Optimized S-Curve Transformation and Wavelets-Based Fusion for Contrast Elevation of Breast Tomograms and Mammograms
Abstract
:1. Introduction
2. Optimized S-Curve Transform for Contrast Enhancement of Breast Images
Algorithm 1: Procedural Steps for Optimized S-Curve Transform for Contrast Enhancement |
BEGIN |
Step 1:Input test mammogram/tomogram image. |
Step 2:Convert from RGB to Grayscale. |
Step 3:Apply S-Curve transform using Equation (2). |
Step 4:Initialize the variables for PSO algorithm. |
Step 5:Define the objective function and fitness function. |
Step 6:Compare the values of xBest and gBest for every iteration. |
Step 7:Update the position and velocity of the particle. |
Step 8:Repeat steps 4 to 6 for all iterations until best value of EME is obtained. |
Step 9:Output images are obtained by substituting values in Equation (2). |
END |
3. Proposed Wavelet-based Medical Fusion Approach for Breast Images
3.1. Discrete Wavelet Transform
3.2. Maximum Fusion Rule
3.3. Proposed Fusion Scheme
4. Experimental Results and Discussions
4.1. Image Quality Assessment (IQA)
4.2. Experimental Set-Up
4.3. Enhancement Response of PSO-Optimized S-Curve Transformation
4.4. Fusion Response and Performance Measurements
4.5. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Information about Breast Cancer. Available online: https://www.insideradiology.com/publications/dictionaries/cancerterms/def/breastcancerdetection (accessed on 15 December 2020).
- Fiorica, J.V. Breast Cancer Screening Mammography and other Modalities. Clin. Obs. Gynecol. 2016, 59, 668–709. [Google Scholar] [CrossRef] [PubMed]
- Iranmakani, S.; Mortezazadeh, T.; Sajadian, F.; Musa, A.E. A Review of Various Modalities in Breast Imaging: Technical Aspects and Clinical Outcomes. Egypt. J. Radiol. Nucl. Med. 2020, 51, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Rangayyan, R.M.; Ayres, F.J.; Desautels, J.E.L. A Review of Computer-Aided Diagnosis of Breast Cancer: Toward the Detection of Subtle Signs. J. Frankl. Inst. 2007, 344, 312–448. [Google Scholar] [CrossRef]
- Bajaj, V.; Pawar, M.; Meena, V.K.; Kumar, M.; Sengur, A.; Guo, Y. Computer- Aided Diagnosis of Breast Cancer using Bi-Dimensional Empirical Mode Decomposition. Neural Comput. Appl. 2017, 31, 3307–3315. [Google Scholar] [CrossRef]
- Pawar, M.; Talbar, S. Local entropy Maximization based Image Fusion for Contrast Enhancement of Mammograms. J. King Saud Univ.-Comput. Inf. Sci. 2018, 33, 150–160. [Google Scholar] [CrossRef]
- Devi, S.; Bhateja, V. Mammographic Image Enhancement using Double Sigmoid Transformation Function. In Proceedings of the International Conference on Computer Applications, Pondicherry, India, 24–27 December 2010; Volume 34, pp. 259–264. [Google Scholar]
- Gandhamal, A.; Talbar, S.; Gajre, S.; Hani, A.F.M.; Kumar, D. Local Gray Level S- Curve Transformation—A Generalized Contrast Enhancement Technique for Medical Images. Comput. Biol. Med. 2017, 83, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Bhateja, V.; Misra, M.; Urooj, S.; Ekuakille, A.L. A Robust Polynomial Filtering Framework for Mammographic Image Enhancement from Biomedical Sensors. IEEE Sens. J. 2013, 13, 4147–4156. [Google Scholar] [CrossRef]
- Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Nugroho, H.A.; Fadzil, A.; Hani, M. Retinal Vasculature Enhancement using Independent Component Analysis. J. Biomed. Sci. Eng. 2009, 2, 543–556. [Google Scholar]
- Dorigo, M.; Stutzle, T. An Experimental Study of the Simple Ant Colony Optimization Algorithm. In Proceedings of the WSES International Conference on Evolutionary Computation, San Francisco, CA, USA, 23 January 2001; Volume 67, pp. 253–258. [Google Scholar]
- Thangavel, K.; Jaganathan, P. Rule Mining Algorithm with a new Ant Colony Optimization Algorithm. In Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, ICCIMA, Sivakasi, India, 13–15 December 2007; pp. 135–140. [Google Scholar]
- Mohan, S.; Mahesh, T.R. Particle Swarm Optimization based Contrast Limited Enhancement for Mammogram Images. In Proceedings of the International Conference on Intelligent Systems & Controls (ISCO), Coimbatore, India, 4–5 January 2013; Volume 44, pp. 384–388. [Google Scholar]
- Jona, J.B.; Nagaveni, M. A Hybrid Swarm Optimization Approach for Feature Set Reduction in Digital Mammograms. WSEAS Trans. Inf. Appl. Sci. 2012, 9, 340–349. [Google Scholar]
