Task-Based Image Quality Assessment Comparing Classical and Iterative Cone Beam CT Images on Halcyon®
Abstract
:1. Introduction
2. Materials and Methods
2.1. CBCT Acquisitions on the Halcyon® Imaging System
2.2. Acquisition and Reconstruction Parameters
2.3. Data Analysis
2.3.1. Task-Based Transfer Function
2.3.2. Noise Power Spectrum
2.3.3. Detectability Index
2.4. Patients
3. Results
3.1. Noise Power Spectrum
3.2. Task-Based Transfer Function
3.3. Contrast Value and Detectability Index
3.4. Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiersma, R.D.; Mao, W.; Xing, L. Combined kV and MV imaging for real-time tracking of implanted fiducial markers. Med. Phys. 2008, 35, 1191–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leech, M.; Coffey, M.; Mast, M.; Moura, F.; Osztavics, A.; Pasini, D.; Vaandering, A. ESTRO ACROP guidelines for positioning, immobilisation and position verification of head and neck patients for radiation therapists. Tech. Innov. Patient Support Radiat. Oncol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajappa, A.K.; Dwivedi, N.; Tiwari, R. Artifacts: The downturn of CBCT image. J. Int. Soc. Prev. Community Dent. 2015, 5, 440–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdun, F.R.; Racine, D.; Ott, J.G.; Tapiovaara, M.J.; Toroi, P.; Bochud, F.O.; Veldkamp, W.J.H.; Schegerer, A.; Bouwman, R.W.; Giron, I.H.; et al. Image quality in CT: From physical measurements to model observers. Phys. Med. 2015, 31, 823–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samei, E.; Richard, S. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology. Med. Phys. 2015, 42, 314–323. [Google Scholar] [CrossRef]
- Greffier, J.; Frandon, J.; Larbi, A.; Beregi, J.P.; Pereira, F. CT iterative reconstruction algorithms: A task-based image quality assessment. Eur. Radiol. 2020, 30, 487–500. [Google Scholar] [CrossRef]
- Greffier, J.; Frandon, J.; Pereira, F.; Hamard, A.; Beregi, J.P.; Larbi, A.; Omoumi, P. Optimization of radiation dose for CT detection of lytic and sclerotic bone lesions: A phantom study. Eur. Radiol. 2020, 30, 1075–1078. [Google Scholar] [CrossRef]
- Richard, S.; Husarik, D.B.; Yadava, G.; Murphy, S.N.; Samei, E. Towards task-based assessment of CT performance: System and object MTF across different reconstruction algorithms. Med. Phys. 2012, 39, 4115–4122. [Google Scholar] [CrossRef]
- Samei, E.; Bakalyar, D.; Boedeker, K.L.; Brady, S.; Fan, J.; Leng, S.; Myers, K.J.; Popescu, L.M.; Ramirez Giraldo, J.C.; Ranallo, F.; et al. Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233. Med. Phys. 2019, 46, e735–e756. [Google Scholar] [CrossRef] [Green Version]
- Gang, G.J.; Lee, J.; Stayman, J.W.; Tward, D.J.; Zbijewski, W.; Prince, J.L.; Siewerdsen, J.H. Analysis of Fourier-domain task-based detectability index in tomosynthesis and cone-beam CT in relation to human observer performance. Med. Phys. 2011, 38, 1754–1768. [Google Scholar] [CrossRef]
- Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J.W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; et al. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization. Med. Phys. 2011, 38, 4700–4713. [Google Scholar] [CrossRef] [Green Version]
