Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Laboratory Methodology
2.3. Statistics
3. Results
3.1. Clinical Characteristics of the Women with PCOS
3.2. Relationships between Anti-Mullerian Hormone and Clinical and Biochemical Characteristics of Women with PCOS
3.3. Clinical and Biochemical Characteristics of Women with PCOS in Different Serum AMH Quartiles
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, I.F.; Michael, L. Leventhal. Amenorrhoea Associated with Bi-Lateral Polycstic Ovaries. Am. J. Obstet. Gynecol. 1935, 29, 181–191. [Google Scholar] [CrossRef]
- Karakas, S.E. New biomarkers for diagnosis and management of polycystic ovary syndrome. Clin. Chim. Acta 2017, 471, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E. Diagnosis of polycystic ovary syndrome: From NIH criteria to ESHRE-ASRM guidelines. Minerva Ginecol. 2004, 56, 1–6. [Google Scholar] [PubMed]
- Azziz, R. The Rotterdam 2003 Criteria For Defining Pcos: Con (Or How To Define A Syndrome). J. Clin. Endocrinol. Metab. 2006, 91, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil Steril 2009, 91, 456–488. [Google Scholar] [CrossRef]
- Gimenez-Peralta, I.; Lilue, M.; Mendoza, N.; Tesarik, J.; Mazheika, M. Application of a new ultrasound criterion for the diagnosis of polycystic ovary syndrome. Front. Endocrinol. 2022, 13, 915245. [Google Scholar] [CrossRef]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, Challenges, and Guiding Treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef]
- Pigny, P.; Merlen, E.; Robert, Y.; Cortet-Rudelli, C.; Decanter, C.; Jonard, S.; Dewailly, D. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: Relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab. 2003, 88, 5957–5962. [Google Scholar] [CrossRef] [Green Version]
- Pawelczak, M.; Kenigsberg, L.; Milla, S.; Liu, Y.H.; Shah, B. Elevated serum anti-Mullerian hormone in adolescents with polycystic ovary syndrome: Relationship to ultrasound features. J. Pediatr. Endocrinol. Metab. 2012, 25, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Homburg, R.; Ray, A.; Bhide, P.; Gudi, A.; Shah, A.; Timms, P.; Grayson, K. The relationship of serum anti-Mullerian hormone with polycystic ovarian morphology and polycystic ovary syndrome: A prospective cohort study. Hum. Reprod. 2013, 28, 1077–1083. [Google Scholar] [CrossRef]
- Iliodromiti, S.; Kelsey, T.W.; Anderson, R.A.; Nelson, S.M. Can anti-Mullerian hormone predict the diagnosis of polycystic ovary syndrome? A systematic review and meta-analysis of extracted data. J. Clin. Endocrinol. Metab. 2013, 98, 3332–3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahmay, S.; Atakul, N.; Aydogan, B.; Aydin, Y.; Imamoglu, M.; Seyisoglu, H. Elevated serum levels of anti-Mullerian hormone can be introduced as a new diagnostic marker for polycystic ovary syndrome. Acta Obs. Gynecol. Scand. 2013, 92, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Koninger, A.; Koch, L.; Edimiris, P.; Enekwe, A.; Nagarajah, J.; Kasimir-Bauer, S.; Kimmig, R.; Strowitzki, T.; Schmidt, B. Anti-Mullerian Hormone: An indicator for the severity of polycystic ovarian syndrome. Arch. Gynecol. Obs. 2014, 290, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Weenen, C.; Laven, J.S.; Von Bergh, A.R.; Cranfield, M.; Groome, N.P.; Visser, J.A.; Kramer, P.; Fauser, B.C.; Themmen, A.P. Anti-Mullerian hormone expression pattern in the human ovary: Potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 2004, 10, 77–83. [Google Scholar] [CrossRef]
- Roy, S.; Gandra, D.; Seger, C.; Biswas, A.; Kushnir, V.A.; Gleicher, N.; Kumar, T.R.; Sen, A. Oocyte-Derived Factors (GDF9 and BMP15) and FSH Regulate AMH Expression Via Modulation of H3K27AC in Granulosa Cells. Endocrinology 2018, 159, 3433–3445. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, J.V.; Anderson, R.A.; Kelsey, T.W.; Christiansen, S.L.; Kristensen, S.G.; Jayaprakasan, K.; Raine-Fenning, N.; Campbell, B.K.; Yding Andersen, C. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol. Hum. Reprod. 2013, 19, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Kedem, A.; Hourvitz, A.; Yung, Y.; Shalev, L.; Yerushalmi, G.M.; Kanety, H.; Hanochi, M.; Maman, E. Anti-Mullerian hormone (AMH) downregulation in late antral stages is impaired in PCOS patients. A study in normo-ovulatory and PCOS patients undergoing in vitro maturation (IVM) treatments. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2013, 29, 651–656. [Google Scholar] [CrossRef]
- Sova, H.; Unkila-Kallio, L.; Tiitinen, A.; Hippelainen, M.; Perheentupa, A.; Tinkanen, H.; Puukka, K.; Bloigu, R.; Piltonen, T.; Tapanainen, J.S.; et al. Hormone profiling, including anti-Mullerian hormone (AMH), for the diagnosis of polycystic ovary syndrome (PCOS) and characterization of PCOS phenotypes. Gynecol. Endocrinol. 2019, 35, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Carmina, E.; Campagna, A.M.; Fruzzetti, F.; Lobo, R.A. Amh Measurement Versus Ovarian Ultrasound in the Diagnosis of Polycystic Ovary Syndrome in Different Phenotypes. Endocr. Pract. 2016, 22, 287–293. [Google Scholar] [CrossRef]