- Berkin, I. A hybrid Firefly and Particle Swarm Optimization algorithm for Computationally Expensive Numerical Problems. Appl. Soft Comput. 2018, 66, 232–249. [Google Scholar]
- Kumar, M.P.; Kumar, P.R. Image Fusion of Mammography Images using Meta Heuristic Method Particle Swarm Optimization (PSO). Int. J. Appl. Eng. Res. 2016, 11, 6254–6258. [Google Scholar]
- Bhateja, V.; Krishn, A.; Sahu, A. An Improved Medical Image Fusion Approach using PCA and Complex Wavelets. In Proceedings of the International Conference on Medical Imaging, M-Health and Emerging Communication Systems (Medcom), Greater Noida, India, 7–8 November 2014; pp. 442–447. [Google Scholar]
- Krishn, A.; Bhateja, V.; Sahu, A. Medical Image Fusion using Combination of PCA and Wavelet Analysis. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Delhi, India, 24–27 September 2014; Volume 56, pp. 986–991. [Google Scholar]
- James, A.P.; Daneshvar, S. PET and MRI Image Fusion based on Combination of 2-D Hilbert Transform and HIS Method. Biomed. J. 2017, 40, 219–225. [Google Scholar]
- Prakash, C.; Rajkumar, S.; Chandra Mouli, P.V.S.S.R. Medical Image Fusion based on Redundancy SWT and Mamdani Type min-sum mean-of-max Techniques with Quantitative Analysis. In Proceedings of the Internal Conference on Recent Advances in Computing and Software Systems, Chennai, India, 25–27 April 2012; Volume 39, pp. 54–59. [Google Scholar]
- Mohanty, A.K.; Benerta, S.; Lenka, S.K. Classifying Benign and Malignant Mass using GLCM and GLRLM based Texture Features from Mammograms. Int. J. Eng. Res. Appl. 2011, 1, 687–693. [Google Scholar]
- Bhateja, V.; Gautam, A.; Tiwari, A.; Bao, L.N.; Satapathy, S.C.; Nhu, N.G.; Le, D.N. Haralick Features- based Classification of Mammograms using SVM. In Information Systems Designs and Intelligent Applications, Advances in Intelligent System and Computing; Springer: Singapore, 2018; Volume 10, pp. 788–794. [Google Scholar]
- Tasdemir, S.B.Y.; Tasdemir, K.; Aydin, Z. ROI Detection in Mammogram Images using Wavelet-based Haralick and HOG Features. In Proceedings of the 17th IEEE International Conference on Machine learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; Volume 12, pp. 105–109. [Google Scholar]
- Wajid, S.K.; Hussain, A. Local Energy-based Shape Histogram Feature Extraction Technique for Breast Cancer Diagnosis. Expert. Syst. Appl. 2015, 42, 6990–6999. [Google Scholar] [CrossRef] [Green Version]
- Jadoon, M.M.; Zhang, Q.; Haq, I.; Butt, S.; Jadoon, A. Three-Class Mammogram Classification based on Descriptive CNN Features. Biomed. Res. Int. Conf. Iraq 2017, 78, 567–589. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Preet, B. Classification of Mammogram Images by using CNN Classifier. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 213–24 September 2016; Volume 37, pp. 2743–2749. [Google Scholar]
- Liu, C.; Du, S.; Xi, L. A Selective Multiclass Support Vector Machine Ensemble Classifier for Engineering Surface Classification using High-Definition Metrology. J. Manuf. Sci. Eng. 2015, 137, 1–6. [Google Scholar]
- Polat, K.; Gunes, S.; Arslan, A. A Cascade Learning System for Classification of Diabetes Disease: Generalized Discriminant Analysis and Least Square Support Vector Machine. Expert Syst. Appl. Int. Conf. Iran 2008, 34, 482–487. [Google Scholar] [CrossRef]
- Bhadauria, A.S.; Bhateja, V.; Nigam, M.; Arya, A. Skull stripping of brain MRI using mathematical morphology. In Smart Intelligent Computing and Applications; Springer: Singapore, 2020; pp. 775–780. [Google Scholar]
- Mridul, T.; Jaiswal, A.; Bhateja, V. A new contrast measurement index based on logarithmic image processing model. In Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Bhubaneswar, India, 18–19 June 2022; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vikrant, B.; Tiwari, A.; Gautam, A. Classification of mammograms using sigmoidal transformation and SVM. In Smart Computing and Informatics; Springer: Singapore, 2018; pp. 193–199. [Google Scholar]
- Image Database from Mini- Mammographic Image Analysis Society (MIAS). Available online: https://www.repository.cam.ac.uk/handle/1810/250394 (accessed on 1 January 2021).
- Image Database of DBT. Available online: https://wiki.cancerimagingarchive.net/display/Public/CBISDDSM#5e40bd1f79d64f04b40cac57ceca9272 (accessed on 22 December 2020).
- Image Database of Digitalized Radiographs from University of South Florida (USF). Available online: http://www.eng.usf.edu/cvprg/Mammography/Database.html (accessed on 26 December 2020).