- Christianson, O.; Chen, J.J.; Yang, Z.; Saiprasad, G.; Dima, A.; Filliben, J.J.; Peskin, A.; Trimble, C.; Siegel, E.L.; Samei, E. An Improved Index of Image Quality for Task-based Performance of CT Iterative Reconstruction across Three Commercial Implementations. Radiology 2015, 275, 725–734. [Google Scholar] [CrossRef]
- Katsura, M.; Matsuda, I.; Akahane, M.; Sato, J.; Akai, H.; Yasaka, K.; Kunimatsu, A.; Ohtomo, K. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: Comparison with the adaptive statistical iterative reconstruction technique. Eur. Radiol. 2012, 22, 1613–1623. [Google Scholar] [CrossRef]
- Larbi, A.; Orliac, C.; Frandon, J.; Pereira, F.; Ruyer, A.; Goupil, J.; Macri, F.; Beregi, J.P.; Greffier, J. Detection and characterization of focal liver lesions with ultra-low dose computed tomography in neoplastic patients. Diagn. Interv. Imaging 2018, 99, 311–320. [Google Scholar] [CrossRef]
- Macri, F.; Greffier, J.; Pereira, F.; Rosa, A.C.; Khasanova, E.; Claret, P.G.; Larbi, A.; Gualdi, G.; Beregi, J.P. Value of ultra-low-dose chest CT with iterative reconstruction for selected emergency room patients with acute dyspnea. Eur. J. Radiol. 2016, 85, 1637–1644. [Google Scholar] [CrossRef]
- Yamada, Y.; Jinzaki, M.; Hosokawa, T.; Tanami, Y.; Sugiura, H.; Abe, T.; Kuribayashi, S. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Eur. J. Radiol. 2012, 81, 4185–4195. [Google Scholar] [CrossRef]
- Yan, C.; Xu, J.; Liang, C.; Wei, Q.; Wu, Y.; Xiong, W.; Zheng, H.; Xu, Y. Radiation Dose Reduction by Using CT with Iterative Model Reconstruction in Patients with Pulmonary Invasive Fungal Infection. Radiology 2018, 288, 285–292. [Google Scholar] [CrossRef]
- Greffier, J.; Barbotteau, Y.; Gardavaud, F. iQMetrix-CT: New software for task-based image quality assessment of phantom CT images. Diagn. Interv. Imaging 2022, 103, 555–562. [Google Scholar] [CrossRef]
- Greffier, J.; Si-Mohamed, S.; Frandon, J.; Loisy, M.; de Oliveira, F.; Beregi, J.P.; Dabli, D. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Med. Phys. 2022, 49, 5052–5063. [Google Scholar] [CrossRef]
- Greffier, J.; Frandon, J.; Durand, Q.; Kammoun, T.; Loisy, M.; Beregi, J.P.; Dabli, D. Contribution of an artificial intelligence deep-learning reconstruction algorithm for dose optimization in lumbar spine CT examination: A phantom study. Diagn. Interv. Imaging 2022. [Google Scholar] [CrossRef]
- Greffier, J.; Durand, Q.; Frandon, J.; Si-Mohamed, S.; Loisy, M.; de Oliveira, F.; Beregi, J.P.; Dabli, D. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: A phantom study. Eur. Radiol. 2022, 33, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Dabli, D.; Frandon, J.; Hamard, A.; Belaouni, A.; Akessoul, P.; Fuamba, Y.; Le Roy, J.; Guiu, B.; Beregi, J.P. Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study. Med. Phys. 2021, 48, 5743–5755. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, M.; Bartroff, J.; Abbey, C.; Whiting, J.; Bochud, F. Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks. Opt. Express 2003, 11, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Racine, D.; Becce, F.; Viry, A.; Monnin, P.; Thomsen, B.; Verdun, F.R.; Rotzinger, D.C. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study. Phys. Med. 2020, 76, 28–37. [Google Scholar] [CrossRef]
