Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
- Normal cognition (NC) group (participants with MoCA scores ≥ 26);
- Mild cognitive impairment (MCI) group (participants with MoCA ≥ 20 and ≤25);
- Severe cognitive impairment (SCI) group (participants with MoCA ≤ 19.
2.1. Selection of Participants
2.2. MRI Acquisition Protocol and Fractional Anisotropy Calculation
- Three-dimensional T1 SPGR (technical parameters—flip angle 11, TE min full, TI 400, FOV 25.6, layer thickness 1 mm);
- Three-dimensional FLAIR (technical parameters—TE 119, TR 4800, TI 1473, echo 182, FOV 25.6, layer thickness 1.2 mm);
- High-resolution hippocampal structure assessment sequence (technical parameters—flip angle 122, TE 50, Echo 1, TR 8020, FOV 17.5, layer thickness 2, coronal direction perpendicular to the hippocampus);
- DTI (technical parameters—32 directions, b = 0 and 1000 s/mm2, diffusion direction—tensor, FOV 23.2, layer thickness 2 mm, TE 100);
- SWI (technical parameters—flip angle 15, TE 22.5, TR 34.7, slice thickness 3 mm);
- DWI (technical parameters—b = 0, 1000, and synthetic 2000 s/mm2, flip angle 90, TE 76.0, TR 9852.0, slice thickness 3 mm).
2.3. Statistical Analysis
3. Results
3.1. Whole Brain Fractional Anisotropy
3.2. Corpus Callosum Fractional Anisotropy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stavro, K.; Pelletier, J.; Potvin, S. Widespread and Sustained Cognitive Deficits in Alcoholism: A Meta-Analysis. Addict. Biol. 2012, 18, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Farias, S.E.T.; Cahn-Weiner, D.A.; Harvey, D.; Reed, B.R.; Mungas, D.M.; Kramer, J.H.; Chui, H.C. Longitudinal Changes in Memory and Executive Functioning Are Associated with Longitudinal Change in Instrumental Activities of Daily Living in Older Adults. Clin. Neuropsychol. 2009, 23, 446–461. [Google Scholar] [CrossRef] [PubMed]
- Dauphinot, V.; Delphin-Combe, F.; Mouchoux, C.; Dorey, A.; Bathsavanis, A.; Makaroff, Z.; Rouch, I.; Krolak-Salmon, P. Risk Factors of Caregiver Burden Among Patients With Alzheimer’s Disease or Related Disorders: A Cross-Sectional Study. J. Alzheimer’s Dis. 2015, 44, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.N.; Hirschman, K.B.; Hanlon, A.L.; Naylor, M.D. Burden in Caregivers of Cognitively Impaired Elderly Adults at Time of Hospitalization: A Cross-Sectional Analysis. J. Am. Geriatr. Soc. 2014, 62, 276–284. [Google Scholar] [CrossRef] [PubMed]
- McCollum, L.; Karlawish, J. Cognitive Impairment Evaluation and Management. Med. Clin. N. Am. 2020, 104, 807–825. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.C.; Kim, M.; Keser, Z.; Ibrahim, L.; Singh, S.K.; Ahmad, M.J.; Hasan, O.; Kamali, A.; Hasan, K.M.; Schulz, P.E. Diffusion Tensor Imaging Correlates of Concussion Related Cognitive Impairment. Front. Neurol. 2021, 12, 639179. [Google Scholar] [CrossRef] [PubMed]
- Tornifoglio, B.; Stone, A.J.; Johnston, R.D.; Shahid, S.S.; Kerskens, C.; Lally, C. Diffusion Tensor Imaging and Arterial Tissue: Establishing the Influence of Arterial Tissue Microstructure on Fractional Anisotropy, Mean Diffusivity and Tractography. Sci. Rep. 2020, 10, 20718. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, M.; Westin, C.-F.; Maier, S.E.; Mamata, H.; Frumin, M.; Ersner-Hershfield, H.; Kikinis, R.; Jolesz, F.A.; McCarley, R.; Shenton, M.E. Diffusion Tensor Imaging and Its Application to Neuropsychiatric Disorders. Harv. Rev. Psychiatry 2002, 10, 324–336. [Google Scholar] [CrossRef]
