Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis
Abstract
:1. Introduction
2. Direct and Immune-Related Cytopathic Effects of SARS-CoV-2 on Cardiomyocytes
3. Respiratory Failure and Mixed Hypoxia
4. Endothelial Dysfunction in COVID-19 and Atherosclerosis: Common Links
5. The Role of Dysfunction of the Renin–Angiotensin–Aldosterone System
6. Miscellaneous Mechanisms SARS-CoV-2-Dependent Vasculopathy
7. Excessive Systemic Action of Pro-Inflammatory Autacoids
- Breathing, blood circulation and rheology are disturbed. The microcirculatory bed, even in organs without primary local lesions, acquires features of inflammatory foci (sticky endothelium, marginal standing of leukocytes, microthrombosis, erythrocyte sludge, disseminated intravascular coagulation);
- Stasis, increased vascular permeability and extravasation of plasma into the “third space”, decreased venous return to the heart, organ hypoperfusion and, ultimately, hemodynamic shock, i.e., hypoxic multiple organ failure [55];
- Self-sustaining process of a drastic increase in the production of cytokines initiated by IL-1;
8. Microvascular Dysfunction
9. Therapy Perspectives
10. Conclusions
- (1)
- early appointment of an IL-6 inhibitor in case of damage to cardiomyocytes by hypercytokinemia;
- (2)
- complex treatment of any type of hypoxia (from respiratory to histological);
- (3)
- search for methods to eliminate endothelial dysfunction;
- (4)
- study of the effect of RAAS blockers on the prevention of thrombosis;
- (5)
- monitoring the level of circulating IL-32 and IL-37 as biological markers that exhibit sanogenic effects and stabilize atherosclerotic plaques;
- (6)
- normalization of microcirculation to prevent the transformation of a stable plaque into an unstable one.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, D.; Podder, S. Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Comput. Biol. Med. 2021, 134, 104459. [Google Scholar] [CrossRef]
- Mareev, V.Y. COVID-19 and Cardiovascular Diseases. Available online: https://www.youtube.com/watch?v=Fe8MN_P_yCQ&feature=youtu.be (accessed on 14 April 2020).
- Ministry of Health of Russian Federation. Temporary Methodological Recommendation on Prevention, Treatment and Diagnosis of COVID-19. Version 15. Available online: https://edu-rosminzdrav.ru.com/ (accessed on 22 February 2022).
- Chen, C.; Zhou, Y.; Wang, D.W. SARS-CoV-2: A potential novel etiology of fulminant myocarditis. Herz 2020, 45, 230–232. [Google Scholar] [CrossRef] [Green Version]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Rubens, M.; Ramamoorthy, V.; Saxena, A.; Zevallos, J.C.; Ruiz-Pelaez, J.G.; Ahmed, M.A.; Zhang, Z.; McGranaghan, P.; Veledar, E.; Jimenez, J.; et al. Hospital Outcomes Among COVID-19 Hospitalizations with Myocarditis from the California State Inpatient Database. Am. J. Cardiol. 2022, 183, 109–114. [Google Scholar] [CrossRef]
- Churilov, L.P.; Zaichik, A.S. Patochemistry (Endocrine-Metabolic Disturbances), 3rd ed.; ElBi: St Petersburg, Russia, 2007; pp. 175–197. ISBN 978-5-93979-032-1. [Google Scholar]
- Scherbak, S.G. COVID-19: Review on Key Aspects; Ochta Publisher: St Petersburg, Russia, 2022; pp. 28–34. [Google Scholar]
- Vinciguerra, M.; Romiti, S.; Sangiorgi, G.M.; Rose, D.; Miraldi, F.; Greco, E. SARS-CoV-2 and Atherosclerosis: Should COVID-19 Be Recognized as a New Predisposing Cardiovascular Risk Factor? J. Cardiovasc. Dev. Dis. 2021, 8, 130. [Google Scholar] [CrossRef] [PubMed]
- Ghamar Talepoor, A.; Doroudchi, M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front. Immunol. 2022, 13, 945016. [Google Scholar] [CrossRef]
- ACC Clinical Bulletin COVID-19. Clinical Guidance for the Cardiovascular Care Team. Available online: https://www.S20028-ACC-Clinical-BulletinCoronavirus.pdf (accessed on 6 March 2020).