Sample Images | Original (E) | Enhanced (E) | Fused (E) | Original (EME) | Enhanced (EME) | Fused (EME) | Fused (AMBE) |
---|---|---|---|---|---|---|---|
mdb202rl.jpg | 5.8901 | 7.2250 | 6.8923 | 1.8190 | 7.8945 | 11.4356 | 27.6414 |
mdb019rm.jpg | 7.9949 | 7.8785 | 7.7823 | 2.5691 | 8.9834 | 13.6798 | 34.6685 |
mdb145lx.jpg | 5.4030 | 6.8701 | 8.893 | 1.9655 | 4.6723 | 15.7813 | 27.6714 |
mdb099xy.jpg | 2.1567 | 3.4509 | 3.4509 | 3.5612 | 7.7623 | 12.6509 | 36.4454 |
C_0006_1.Right | 6.2634 | 7.5609 | 7.9987 | 2.1841 | 9.7823 | 12.6750 | 44.9799 |
C_0009_1.Right_CC | 7.9949 | 8.1234 | 8.9945 | 2.5691 | 3.6723 | 17.6799 | 33.0357 |
C_0019_1.Right_MLO | 6.1792 | 7.5478 | 8.2672 | 2.4067 | 5.6709 | 11.6430 | 16.7191 |
D_4084_1.Right_CC | 6.5118 | 8.7801 | 8.9302 | 2.9893 | 4.7802 | 15.7801 | 20.4578 |
Case2_7210000_L | 6.2634 | 7.5609 | 8.8812 | 2.1841 | 9.7823 | 16.7543 | 27.4422 |
Case9_7110000_R_CC | 4.4013 | 6.7623 | 7.7634 | 2.5643 | 9.9023 | 12.0933 | 27.5516 |
Case13_Series002.jpg | 4.0759 | 5.8907 | 6.9015 | 5.1510 | 5.7801 | 10.7813 | 16.9724 |
Case42_Series098.jpg | 5.4378 | 6.8956 | 7.0091 | 3.7612 | 7.3467 | 14.9025 | 23.6698 |
Sample Images | Original (IQI) | Enhanced (IQI) | Fused (IQI) | Original (SD) | Enhanced (SD) | Fused (SD) |
---|---|---|---|---|---|---|
mdb202rl.jpg | 0.5887 | 0.6799 | 0.6932 | 87.6701 | 91.7765 | 98.0106 |
mdb019rm.jpg | 0.7891 | 0.7234 | 0.7881 | 88.7812 | 84.8903 | 95.4732 |
mdb145lx.jpg | 0.4801 | 0.6720 | 0.6917 | 78.9024 | 85.8976 | 95.1043 |
mdb099xy.jpg | 0.6578 | 0.6332 | 0.7230 | 77.7834 | 91.8902 | 96.7891 |
C_0006_1.Right | 0.4501 | 0.5632 | 0.7834 | 90.6712 | 76.8934 | 99.6734 |
C_0009_1.Right_CC | 0.4532 | 0.5667 | 0.6698 | 89.1234 | 85.8044 | 94.9044 |
C_0019_1.Right_MLO | 0.6990 | 0.7623 | 0.7893 | 72.8901 | 78.9032 | 98.6712 |
D_4084_1.Right_CC | 0.6722 | 0.7721 | 0.8894 | 91.8903 | 87.7823 | 95.4989 |
Case2_7210000_L | 0.6398 | 0.6923 | 0.7834 | 78.4530 | 88.9045 | 98.5623 |
Case9_7110000_R_CC | 0.7892 | 0.8091 | 0.9854 | 88.7834 | 81.2345 | 93.6745 |
Case13_Series002.jpg | 0.8936 | 0.8792 | 0.9367 | 89.9034 | 80.9038 | 96.8940 |
Case42_Series098.jpg | 0.5906 | 0.7823 | 0.7804 | 81.8923 | 87.8933 | 98.7831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhateja, V.; Urooj, S.; Dikshit, A.; Rai, A. Optimized S-Curve Transformation and Wavelets-Based Fusion for Contrast Elevation of Breast Tomograms and Mammograms. Diagnostics 2023, 13, 410. https://doi.org/10.3390/diagnostics13030410
Bhateja V, Urooj S, Dikshit A, Rai A. Optimized S-Curve Transformation and Wavelets-Based Fusion for Contrast Elevation of Breast Tomograms and Mammograms. Diagnostics. 2023; 13(3):410. https://doi.org/10.3390/diagnostics13030410
Chicago/Turabian StyleBhateja, Vikrant, Shabana Urooj, Anushka Dikshit, and Ashruti Rai. 2023. "Optimized S-Curve Transformation and Wavelets-Based Fusion for Contrast Elevation of Breast Tomograms and Mammograms" Diagnostics 13, no. 3: 410. https://doi.org/10.3390/diagnostics13030410
APA StyleBhateja, V., Urooj, S., Dikshit, A., & Rai, A. (2023). Optimized S-Curve Transformation and Wavelets-Based Fusion for Contrast Elevation of Breast Tomograms and Mammograms. Diagnostics, 13(3), 410. https://doi.org/10.3390/diagnostics13030410