- Le Bihan, D.; Mangin, J.-F.; Poupon, C.; Clark, C.A.; Pappata, S.; Molko, N.; Chabriat, H. Diffusion Tensor Imaging: Concepts and Applications. J. Magn. Reson. Imaging 2001, 13, 534–546. [Google Scholar] [CrossRef]
- Testaverde, L.; Caporali, L.; Venditti, E.; Grillea, G.; Colonnese, C. Diffusion Tensor Imaging Applications in Multiple Sclerosis Patients Using 3T Magnetic Resonance: A Preliminary Study. Eur. Radiol. 2012, 22, 990–997. [Google Scholar] [CrossRef]
- Cassol, E.; Ranjeva, J.-P.; Ibarrola, D.; Mékies, C.; Manelfe, C.; Clanet, M.; Berry, I. Diffusion Tensor Imaging in Multiple Sclerosis: A Tool for Monitoring Changes in Normal-Appearing White Matter. Mult. Scler. 2004, 10, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, T.J.D.; Barrick, T.R.; Bell, B.A.; Clark, C.A. Diffusion Tensor Imaging Discriminates between Glioblastoma and Cerebral Metastases in Vivo. NMR Biomed. 2011, 24, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Witwer, B.P.; Moftakhar, R.; Hasan, K.M.; Deshmukh, P.; Haughton, V.; Field, A.; Arfanakis, K.; Noyes, J.; Moritz, C.H.; Meyerand, M.E.; et al. Diffusion-Tensor Imaging of White Matter Tracts in Patients with Cerebral Neoplasm. J. Neurosurg. 2002, 97, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Rahmat, R.; Brochu, F.; Li, C.; Sinha, R.; Price, S.J.; Jena, R. Semi-Automated Construction of Patient Individualised Clinical Target Volumes for Radiotherapy Treatment of Glioblastoma Utilising Diffusion Tensor Decomposition Maps. BJR 2020, 93, 20190441. [Google Scholar] [CrossRef] [PubMed]
- Roldan-Valadez, E.; Rios, C.; Cortez-Conradis, D.; Favila, R.; Moreno-Jimenez, S. Global Diffusion Tensor Imaging Derived Metrics Differentiate Glioblastoma Multiforme vs. Normal Brains by Using Discriminant Analysis: Introduction of a Novel Whole-Brain Approach. Radiol. Oncol. 2014, 48, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Colman, J.; Mancini, L.; Manolopoulos, S.; Gupta, M.; Kosmin, M.; Bisdas, S. Is Diffusion Tensor Imaging-Guided Radiotherapy the New State-of-the-Art? A Review of the Current Literature and Technical Insights. Appl. Sci. 2022, 12, 816. [Google Scholar] [CrossRef]
- Price, S.J.; Jena, R.; Burnet, N.G.; Carpenter, T.A.; Pickard, J.D.; Gillard, J.H. Predicting Patterns of Glioma Recurrence Using Diffusion Tensor Imaging. Eur. Radiol. 2007, 17, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Hulkower, M.B.; Poliak, D.B.; Rosenbaum, S.B.; Zimmerman, M.E.; Lipton, M.L. A Decade of DTI in Traumatic Brain Injury: 10 Years and 100 Articles Later. Am. J. Neuroradiol. 2013, 34, 2064–2074. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, S.; Shi, J.; Fan, Y.; Zhang, Q.; Zhu, W. Application of Neurite Orientation Dispersion and Density Imaging to Characterize Brain Microstructural Abnormalities in Type-2 Diabetics with Mild Cognitive Impairment. J. Magn. Reson. Imaging 2019, 50, 889–898. [Google Scholar] [CrossRef]
- Lopez-Titla, M.M.; Chirino, A.; Cruz Solis, S.V.; Hernandez-Castillo, C.R.; Diaz, R.; Márquez-Quiroz, L.d.C.; Magaña, J.J.; Beltrán-Parrazal, L.; Fernandez-Ruiz, J. Cognitive Decline and White Matter Integrity Degradation in Myotonic Dystrophy Type I. J. Neuroimaging 2021, 31, 192–198. [Google Scholar] [CrossRef]