- Grzegorowska, O.; Lorkowski, J. Possible Correlations between Atherosclerosis, Acute Coronary Syndromes and COVID-19. J. Clin. Med. 2020, 9, 3746. [Google Scholar] [CrossRef]
- Vaarala, M.H.; Porvari, K.S.; Kellokumpu, S.; Kyllönen, A.P.; Vihko, P.T. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J. Pathol. 2001, 193, 134–140. [Google Scholar] [CrossRef]
- Fisun, A.Y.; Cherkashin, D.V.; Tyrenko, V.V.; Zhdanov, C.V.; Kozlov, C.V. Role of renin-angiotensin-aldosterone system in the interaction with coronavirus SARS-CoV-2 and in the development of strategies for prevention and treatment of new coronavirus infection (COVID-19). Arter. Gipertenz. (Arter. Hypertens.) 2020, 26, 248–262. (In Russian) [Google Scholar] [CrossRef]
- Nagashima, S.; Mendes, M.C.; Camargo Martins, A.P.; Borges, N.H.; Godoy, T.M.; Miggiolaro, A.F.R.D.S.; da Silva Dezidério, F.; Machado-Souza, C.; de Noronha, L. Endothelial dysfunction and thrombosis in patients with COVID-19 brief report. Arter. Thromb Vasc. Biol. 2020, 40, 2404–2407. [Google Scholar] [CrossRef]
- Zhu, H.; Rhee, J.W.; Cheng, P.; Waliany, S.; Chang, A.; Witteles, R.M.; Maecker, H.; Davis, M.M.; Nguyen, P.K.; Wu, S.M. Cardiovascular Complications in Patients with COVID-19: Consequences of Viral Toxicities and Host Immune Response. Curr. Cardiol. Rep. 2020, 22, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shlyakho, E.V.; Konradi, A.O.; Villevalde, S.V.; Zvartau, N.E.; Yakovlev, A.N.; Solovyova, A.E.; Medvedeva, E.A.; Sitnikova, M.Y.; Trushkina, M.A.; Fedotov, P.A.; et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Russ. J. Cardiol. 2020, 25, 3801. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Aleksova, A.; Fluca, A.L.; Gagno, G.; Pierri, A.; Padoan, L.; Derin, A.; Moretti, R.; Noveska, E.A.; Azzalini, E.; D’Errico, S.; et al. Long-term effect of SARS-CoV-2 infection on cardiovascular outcomes and all-cause mortality. Life Sci. 2022, 310, 121018. [Google Scholar] [CrossRef] [PubMed]
- Lasrado, N.; Reddy, J. An overview of the immune mechanisms of viral myocarditis. Rev. Med. Virol. 2020, 30, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Blagova, O.; Varionchik, N.; Zaidenov, V.; Savina, P.; Sarkisova, N. Anti-heart antibodies levels and their correlation with clinical symptoms and outcomes in patients with confirmed or suspected diagnosis COVID-19. Eur. J. Immunol. 2021, 51, 893–902. [Google Scholar] [CrossRef]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Liu, F.; Zheng, N.S.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 2600, 19–21. [Google Scholar] [CrossRef]
- Chou, O.H.I.; Mui, J.; Chung, C.T.; Radford, D.; Ranjithkumar, S.; Evbayekha, E.; Nam, R.; Pay, L.; Satti, D.I.; Garcia-Zamora, S.; et al. COVID-19 vaccination and carditis in children and adolescents: A systematic review and meta-analysis. Clin. Res. Cardiol. 2022, 111, 1161–1173. [Google Scholar] [CrossRef]
- Alvi, R.M.; Frigault, M.J.; Fradley, M.G.; Jain, M.D.; Mahmood, S.S.; Awadalla, M.; Lee, D.H.; Zlotoff, D.A.; Zhang, L.; Drobni, Z.D.; et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J. Am. Coll. Cardiol. 2019, 74, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on AFP-2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, R.; Algharably, E.A.; Azizi, M.; Dobrowolski, P.; Guzik, T.; Januszewicz, A.; Persu, A.; Prejbisz, A.; Riemer, T.G.; Wang, J.G.; et al. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: Implications for COVID-19. Cardiovasc. Res. 2020, 116, 1688–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Li, H. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. Available online: https://chemrxiv.11938173.v8 (accessed on 14 April 2020).
