 (6) | 10 (9) | 3.45 | >0.05 | 23 (20) |
Chronic obturative disease (%) | 2 (2) | 4 (3) | 4 (3) | 0.05 | >0.05 | 10 (9) |
Connective tissue disease (%) | 2 (2) | 6 (5) | 4 (3) | 0.31 | >0.05 | 12 (10) |
Gastrointerstitial diseases (%) | 4 (3) | 7 (6) | 5 (4) | 0.29 | >0.05 | 16 (14) |
Diabetes mellitus (%) | 11 (9) | 15 (13) | 13 (11) | 1.91 | >0.05 | 39 (34) |
Neoplasmatic disease (%) | 2 (2) | 7 (6) | 5 (4) | 0.53 | >0.05 | 14 (12) |
Causes of CKD | ||||||
non-MA N = 24 | AGMA N = 48 | HAGMA N = 44 | H | p ** | No (%) | |
DM and HA (%) | 14 (58) | 24 (50) | 18 (41) | 2.94 | >0.05 | 56 (48) |
Chronic GN (%) | 8 (33) | 10 (21) | 13 (30) | 31 (27) | ||
ADPKD (%) | 0 (0) | 7 (15) | 5 (11) | 12 (10) | ||
IN (%) | 0 (0) | 4 (8) | 1 (2) | 5 (4) | ||
others (%) | 2 (0) | 3 (6) | 7 (16) | 12 (10) |
pH < 7.35 N = 68 | pH ≥ 7.35 N = 48 | p | |
---|---|---|---|
Age (y.) | 63.07 ± 17.79 | 61.75 ± 15.93 | >0.05 |
Weight (kg) | 77.33 ± 17.13 | 77.84 ± 22.56 | >0.05 |
BMI (kg/m2) | 27.35 ± 4.79 | 26.33 ± 5.65 | >0.05 |
pH | 7.29 ± 0.04 | 7.39 ± 0.03 | <0.01 |
pCO2 (mmHg) | 33.52 ± 5.54 | 35.39 ± 4.57 | >0.05 |
pO2 (mmHg) | 86.16 ± 17.51 | 84.06 ± 15.75 | >0.05 |
HCO3− (mmol/L) | 16.39 ± 3.36 | 21.27 ± 3.08 | <0.01 |
ABE (mmol/L) | −9.24 ± 3.45 | −3.12 ± 2.86 | <0.01 |
SBE (mmol/L) | −10.14 ± 3.84 | −3.66 ± 3.37 | <0.01 |
K+ (mmol/L) | 4.51 ± 0.73 | 4.25 ± 0.85 | >0.05 |
Na+ (mmol/L) | 139.77 ± 3.99 | 141.13 ± 2.28 | <0.05 |
Ca2+ (mmol/L) | 1.14 ± 0.1 | 1.13 ± 0.12 | >0.05 |
Cl− (mg/dL) | 114.69 ± 5.09 | 108.52 ± 4.95 | <0.01 |
Anion gap (mmol/L) | 9.54 ± 2.54 | 9.97 ± 2.22 | >0.05 |
Anion gap (K+) (mmol/L) | 14.06 ± 2.61 | 14.22 ± 2.28 | >0.05 |
Creatinine (mg/dL) | 5.46 ± 1.61 | 5.06 ± 1.61 | >0.05 |
GFR (ml/min/1.73 m2) | 9.25 ± 2.73 | 10.2 ± 3.24 | <0.05 |
Urea (mg/dL) | 135.14 ± 33.58 | 129.64 ± 49.43 | >0.05 |
TSH (iuU/mL) | 1.9 ± 1.52 | 1.72 ± 1.08 | >0.05 |
Total protein (g/dL) | 5.76 ± 0.83 | 6.19 ± 1.04 | <0.05 |
Albumin (g/dL) | 3.35 ± 0.62 | 3.36 ± 0.61 | >0.05 |
TC (mg/dL) | 182.92 ± 62.03 | 202.72 ± 75.48 | >0.05 |
TG (mg/dL) | 150.97 ± 78.94 | 162.67 ± 85.68 | >0.05 |
Phosphate (mg/dL) | 5.71 ± 1.34 | 5.09 ± 1.14 | <0.05 |
PTH (pg/mL) | 403 ± 250.22 | 272.57 ± 181.79 | <0.05 |
Hemoglobin (g/dL) | 9.89 ± 1.45 | 10.2 ± 1.48 | >0.05 |
PWV (m/s) | 10.17 ± 2.73 | 9.28 ± 1.95 | >0.05 |
CCI (point) | 6.13 ± 2.95 | 6.79 ± 3.28 | >0.05 |
Causes of CKD | |||
pH < 7.35 N = 68 | pH ≥ 7.35 N = 48 | p * | |
DM and HA (%) | 33 (49) | 23 (48) | >0.05 |
Chronic GN (%) | 19 (28) | 12 (25) | >0.05 |
ADPKD (%) | 8 (12) | 4 (8) | >0.05 |
IN (%) | 3 (4) | 2 (4) | >0.05 |
others (%) | 5 (7) | 7 (15) | >0.05 |
Follow-Up Data after 2 Years | ||||||
---|---|---|---|---|---|---|
