Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting
Abstract
:1. Introduction
- The evaluation of the effect of data augmentation on creating a more generalized model for shrapnel detection in ultrasound images.
- Determination of the benefit of bagging multiple predictive models for improving performance with blind test data.
- With these additions, we develop a more robust AI model framework for tracking shrapnel in ultrasound images which can allow for a more granular triage of casualties based on shrapnel placement in tissue.
1.1. Related Work
1.1.1. Automating Shrapnel Detection in Ultrasound Images
1.1.2. Overview of AI Strategies for Creating More Generalized Models
2. Materials and Methods
2.1. Shrapnel Image Dataseet
2.2. Model Architecture Overview of ShrapML and MobileNetv2
2.3. Preprocessing Training Data
2.4. Blind Subject Model Training
2.5. Evaluating Model Performance
3. Results
3.1. Initial Performance of ShrapML during Blind Subject Testing
3.2. Effect of Data Augmentation and Model Architechture on Improving Blind Subject Test Performance
3.3. Evaluation of Ensemble Prediction Pooling on Blind Subject Test Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
DoD Disclaimer
References
- Townsend, S.; Lasher, W. The U.S. Army in Multi-Domain Operations 2028; U.S. Army: Arlington, VA, USA, 2018. [Google Scholar]
- Diaz-Escobar, J.; Ordóñez-Guillén, N.E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Kober, V.; Rivera-Rodriguez, R.; Rizk, J.E.L. Deep-Learning Based Detection of COVID-19 Using Lung Ultrasound Imagery. PLoS ONE 2021, 16, e0255886. [Google Scholar] [CrossRef] [PubMed]
- La Salvia, M.; Secco, G.; Torti, E.; Florimbi, G.; Guido, L.; Lago, P.; Salinaro, F.; Perlini, S.; Leporati, F. Deep Learning and Lung Ultrasound for Covid-19 Pneumonia Detection and Severity Classification. Comput. Biol. Med. 2021, 136, 104742. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Weng, J.; Shi, Y.; Gu, W.; Mao, Y.; Wang, Y.; Liu, W.; Zhang, J. An Improved Deep Learning Approach for Detection of Thyroid Papillary Cancer in Ultrasound Images. Sci. Rep. 2018, 8, 6600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, T.-C.; Huang, Y.-S.; Chen, R.-T.; Huang, C.-S.; Chang, R.-F. Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and Prioritized Candidate Aggregation. IEEE Trans. Med. Imaging 2019, 38, 240–249. [Google Scholar] [CrossRef]
- Russell, T.C.; Crawford, P.F. Ultrasound in the Austere Environment: A Review of the History, Indications, and Specifications. Mil. Med. 2013, 178, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Harper, H.; Myers, M. Military and Tactical Ultrasound; American College of Emergency Physicians: Irving, TX, USA, 2017. [Google Scholar]
- Brattain, L.J.; Telfer, B.A.; Dhyani, M.; Grajo, J.R.; Samir, A.E. Machine Learning for Medical Ultrasound: Status, Methods, and Future Opportunities. Abdom. Radiol. (NY) 2018, 43, 786–799. [Google Scholar] [CrossRef]
- American College of Emergency Physicians Council Resolution on Ultrasound. ACEP News 1990, 9, 1–15.
- Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; Van Ginneken, B.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers, R.M. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and Future Promises. Proc. IEEE 2021, 109, 820–838. [Google Scholar] [CrossRef]
- Snider, E.J.; Hernandez-Torres, S.I.; Boice, E.N. An Image Classification Deep-Learning Algorithm for Shrapnel Detection from Ultrasound Images. Sci. Rep. 2022, 12, 8427. [Google Scholar] [CrossRef]
- Hernandez-Torres, S.I.; Boice, E.N.; Snider, E.J. Using an Ultrasound Tissue Phantom Model for Hybrid Training of Deep Learning Models for Shrapnel Detection. J. Imaging 2022, 8, 270. [Google Scholar] [CrossRef]
- Boice, E.N.; Hernandez-Torres, S.I.; Snider, E.J. Comparison of Ultrasound Image Classifier Deep Learning Algorithms for Shrapnel Detection. J. Imaging 2022, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Snider, E.J.; Hernandez-Torres, S.I.; Avital, G.; Boice, E.N. Evaluation of an Object Detection Algorithm for Shrapnel and Development of a Triage Tool to Determine Injury Severity. J. Imaging 2022, 8, 252. [Google Scholar] [CrossRef]