- Sundaram, S.K.; Kumar, A.; Makki, M.I.; Behen, M.E.; Chugani, H.T.; Chugani, D.C. Diffusion Tensor Imaging of Frontal Lobe in Autism Spectrum Disorder. Cereb. Cortex 2008, 18, 2659–2665. [Google Scholar] [CrossRef] [PubMed]
- Sivaswamy, L.; Kumar, A.; Rajan, D.; Behen, M.; Muzik, O.; Chugani, D.; Chugani, H. A Diffusion Tensor Imaging Study of the Cerebellar Pathways in Children With Autism Spectrum Disorder. J. Child Neurol. 2010, 25, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Biesbroek, J.M.; Leemans, A.; den Bakker, H.; Duering, M.; Gesierich, B.; Koek, H.L.; van den Berg, E.; Postma, A.; Biessels, G.J. Microstructure of Strategic White Matter Tracts and Cognition in Memory Clinic Patients with Vascular Brain Injury. Dement. Geriatr. Cogn. Disord. 2017, 44, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Lunven, M.; Thiebaut De Schotten, M.; Bourlon, C.; Duret, C.; Migliaccio, R.; Rode, G.; Bartolomeo, P. White Matter Lesional Predictors of Chronic Visual Neglect: A Longitudinal Study. Brain 2015, 138, 746–760. [Google Scholar] [CrossRef]
- Shukla, D.K.; Keehn, B.; Lincoln, A.J.; Müller, R.-A. White Matter Compromise of Callosal and Subcortical Fiber Tracts in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 1269–1278.e2. [Google Scholar] [CrossRef] [PubMed]
- Pankatz, L.; Rojczyk, P.; Seitz-Holland, J.; Bouix, S.; Jung, L.B.; Wiegand, T.L.T.; Bonke, E.M.; Sollmann, N.; Kaufmann, E.; Carrington, H.; et al. Adverse Outcome Following Mild Traumatic Brain Injury Is Associated with Microstructure Alterations at the Gray and White Matter Boundary. J. Clin. Med. 2023, 12, 5415. [Google Scholar] [CrossRef] [PubMed]
- Sundgren, P.C.; Dong, Q.; Gomez-Hassan, D.; Mukherji, S.K.; Maly, P.; Welsh, R.C. Diffusion Tensor Imaging of the Brain: Review of Clinical Applications. Neuroradiology 2004, 46, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Pineda, J.C.D.; Kokubun, K.; Ikaga, T.; Yamakawa, Y. Housing Quality and Behavior Affect Brain Health and Anxiety in Healthy Japanese Adults. Sci. Rep. 2021, 11, 11999. [Google Scholar] [CrossRef]
- Thomalla, G.; Glauche, V.; Weiller, C.; Röther, J. Time Course of Wallerian Degeneration after Ischaemic Stroke Revealed by Diffusion Tensor Imaging. J. Neurol. Neurosurg. Psychiatry 2005, 76, 266. [Google Scholar] [CrossRef]
- Tax, C.M.W.; Bastiani, M.; Veraart, J.; Garyfallidis, E.; Okan Irfanoglu, M. What’s New and What’s next in Diffusion MRI Preprocessing. NeuroImage 2022, 249, 118830. [Google Scholar] [CrossRef]
- Porcu, M.; Cocco, L.; Puig, J.; Mannelli, L.; Yang, Q.; Suri, J.S.; Defazio, G.; Saba, L. Global Fractional Anisotropy: Effect on Resting-State Neural Activity and Brain Networking in Healthy Participants. Neuroscience 2021, 472, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Liu, Q.; Wang, J.; Yu, L.; Liu, X.; Ma, P.; Zhao, B. Evaluation of Acute Anterior Ischaemic Optic Neuropathy Using Diffusion Tensor Imaging. Clin. Exp. Optom. 2020, 103, 220–223. [Google Scholar] [CrossRef]