- Churilov, L.P. General Pathophysiology with the Fundamentals of Immunopathology, 5th ed.; ElBi: St Petersburg, Russia, 2021; pp. 283–290. ISBN 978-5-91322-073-8. [Google Scholar]
- Korchivaia, E.; Silaeva, Y.; Mazunin, I.; Volodyaev, I. The mitochondrial challenge: Disorders and prevention strategies. Biosystems 2022, 223, 104819. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G. Cardiovascular disease risk in antiphospholipid syndrome: Thrombo-inflammation and atherothrombosis. J. Autoimmun. 2022, 128, 102813. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Mamun, A.; Dominic, A.; Le, N.T. SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress. Front. Physiol. 2021, 11, 605908. [Google Scholar] [CrossRef]
- Ren, J.; Wu, L.; Wu, J.; Tang, X.; Lv, Y.; Wang, W.; Li, F.; Yang, D.; Liu, C.; Zheng, Y. The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE-/- and CD57BL/6J mice. J. Proteom. 2022, 268, 104702. [Google Scholar] [CrossRef]
- Szwed, P.; Gasecka, A.; Zawadka, M.; Eyileten, C.; Postuła, M.; Mazurek, T.; Szarpak, Ł.; Filipiak, K.J. Infections as novel risk factors of atherosclerotic cardiovascular diseases: Pathophysiological links and therapeutic implications. J. Clin. Med. 2021, 10, 2539. [Google Scholar] [CrossRef]
- Esposito, L.; Cancro, F.P.; Silverio, A.; Di Maio, M.; Iannece, P.; Damato, A.; Alfano, C.; De Luca, G.; Vecchione, C.; Galasso, G. COVID-19 and Acute Coronary Syndromes: From Pathophysiology to Clinical Perspectives. Oxid. Med. Cell Longev. 2021, 2021, 4936571. [Google Scholar] [CrossRef]
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038–3044. [Google Scholar] [CrossRef]
- Siedlinski, M.; Jozefczuk, E.; Xu, X.; Teumer, A.; Evangelou, E.; Schnabel, R.B.; Welsh, P.; Maffia, P.; Erdmann, J.; Tomaszewski, M.; et al. White blood cells and blood pressure: A mendelian randomization study. Circulation 2020, 141, 1307–1317. [Google Scholar] [CrossRef]
- Petrey, A.C.; Qeadan, F.; Middleton, E.A.; Pinchuk, I.V.; Campbell, R.A.; Beswick, E.J. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J. Leukoc. Biol. 2021, 109, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Martynov, M.Y.; Bogolepova, A.N.; Yasamanova, A.N. Endothelial dysfunction in COVID- 19 and cognitive impairment. Zhurnal. Nevrol. Psikhiatrii. Im. S.S. Korsakova 2021, 121, 93–99. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Brandão, S.C.S.; Ramos, J.O.X.; Dompieri, L.T.; Godoi, E.T.A.M.; Figueiredo, J.L.; Sarinho, E.S.C.; Chelvanambi, S.; Aikawa, M. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine. Growth Factor Rev. 2021, 58, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Hu, L.; Liu, Y.; Zhou, B.; Qin, X.; Ye, J.; Shen, M.; Wu, Z.; Zhang, P. Possible mechanisms of cholesterol elevation aggravating COVID-19. Int. J. Med. Sci. 2021, 18, 3533–3543. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, Z.; Lin, L.; Lv, J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Am. Heart Assoc. 2020, 9, e016219. [Google Scholar] [CrossRef]
- Law, C.C.; Puranik, R.; Fan, J.; Fei, J.; Hambly, B.D.; Bao, S. Clinical Implications of IL-32, IL-34 and IL-37 in Atherosclerosis: Speculative Role in Cardiovascular Manifestations of COVID-19. Front. Cardiovasc. Med. 2021, 8, 630767. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.G. Vigilance on New-Onset Atherosclerosis Following SARS-CoV-2 Infection. Front. Med. 2021, 7, 629413. [Google Scholar] [CrossRef]
- Amadio, P.; Cosentino, N.; Eligini, S.; Barbieri, S.; Tedesco, C.C.; Sandrini, L.; Zarà, M.; Fabiocchi, F.; Niccoli, G.; Magnani, G.; et al. Potential Relation between Plasma BDNF Levels and Human Coronary Plaque Morphology. Diagnostics 2021, 11, 1010. [Google Scholar] [CrossRef]
- Savic, G.; Stevanovic, I.; Mihajlovic, D.; Jurisevic, M.; Gajovic, N.; Jovanovic, I.; Ninkovic, M. MMP-9/BDNF ratio predicts more severe COVID-19 outcomes. Int. J. Med. Sci. 2022, 19, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Demir, B.; Beyazyüz, E.; Beyazyüz, M.; Çelikkol, A.; Albayrak, Y. Long-lasting cognitive effects of COVID-19: Is there a role of BDNF? Eur. Arch. Psychiatry Clin. Neurosci. 2022, Nov 10, 1–9. [Google Scholar] [CrossRef]
- Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poznyak, A.V.; Bezsonov, E.E.; Eid, A.H.; Popkova, T.V.; Nedosugova, L.V.; Starodubova, A.V.; Orekhov, A.N. ACE2 Is an Adjacent Element of Atherosclerosis and COVID-19 Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4691. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, S.; Liu, Y.; Chen, J.; Li, D.; Xu, T. Coronary microvascular dysfunction pathophysiology in COVID-19. Microcirculation 2021, 28, e12718. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Libby, P.; Ridker, P.M. COVID-19—A vascular disease. Trends Cardiovasc. Med. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Churilov, L.P. On the Systemic Approach in General Pathology: The Necessity and Principles of Pathoinformatics. Vestn. St. Petersburg Univ. Ser. 11. Med. 2009, 3, 5–23. Available online: https://www.elibrary.ru/item.asp?id=12966620 (accessed on 14 October 2022).
- Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm—The common denominator and the lessons to be learned. Clin. Immunol. 2021, 223, 108652. [Google Scholar] [CrossRef]
- Mehta, P.; Mcauley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. Correspondence COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 6736, 19–20. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan. China Chuan J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features in severe and moderate forms of coronavirus disease 2019. medRxiv 2020, medRxiv:2020.02.16.20023903. [Google Scholar] [CrossRef]
- Barsukov, A.V.; Seidova, A.Y.; Shcherbakova, K.A.; Black, M.S.; Korovin, A.E.; Churilov, L.P.; Tovpeko, D.V. Systemic Action of Inflammatory Mediators in Patients with Essential Hypertension and Diastolic Chronic Heart Failure: A Clinical Pathophysiological Study. Pathophysiology 2020, 27, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Barsukov, A.V.; Korovin, A.E.; Churilov, L.P.; Borisova, E.V.; Tovpeko, D.V. Heart Dysfunction in Essential Hypertension Depends on Systemic Proinflammatory Influences: A Retrospective Clinical Pathophysiological Study. Pathophysiology 2022, 29, 453–468. [Google Scholar] [CrossRef]
- Hietbrink, F.; Koenderman, L.; Rijkers, G.; Leenen, L. Trauma: The role of the innate immune system. World J. Emerg. Surg. 2006, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, C.; Oikonomou, E.; Antoniades, C.; Crea, F.; Kaski, J.C.; Tousoulis, D. Inflammatory Mechanisms in COVID-19 and Atherosclerosis: Current Pharmaceutical Perspectives. Int. J. Mol. Sci. 2021, 22, 6607. [Google Scholar] [CrossRef] [PubMed]
- Munjral, S.; Ahluwalia, P.; Jamthikar, A.D.; Puvvula, A.; Saba, L.; Faa, G.; Singh, I.M.; Chadha, P.S.; Turk, M.; Johri, A.M.; et al. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: A narrative review. Front. Biosci. 2021, 26, 1312–1339. [Google Scholar] [CrossRef]
- Faa, G.; Gerosa, C.; Fanni, D.; Barcellona, D.; Cerrone, G.; Orrù, G.; Scano, A.; Marongiu, F.; Suri, J.S.; Demontis, R.; et al. Aortic vulnerability to COVID-19: Is the microvasculature of vasa vasorum a key factor? A case report and a review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6439–6442. [Google Scholar] [CrossRef]
- Shi, Z.; Jiang, Y.; Weir-McCall, J.; Wang, X.; Teng, Z. COVID-19 and atherosclerosis: Looking beyond the acute crisis. Emerg. Crit. Care Med. 2022, 2, 1–4. [Google Scholar] [CrossRef]
- Georgescu, A.; Simionescu, M. Extracellular Vesicles: Versatile Nanomediators, Potential Biomarkers and Therapeutic Agents in Atherosclerosis and COVID-19-Related Thrombosis. Int. J. Mol. Sci. 2021, 22, 5967. [Google Scholar] [CrossRef]
- Goyal, A.; Maheshwari, A.; Shakeel, A.; Saneja, V.; Kumar, S.; Mahto, D. Kawasaki Disease During the SARS-CoV-2 Pandemic. Indian J. Pediatr. 2022, 89, 1157. [Google Scholar] [CrossRef]
- Kogan, E.; Berezovskiy, Y.; Blagova, O.; Kukleva, A.; Semyonova, L.; Gretsov, E.; Ergeshov, A. Morphologically, immunohistochemically and PCR proven lymphocytic viral peri-, endo-, myocarditis in patients with fatal COVID-19. Diagn. Pathol. 2022, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Perez, R.; Brandão, M.; Pazdernik, M.; Kresoja, K.P.; Carpenito, M.; Maeda, S.; Casado-Arroyo, R.; Muscoli, S.; Pöss, J.; Fontes-Carvalho, R.; et al. Cardiovascular disease and COVID-19, a deadly combination: A review about direct and indirect impact of a pandemic. World J. Clin. Cases 2022, 10, 9556–9572. [Google Scholar] [CrossRef] [PubMed]