- Rogers, A.J.; Light, E.D.; von Allmen, D.; Smith, S.W. Real-Time 3D Ultrasound Guidance of Autonomous Surgical Robot for Shrapnel Detection and Breast Biopsy. In Proceedings of the Medical Imaging 2009: Ultrasonic Imaging and Signal Processing; SPIE: Washington, DC, USA, 2009; Volume 7265, pp. 221–226. [Google Scholar]
- Khalifa, N.E.; Loey, M.; Mirjalili, S. A Comprehensive Survey of Recent Trends in Deep Learning for Digital Images Augmentation. Artif. Intell. Rev. 2021, 55, 2351–2377. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, M.A.; Hu, M. Ensemble Deep Learning: A Review. arXiv 2021, arXiv:2104.02395. [Google Scholar] [CrossRef]
- Sandfort, V.; Yan, K.; Pickhardt, P.J.; Summers, R.M. Data Augmentation Using Generative Adversarial Networks (CycleGAN) to Improve Generalizability in CT Segmentation Tasks. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Yang, M.; Tian, X.; Jiang, N.; Wang, D. A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification. Discret. Dyn. Nat. Soc. 2020, 2020, 4706576. [Google Scholar] [CrossRef]
- Hussain, Z.; Gimenez, F.; Yi, D.; Rubin, D. Differential Data Augmentation Techniques for Medical Imaging Classification Tasks. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 4–8 November 2017; American Medical Informatics Association: Bethesda, ML, USA, 2017; Volume 2017, p. 979. [Google Scholar]
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic Data Augmentation Using GAN for Improved Liver Lesion Classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 289–293. [Google Scholar]
- Mikołajczyk, A.; Majchrowska, S.; Carrasco Limeros, S. The (de) Biasing Effect of GAN-Based Augmentation Methods on Skin Lesion Images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 437–447. [Google Scholar]
- Sanford, T.H.; Zhang, L.; Harmon, S.A.; Sackett, J.; Yang, D.; Roth, H.; Xu, Z.; Kesani, D.; Mehralivand, S.; Baroni, R.H. Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model. AJR. Am. J. Roentgenol. 2020, 215, 1403. [Google Scholar] [CrossRef]
- Li, S.Y. Automating Data Augmentation: Practice, Theory and New Direction. Available online: http://ai.stanford.edu/blog/data-augmentation/ (accessed on 17 November 2022).
- Gour, M.; Jain, S.; Sunil Kumar, T. Residual Learning Based CNN for Breast Cancer Histopathological Image Classification. Int. J. Imaging Syst. Technol. 2020, 30, 621–635. [Google Scholar] [CrossRef]
- Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging 2020, 39, 2676–2687. [Google Scholar] [CrossRef]
- Singla, R.; Ringstrom, C.; Hu, R.; Lessoway, V.; Reid, J.; Rohling, R.; Nguan, C. Speckle and Shadows: Ultrasound-Specific Physics-Based Data Augmentation for Kidney Segmentation. In Proceedings of the International Conference on Medical Imaging with Deep Learning, Zurich, Switzerland, 6–8 July 2022; pp. 1139–1148. [Google Scholar]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A Review of Medical Image Data Augmentation Techniques for Deep Learning Applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef]
- Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data Augmentation for Medical Imaging: A Systematic Literature Review. Comput. Biol. Med. 2022, 152, 106391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Özdemir, Ö.; Sönmez, E.B. Attention Mechanism and Mixup Data Augmentation for Classification of COVID-19 Computed Tomography Images. J. King Saud Univ. -Comput. Inf. Sci. 2022, 34, 6199–6207. [Google Scholar] [CrossRef]
- Panfilov, E.; Tiulpin, A.; Klein, S.; Nieminen, M.T.; Saarakkala, S. Improving Robustness of Deep Learning Based Knee Mri Segmentation: Mixup and Adversarial Domain Adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Ying, X.; Zhang, Y.; Wei, X.; Yu, M.; Zhu, J.; Gao, J.; Liu, Z.; Li, X.; Yu, R. MSDAN: Multi-Scale Self-Attention Unsupervised Domain Adaptation Network for Thyroid Ultrasound Images. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; pp. 871–876. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 569–593. [Google Scholar]
- Opitz, D.; Maclin, R. Popular Ensemble Methods: An Empirical Study. J. Artif. Intell. Res. 1999, 11, 169–198. [Google Scholar] [CrossRef]