- Thomann, A.E.; Berres, M.; Goettel, N.; Steiner, L.A.; Monsch, A.U. Enhanced Diagnostic Accuracy for Neurocognitive Disorders: A Revised Cut-off Approach for the Montreal Cognitive Assessment. Alzheimers Res. Ther. 2020, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Bernier, P.J.; Gourdeau, C.; Carmichael, P.-H.; Beauchemin, J.-P.; Voyer, P.; Hudon, C.; Laforce, R., Jr. It’s All about Cognitive Trajectory: Accuracy of the Cognitive Charts–MoCA in Normal Aging, MCI, and Dementia. J. Am. Geriatr. Soc. 2023, 71, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Wasserthal, J.; Neher, P.; Maier-Hein, K.H. TractSeg—Fast and Accurate White Matter Tract Segmentation. NeuroImage 2018, 183, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Collier, Q.; Veraart, J.; Jeurissen, B.; den Dekker, A.J.; Sijbers, J. Iterative Reweighted Linear Least Squares for Accurate, Fast, and Robust Estimation of Diffusion Magnetic Resonance Parameters. Magn. Reson. Med. 2015, 73, 2174–2184. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, C.; Smeets, D.; Verheyden, J.; Terzopoulos, V.; Anania, V.; Parizel, P.M.; Maas, A. Potential of a Statistical Approach for the Standardization of Multicenter Diffusion Tensor Data: A Phantom Study. J. Magn. Reson. Imaging 2019, 49, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.S.; Paolella, R.; Billiet, T.; Van Dyck, P.; Guns, P.-J.; Jeurissen, B.; Ribbens, A.; den Dekker, A.J.; Sijbers, J. Harmonization of Brain Diffusion MRI: Concepts and Methods. Front. Neurosci. 2020, 14, 396. [Google Scholar] [CrossRef]
- Anania, V.; Collier, Q.; Veraart, J.; Buikema, A.E.; Vanhevel, F.; Billiet, T.; Jeurissen, B.; den Dekker, A.J.; Sijbers, J. Improved Diffusion Parameter Estimation by Incorporating T2 Relaxation Properties into the DKI-FWE Model. NeuroImage 2022, 256, 119219. [Google Scholar] [CrossRef]
- JASP Team. JASP (Version 0.17.3). 2023. Available online: https://jasp-stats.org/ (accessed on 21 September 2023).
- Nakayama, N.; Okumura, A.; Shinoda, J.; Yasokawa, Y.-T.; Miwa, K.; Yoshimura, S.-I.; Iwama, T. Evidence for White Matter Disruption in Traumatic Brain Injury without Macroscopic Lesions. J. Neurol. Neurosurg. Psychiatry 2006, 77, 850–855. [Google Scholar] [CrossRef]
- Oreja-Guevara, C.; Rovaris, M.; Iannucci, G.; Valsasina, P.; Caputo, D.; Cavarretta, R.; Sormani, M.P.; Ferrante, P.; Comi, G.; Filippi, M. Progressive Gray Matter Damage in Patients with Relapsing-Remitting Multiple Sclerosis: A Longitudinal Diffusion Tensor Magnetic Resonance Imaging Study. Arch. Neurol. 2005, 62, 578–584. [Google Scholar] [CrossRef]
- Vercruysse, S.; Leunissen, I.; Vervoort, G.; Vandenberghe, W.; Swinnen, S.; Nieuwboer, A. Microstructural Changes in White Matter Associated with Freezing of Gait in Parkinson’s Disease. Mov. Disord. 2015, 30, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Sun, Z.; Han, Y.; Gao, L.; Yuan, L.; Zeng, D. Fractional Anisotropy Alterations in Individuals Born Preterm: A Diffusion Tensor Imaging Meta-Analysis. Dev. Med. Child Neurol. 2015, 57, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Guo, Z.; McClure, M.A.; Mu, Q. White Matter Changes from Mild Cognitive Impairment to Alzheimer’s Disease: A Meta-Analysis. Acta Neurol. Belg. 2021, 121, 1435–1447. [Google Scholar] [CrossRef] [PubMed]