- Bułdak, Ł.; Marek, B.; Kajdaniuk, D.; Urbanek, A.; Janyga, S.; Bołdys, A.; Basiak, M.; Maligłówka, M.; Okopień, B. Endocrine diseases as causes of secondary hyperlipidemia. Endokrynol. Pol. 2019, 70, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, M.W.; Huang, C.Y.; Wang, J.Y.; Ting, C.Y.; Cheng, Y.C.; Chan, D.Z.H.; Lee, Y.C.; Hsu, C.C.; Hsu, Y.H.; Chang, C.M.C.; et al. Cardio- and Neurotoxicity of Selected Anti-COVID-19 Drugs. Pharmaceuticals 2022, 15, 765. [Google Scholar] [CrossRef]
Mechanisms | References |
---|---|
Direct cytopathic effect of SARS-CoV-2 on the cardiomyocytes and myocardial fibrosis as the consequence of COVID-19-induced myocarditis | [11,12,13] |
Endothelial dysfunction and coagulopathy | [4,14,15] |
A mismatch between myocardial oxygen supply and demand caused by cardiac overstrain as a compensatory response to hypoxia | [12] |
Systemic inflammatory response, which can result in cytokine storm and hemodynamic shock | [7,16] |
Renin–angiotensin–aldosterone system dysfunction | [2,17,18] |
Mechanisms | References |
---|---|
Reduction of the level of ACE2 which prevents the degradation of pro-atherosclerotic angiotensin II and generation of antiatherosclerotic angiotensin 1–7. | [45] |
Direct cytopathic effect of the virus on endothelial cells | [69] |
Protease activation, causing a transition from a stable to a pathological atherosclerotic injury and the degradation of the plaque protective fibrous cap. | [9,42] |
Leucocyte recruitment and adhesion to the vascular wall | [12] |
Expression of pro-inflammatory chemokines and cytokines (CXCL1, CXCL2, CXCL3, CXCL8, IL-1β) in the vascular wall resulted from the activation of MyD88-dependent pathways | [1,34] |
VEGLX damage | [36] |
Mitochondrial dysfunction leading to the increased production of reactive oxygen species | [33] |
Endothelial damage caused by neutrophil extracellular traps (NETs) | [53] |
Endothelial damage caused by the components of the activated complement system | [52] |
Vasa vasorum vasculitis and/or thrombosis | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarova, Y.A.; Ryabkova, V.A.; Salukhov, V.V.; Sagun, B.V.; Korovin, A.E.; Churilov, L.P. Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis. Diagnostics 2023, 13, 478. https://doi.org/10.3390/diagnostics13030478
Makarova YA, Ryabkova VA, Salukhov VV, Sagun BV, Korovin AE, Churilov LP. Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis. Diagnostics. 2023; 13(3):478. https://doi.org/10.3390/diagnostics13030478
Chicago/Turabian StyleMakarova, Yulia A., Varvara A. Ryabkova, Vladimir V. Salukhov, Boris V. Sagun, Aleksandr E. Korovin, and Leonid P. Churilov. 2023. "Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis" Diagnostics 13, no. 3: 478. https://doi.org/10.3390/diagnostics13030478
APA StyleMakarova, Y. A., Ryabkova, V. A., Salukhov, V. V., Sagun, B. V., Korovin, A. E., & Churilov, L. P. (2023). Atherosclerosis, Cardiovascular Disorders and COVID-19: Comorbid Pathogenesis. Diagnostics, 13(3), 478. https://doi.org/10.3390/diagnostics13030478