- Manzo, M.; Pellino, S. Fighting Together against the Pandemic: Learning Multiple Models on Tomography Images for COVID-19 Diagnosis. AI 2021, 2, 261–273. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Chang, C.-M.; Liu, K.-T.; Lin, W.-K.; Chiang, H.-Y.; Chung, C.-W.; Ho, M.-R.; Sun, P.-R.; Yang, R.-L.; Chen, K.-T. Automation of the Kidney Function Prediction and Classification through Ultrasound-Based Kidney Imaging Using Deep Learning. npj Digit. Med. 2019, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.; Wildman-Tobriner, B.; Buda, M.; Yang, J.; Ho, L.M.; Allen, B.C.; Ehieli, W.L.; Miller, C.M.; Zhang, J.; Mazurowski, M.A. Deep Learning for Classification of Thyroid Nodules on Ultrasound: Validation on an Independent Dataset. arXiv 2022, arXiv:2207.13765. [Google Scholar]
- Latha, S.; Muthu, P.; Lai, K.W.; Khalil, A.; Dhanalakshmi, S. Performance Analysis of Machine Learning and Deep Learning Architectures on Early Stroke Detection Using Carotid Artery Ultrasound Images. Front. Aging Neurosci. 2022, 13, 828214. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018, arXiv:1801.04381. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Summers, S.M.; Chin, E.J.; Long, B.J.; Grisell, R.D.; Knight, J.G.; Grathwohl, K.W.; Ritter, J.L.; Morgan, J.D.; Salinas, J.; Blackbourne, L.H. Computerized Diagnostic Assistant for the Automatic Detection of Pneumothorax on Ultrasound: A Pilot Study. West J. Emerg. Med. 2016, 17, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Boice, E.N.; Hernandez-Torres, S.I.; Knowlton, Z.J.; Berard, D.; Gonzalez, J.M.; Snider, E.J. Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom. J. Imaging 2022, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Canelli, R.; Leo, M.; Mizelle, J.; Shrestha, G.S.; Patel, N.; Ortega, R. Use of EFAST in Patients with Injury to the Thorax or Abdomen. New Engl. J. Med. 2022, 386, e23. [Google Scholar] [CrossRef] [PubMed]
LOSO 1 | LOSO 2 | LOSO 3 | LOSO 4 | LOSO 5 | |
---|---|---|---|---|---|
Accuracy | 0.688 | 0.757 | 0.719 | 0.755 | 0.702 |
Precision | 0.642 | 0.794 | 0.855 | 0.778 | 0.694 |
Recall | 0.857 | 0.695 | 0.538 | 0.710 | 0.714 |
Specificity | 0.519 | 0.819 | 0.900 | 0.800 | 0.690 |
F1 | 0.734 | 0.740 | 0.652 | 0.738 | 0.702 |
AUROC | 0.772 | 0.813 | 0.705 | 0.831 | 0.756 |
ShrapML | MobileNetV2 | |||||||
---|---|---|---|---|---|---|---|---|
No Augmentation | Affine Only | MixUp Only | Affine and MixUp | No Augmentation | Affine Only | MixUp Only | Affine and MixUp | |
Accuracy | 0.724 | 0.749 | 0.731 | 0.726 | 0.709 | 0.701 | 0.737 | 0.656 |
Precision | 0.753 | 0.835 | 0.763 | 0.824 | 0.745 | 0.815 | 0.802 | 0.763 |
Recall | 0.703 | 0.690 | 0.723 | 0.694 | 0.661 | 0.659 | 0.673 | 0.638 |
Specificity | 0.746 | 0.808 | 0.739 | 0.757 | 0.757 | 0.744 | 0.801 | 0.674 |
F1 | 0.713 | 0.726 | 0.730 | 0.695 | 0.631 | 0.623 | 0.678 | 0.636 |
AUROC | 0.775 | 0.867 | 0.794 | 0.856 | 0.795 | 0.859 | 0.835 | 0.836 |
All LOSOs Categorical Bagging | Top 3 LOSO Categorical Bagging | All LOSOs Confidence Bagging | Top 3 LOSO Confidence Bagging | |
---|---|---|---|---|
Accuracy | 0.839 | 0.846 | 0.839 | 0.850 |
Precision | 0.854 | 0.850 | 0.851 | 0.860 |
Recall | 0.829 | 0.850 | 0.829 | 0.843 |
Specificity | 0.850 | 0.843 | 0.850 | 0.857 |
F1 | 0.838 | 0.847 | 0.837 | 0.848 |
No Augmentations | Only Affine Augmentations | Only MixUp Augmentations | Both Augmentations | |
---|---|---|---|---|
Accuracy | 0.764 | 0.850 | 0.825 | 0.854 |
Precision | 0.764 | 0.860 | 0.795 | 0.828 |
Recall | 0.779 | 0.843 | 0.886 | 0.893 |
Specificity | 0.750 | 0.857 | 0.764 | 0.814 |
F1 | 0.769 | 0.848 | 0.837 | 0.859 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snider, E.J.; Hernandez-Torres, S.I.; Hennessey, R. Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting. Diagnostics 2023, 13, 417. https://doi.org/10.3390/diagnostics13030417
Snider EJ, Hernandez-Torres SI, Hennessey R. Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting. Diagnostics. 2023; 13(3):417. https://doi.org/10.3390/diagnostics13030417
Chicago/Turabian StyleSnider, Eric J., Sofia I. Hernandez-Torres, and Ryan Hennessey. 2023. "Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting" Diagnostics 13, no. 3: 417. https://doi.org/10.3390/diagnostics13030417
APA StyleSnider, E. J., Hernandez-Torres, S. I., & Hennessey, R. (2023). Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting. Diagnostics, 13(3), 417. https://doi.org/10.3390/diagnostics13030417