- Sexton, C.E.; Kalu, U.G.; Filippini, N.; Mackay, C.E.; Ebmeier, K.P. A Meta-Analysis of Diffusion Tensor Imaging in Mild Cognitive Impairment and Alzheimer’s Disease. Neurobiol. Aging 2011, 32, 2322.e5–2322.e18. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.A.; Gaviria, M. Diffusion Tensor Imaging Investigations in Alzheimer’s Disease: The Resurgence of White Matter Compromise in the Cortical Dysfunction of the Aging Brain. Neuropsychiatr. Dis. Treat. 2008, 4, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Gee, M.; Camicioli, R.; Wieler, M.; Martin, W.; Beaulieu, C. Diffusion Tensor Imaging of White Matter Tract Evolution over the Lifespan. NeuroImage 2012, 60, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Westlye, L.T.; Walhovd, K.B.; Dale, A.M.; Bjørnerud, A.; Due-Tønnessen, P.; Engvig, A.; Grydeland, H.; Tamnes, C.K.; Ostby, Y.; Fjell, A.M. Life-Span Changes of the Human Brain White Matter: Diffusion Tensor Imaging (DTI) and Volumetry. Cereb. Cortex 2010, 20, 2055–2068. [Google Scholar] [CrossRef] [PubMed]
- Barnea-Goraly, N.; Menon, V.; Eckert, M.; Tamm, L.; Bammer, R.; Karchemskiy, A.; Dant, C.C.; Reiss, A.L. White Matter Development During Childhood and Adolescence: A Cross-Sectional Diffusion Tensor Imaging Study. Cereb. Cortex 2005, 15, 1848–1854. [Google Scholar] [CrossRef]
- Webb, C.E.; Perez, P.M.V.; Hoagey, D.A.; Gonen, C.; Rodrigue, K.M.; Kennedy, K.M. Age-Related Degradation of Optic Radiation White Matter Predicts Visual, but Not Verbal Executive Functions. bioRxiv 2021. [Google Scholar] [CrossRef]
- Williams, O.A.; An, Y.; Beason-Held, L.; Huo, Y.; Ferrucci, L.; Landman, B.A.; Resnick, S.M. Vascular Burden and APOE Ε4 Are Associated with White Matter Microstructural Decline in Cognitively Normal Older Adults. NeuroImage 2019, 188, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Beaulieu, C. Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood. J. Neurosci. 2011, 31, 10937–10947. [Google Scholar] [CrossRef] [PubMed]
- Pareek, V.; Rallabandi, V.S.; Roy, P.K. A Correlational Study between Microstructural White Matter Properties and Macrostructural Gray Matter Volume Across Normal Ageing: Conjoint DTI and VBM Analysis. Magn. Reson. Insights 2018, 11, 1178623X18799926. [Google Scholar] [CrossRef] [PubMed]
- Rathee, R.; Rallabandi, V.P.S.; Roy, P.K. Age-Related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural MRI and Diffusion Tensor Imaging. Magn. Reson. Insights 2016, 9, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Glahn, D.C.; Lancaster, J.; Thompson, P.M.; Kochunov, V.; Rogers, B.; Fox, P.; Blangero, J.; Williamson, D.E. Fractional Anisotropy of Cerebral White Matter and Thickness of Cortical Gray Matter across the Lifespan. NeuroImage 2011, 58, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Sumner, J.A. The Mechanisms Underlying Overgeneral Autobiographical Memory: An Evaluative Review of Evidence for the CaR-FA-X Model. Clin. Psychol. Rev. 2012, 32, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Yang, J.; Zhou, A.; Wang, F.; Wei, C.; Tang, Y.; Jia, J. White Matter Fractional Anisotropy Is a Superior Predictor for Cognitive Impairment Than Brain Volumes in Older Adults With Confluent White Matter Hyperintensities. Front. Psychiatry 2021, 12, 633811. [Google Scholar] [CrossRef] [PubMed]
- Tuch, D.S. Q-Ball Imaging. Magn. Reson. Med. 2004, 52, 1358–1372. [Google Scholar] [CrossRef]