non-MA N = 24 | AGMA N = 48 | HAGMA N = 44 | F | p | All Study Patients N = 116 | |
Time between POCT assessment and HD start (days) | 161 ± 207 | 238 ± 229 a | 113 ± 184 b | 3.52 | <0.05 * | 175 ± 214 |
Number of patients who did not start HD (%) | 2 (3) | 8 (7) | 3 (3) | >0.05 ** | 13 (11) | |
Number of patients who started HD (%) | 21 (18) | 42 (36) | 39 (34) | >0.05 ** | 102 (87) | |
Number of patients who received a kidney transplant (%) | 3 (3) | 4 (3) | 8 (7) | >0.05 ** | 15 (13) | |
Number of patients who experienced a cardiovascular event *** (%) | 6 (5) | 13 (11) | 11 (9) | >0.05 ** | 30 (26) | |
Number of patients who died (%) | 5 (4) | 7 (6) | 11 (9) | >0.05 ** | 23 (20) |
Follow-Up Data after 2 Years | |||
---|---|---|---|
pH < 7.35 N = 68 | pH ≥ 7.35 N = 48 | p | |
Time between POCT assessment and HD start (days) | 138 ± 149 | 155 ± 198 | >0.05 * |
Number of patients who did not start HD (%) | 4 (3) | 9 (8) | >0.05 ** |
Number of patients who started HD (%) | 64 (55) | 38 (33) | >0.05 ** |
Number of patients who received a kidney transplant (%) | 8 (7) | 7 (6) | >0.05 ** |
Number of patients who experienced a cardiovascular event *** (%) | 16 (14) | 14 (12) | >0.05 ** |
Number of patients who died (%) | 14 (12) | 9 (8) | >0.05 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołębiowski, T.; Zmonarski, S.; Rożek, W.; Powązka, M.; Jerzak, P.; Gołębiowski, M.; Kusztal, M.; Olczyk, P.; Stojanowski, J.; Letachowicz, K.; et al. Point-of-Care Testing to Differentiate Various Acid–Base Disorders in Chronic Kidney Disease. Diagnostics 2023, 13, 3367. https://doi.org/10.3390/diagnostics13213367
Gołębiowski T, Zmonarski S, Rożek W, Powązka M, Jerzak P, Gołębiowski M, Kusztal M, Olczyk P, Stojanowski J, Letachowicz K, et al. Point-of-Care Testing to Differentiate Various Acid–Base Disorders in Chronic Kidney Disease. Diagnostics. 2023; 13(21):3367. https://doi.org/10.3390/diagnostics13213367
Chicago/Turabian StyleGołębiowski, Tomasz, Sławomir Zmonarski, Wiktoria Rożek, Mateusz Powązka, Patryk Jerzak, Maciej Gołębiowski, Mariusz Kusztal, Piotr Olczyk, Jakub Stojanowski, Krzysztof Letachowicz, and et al. 2023. "Point-of-Care Testing to Differentiate Various Acid–Base Disorders in Chronic Kidney Disease" Diagnostics 13, no. 21: 3367. https://doi.org/10.3390/diagnostics13213367
APA StyleGołębiowski, T., Zmonarski, S., Rożek, W., Powązka, M., Jerzak, P., Gołębiowski, M., Kusztal, M., Olczyk, P., Stojanowski, J., Letachowicz, K., Banasik, M., Konieczny, A., & Krajewska, M. (2023). Point-of-Care Testing to Differentiate Various Acid–Base Disorders in Chronic Kidney Disease. Diagnostics, 13(21), 3367. https://doi.org/10.3390/diagnostics13213367