- Octave, N. La Radiothérapie Adaptative et Guidée par Imagerie Avec la Technologie Cone-Beam CT: Mise en Oeuvre en vue du Traitement de la Prostate. Doctoral Dissertation, University of Toulouse, Toulouse, France, 2015. [Google Scholar]
- Hunter, A.K.; McDavid, W.D. Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofac. Radiol. 2012, 41, 217–223. [Google Scholar] [CrossRef]
- Huger, S. Adaptation Interactive d’un Traitement de Radiothérapie par Imagerie Volumique: Développement et Validation d’outils pour sa Mise en Œuvre en Routine Clinique. Doctoral Dissertation, University of Lorraine, Nancy, France, 2013. [Google Scholar]
- Glide-Hurst, C.K.; Lee, P.; Yock, A.D.; Olsen, J.R.; Cao, M.; Siddiqui, F.; Parker, W.; Doemer, A.; Rong, Y.; Kishan, A.U.; et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1054–1075. [Google Scholar] [CrossRef]
kV | mA | Focal Spot (mm) | Exposure Time (s) | CTDIvol (mGy) | FOV (mm) | |
---|---|---|---|---|---|---|
Head | 100 | 30 | 1 | 4.63 | 3.7 | 281.60 |
Thorax | 125 | 35 | 1 | 8.59 | 6.0 | 492.37 |
Pelvis large | 140 | 90 | 1 | 16.18 | 38.4 | 492.37 |
Head CBCT Mode | Thorax CBCT Mode | Pelvis Large CBCT Mode | ||||
---|---|---|---|---|---|---|
Metrics | FBP | IR | FBP | IR | FBP | IR |
Square Root AUC NPS2D (HU) | 40.0 | 26.0 | 10.6 | 8.6 | 4.8 | 3.6 |
fpeak (mm−1) | 0.29 | 0.20 | 0.02/0.22 | 0.02/0.13 | 0.02/0.22 | 0.02/0.13 |
f50 Air (mm−1) | 0.41 | 0.44 | 0.29 | 0.32 | 0.29 | 0.32 |
f50 LDPE (mm−1) | 0.39 | 0.41 | 0.28 | 0.31 | 0.29 | 0.32 |
f50 Delrin (mm−1) | 0.40 | 0.42 | 0.32 | 0.36 | 0.33 | 0.36 |
f50 Teflon (mm−1) | 0.39 | 0.40 | 0.28 | 0.31 | 0.28 | 0.31 |
d’ Air | 14.7 | 22.5 | 44.9 | 67.2 | 105.2 | 192.0 |
d’ LDPE | 2.5 | 4.0 | 8.0 | 11.6 | 18.5 | 33.4 |
d’ Delrin | 3.4 | 5.3 | 10.5 | 16.7 | 25.1 | 46.7 |
d’ Teflon | 11.8 | 18.1 | 35.2 | 51.5 | 81.6 | 143.4 |
Contrast Air (HU) | −1005.6 | −1004.5 | −1024.0 | −1023.0 | −1025.0 | −1024.8 |
Contrast LDPE (HU) | −181.3 | −180.8 | −178.3 | −178.6 | −177.9 | −178.0 |
Contrast Delrin (HU) | 237.7 | 239.4 | 234.7 | 236.5 | 233.1 | 234.4 |
Contrast Teflon (HU) | 808.3 | 812.8 | 786.8 | 792.0 | 776.1 | 781.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lassot-Buys, M.; Verstraet, R.; Dabli, D.; Moliner, G.; Greffier, J. Task-Based Image Quality Assessment Comparing Classical and Iterative Cone Beam CT Images on Halcyon®. Diagnostics 2023, 13, 448. https://doi.org/10.3390/diagnostics13030448
Lassot-Buys M, Verstraet R, Dabli D, Moliner G, Greffier J. Task-Based Image Quality Assessment Comparing Classical and Iterative Cone Beam CT Images on Halcyon®. Diagnostics. 2023; 13(3):448. https://doi.org/10.3390/diagnostics13030448
Chicago/Turabian StyleLassot-Buys, Marion, Rodolfe Verstraet, Djamel Dabli, Gilles Moliner, and Joël Greffier. 2023. "Task-Based Image Quality Assessment Comparing Classical and Iterative Cone Beam CT Images on Halcyon®" Diagnostics 13, no. 3: 448. https://doi.org/10.3390/diagnostics13030448
APA StyleLassot-Buys, M., Verstraet, R., Dabli, D., Moliner, G., & Greffier, J. (2023). Task-Based Image Quality Assessment Comparing Classical and Iterative Cone Beam CT Images on Halcyon®. Diagnostics, 13(3), 448. https://doi.org/10.3390/diagnostics13030448