- Pellicer-Espinosa, I.; Díaz-Orueta, U. Cognitive Screening Instruments for Older Adults with Low Educational and Literacy Levels: A Systematic Review. J. Appl. Gerontol. 2022, 41, 1222–1231. [Google Scholar] [CrossRef]
- Farrell, J.A.D.; Landman, B.A.; Jones, C.K.; Smith, S.A.; Prince, J.L.; van Zijl, P.C.M.; Mori, S. Effects of Signal-to-Noise Ratio on the Accuracy and Reproducibility of Diffusion Tensor Imaging–Derived Fractional Anisotropy, Mean Diffusivity, and Principal Eigenvector Measurements at 1.5T. J. Magn. Reson. Imaging 2007, 26, 756–767. [Google Scholar] [CrossRef]
- Landman, B.A.; Farrell, J.A.D.; Huang, H.; Prince, J.L.; Mori, S. Diffusion Tensor Imaging at Low SNR: Nonmonotonic Behaviors of Tensor Contrasts. Magn. Reson. Imaging 2008, 26, 790–800. [Google Scholar] [CrossRef]
- Yanasak, N.E.; Allison, J.D.; Hu, T.C.-C.; Zhao, Q. The Use of Novel Gradient Directions with DTI to Synthesize Data with Complicated Diffusion Behavior. Med. Phys. 2009, 36, 1875–1885. [Google Scholar] [CrossRef]
- Liu, C.; Bammer, R.; Moseley, M.E. Generalized Diffusion Tensor Imaging (GDTI): A Method for Characterizing and Imaging Diffusion Anisotropy Caused by Non-Gaussian Diffusion. Isr. J. Chem. 2003, 43, 145–154. [Google Scholar] [CrossRef]
- Davis, T.L.; Tuch, D.S. Diffusion Tensor MRI Methods: Historical Perspective and New Directions. CNS Spectr. 2002, 7, 505–509. [Google Scholar] [CrossRef]
Gender (F:M) | Age | MoCA | |||||||
---|---|---|---|---|---|---|---|---|---|
NC | MCI | SCI | NC | MCI | SCI | NC | MCI | SCI | |
N | 8:1 | 10:6 | 10:6 | 9 | 16 | 16 | 9 | 16 | 16 |
M | 65.0 | 69.6 | 75.9 | 28.2 | 23.3 | 10.8 | |||
Std. Deviation | 11.5 | 7.3 | 10.5 | 1.1 | 1.7 | 5.0 | |||
Minimum | 44.0 | 57.0 | 62.0 | 27.0 | 20.0 | 4.0 | |||
Maximum | 77.0 | 80.0 | 96.0 | 30.0 | 25.0 | 18.0 | |||
X2 | 2.3 | 60.6 | 82.0 *** |
Comparison | z | Wj | Wj′ | p | pBonf | pHolm |
---|---|---|---|---|---|---|
SCI-MCI | −2.720 | 16.658 | 28.063 | 0.007 ** | 0.02 * | 0.02 * |
SCI-NC | 0.099 | 16.656 | 16.167 | 0.921 | 1.000 | 0.921 |
MCI-NC | 2.407 | 28.063 | 16.167 | 0.016 * | 0.048 * | 0.032 * |
Comparison | z | Wj | Wj′ | p | pBonf | pHolm |
---|---|---|---|---|---|---|
SCI-MCI | −2.361 | 18.438 | 28.438 | 0.018 * | 0.055 | 0.036 * |
SCI-NC | 1.223 | 18.438 | 12.333 | 0.221 | 0.664 | 0.221 |
MCI-NC | 3.227 | 28.438 | 12.333 | 0.001 ** | 0.004 ** | 0.004 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaļva, K.; Zdanovskis, N.; Šneidere, K.; Kostiks, A.; Karelis, G.; Platkājis, A.; Stepens, A. Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment. Diagnostics 2023, 13, 3679. https://doi.org/10.3390/diagnostics13243679
Kaļva K, Zdanovskis N, Šneidere K, Kostiks A, Karelis G, Platkājis A, Stepens A. Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment. Diagnostics. 2023; 13(24):3679. https://doi.org/10.3390/diagnostics13243679
Chicago/Turabian StyleKaļva, Kalvis, Nauris Zdanovskis, Kristīne Šneidere, Andrejs Kostiks, Guntis Karelis, Ardis Platkājis, and Ainārs Stepens. 2023. "Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment" Diagnostics 13, no. 24: 3679. https://doi.org/10.3390/diagnostics13243679
APA StyleKaļva, K., Zdanovskis, N., Šneidere, K., Kostiks, A., Karelis, G., Platkājis, A., & Stepens, A. (2023). Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment. Diagnostics, 13(24), 3679. https://doi.org/10.3390/diagnostics13243679