- Teede, H.; Misso, M.; Tassone, E.C.; Dewailly, D.; Ng, E.H.; Azziz, R.; Norman, R.J.; Andersen, M.; Franks, S.; Hoeger, K.; et al. Anti-Mullerian Hormone in PCOS: A Review Informing International Guidelines. Trends Endocrinol. Metab. 2019, 30, 467–478. [Google Scholar] [CrossRef]
- Devillers, M.M.; Petit, F.; Cluzet, V.; Francois, C.M.; Giton, F.; Garrel, G.; Cohen-Tannoudji, J.; Guigon, C.J. FSH inhibits AMH to support ovarian estradiol synthesis in infantile mice. J. Endocrinol. 2019, 240, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Cimino, I.; Casoni, F.; Liu, X.; Messina, A.; Parkash, J.; Jamin, S.P.; Catteau-Jonard, S.; Collier, F.; Baroncini, M.; Dewailly, D.; et al. Novel role for anti-Mullerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 2016, 7, 10055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrel, G.; Racine, C.; L’Hote, D.; Denoyelle, C.; Guigon, C.J.; di Clemente, N.; Cohen-Tannoudji, J. Anti-Mullerian hormone: A new actor of sexual dimorphism in pituitary gonadotrope activity before puberty. Sci. Rep. 2016, 6, 23790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amer, S.A.; Mahran, A.; Abdelmaged, A.; El-Adawy, A.R.; Eissa, M.K.; Shaw, R.W. The influence of circulating anti-Mullerian hormone on ovarian responsiveness to ovulation induction with gonadotrophins in women with polycystic ovarian syndrome: A pilot study. Reprod. Biol. Endocrinol. 2013, 11, 115. [Google Scholar] [CrossRef]
- Dapas, M.; Dunaif, A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr. Rev. 2022, 43, 927–965. [Google Scholar] [CrossRef]
- Dapas, M.; Lin, F.T.J.; Nadkarni, G.N.; Sisk, R.; Legro, R.S.; Urbanek, M.; Hayes, M.G.; Dunaif, A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med. 2020, 17, e1003132. [Google Scholar] [CrossRef]
- Simons, P.; Valkenburg, O.; Bons, J.A.P.; Stehouwer, C.D.A.; Brouwers, M. The relationships of sex hormone-binding globulin, total testosterone, androstenedione and free testosterone with metabolic and reproductive features of polycystic ovary syndrome. Endocrinol. Diabetes Metab. 2021, 4, e00267. [Google Scholar] [CrossRef]
- Feldman, R.A.; O’Neill, K.; Butts, S.F.; Dokras, A. Antimullerian hormone levels and cardiometabolic risk in young women with polycystic ovary syndrome. Fertil Steril 2017, 107, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, A.L.; Kazemi, M.; Lujan, M.E. Impact of Obesity on Anti-Mullerian Hormone (AMH) Levels in Women of Reproductive Age. J. Clin. Med. 2021, 10, 3192. [Google Scholar] [CrossRef]
- Carmina, E.; Lobo, R.A. Comparing Lean and Obese PCOS in Different PCOS Phenotypes: Evidence That the Body Weight Is More Important than the Rotterdam Phenotype in Influencing the Metabolic Status. Diagnostics 2022, 12, 2313. [Google Scholar] [CrossRef]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef] [PubMed]
- Devillers, M.M.; Petit, F.; Cluzet, V.; Francois, C.M.; Giton, F.; Garrel, G.; Cohen-Tannoudji, J.; Guigon, C.J. Ovarian estradiol production during mini-puberty: Importance of the cross-talk between FSH and AMH. Med. Sci. 2019, 35, 201–203. [Google Scholar] [CrossRef]
- Regan, S.L.; Knight, P.G.; Yovich, J.L.; Stanger, J.D.; Leung, Y.; Arfuso, F.; Dharmarajan, A.; Almahbobi, G. Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. Mol. Cell Endocrinol. 2016, 425, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Abbondanza, C.; Medici, N.; Nigro, V.; Rossi, V.; Gallo, L.; Piluso, G.; Belsito, A.; Roscigno, A.; Bontempo, P.; Puca, A.A.; et al. The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action. Proc. Natl. Acad. Sci. USA 2000, 97, 3130–3135. [Google Scholar] [CrossRef]
- Zhang, Y.; Movva, V.C.; Williams, M.S.; Lee, M.T.M. Polycystic Ovary Syndrome Susceptibility Loci Inform Disease Etiological Heterogeneity. J. Clin. Med. 2021, 10, 2688. [Google Scholar] [CrossRef]
- Hayes, M.G.; Urbanek, M.; Ehrmann, D.A.; Armstrong, L.L.; Lee, J.Y.; Sisk, R.; Karaderi, T.; Barber, T.M.; McCarthy, M.I.; Franks, S.; et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 2015, 6, 7502. [Google Scholar] [CrossRef] [Green Version]
- Rebar, R.; Judd, H.L.; Yen, S.S.; Rakoff, J.; Vandenberg, G.; Naftolin, F. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J. Clin. Invest. 1976, 57, 1320–1329. [Google Scholar] [CrossRef]
Variables | N | Mean ± SD | Min | Max | Normal Reference Range for Age-Matched Females | |
---|---|---|---|---|---|---|
Clinical | Age (years) | 108 | 28.9 ± 6.3 | 17 | 45 | |
Weight (kg) | 106 | 91.5 ± 26.9 | 41 | 215.8 | ||
BMI (kg/m2) | 106 | 33.7 ± 8.6 | 17.8 | 70.4 | 18.5 to 24.9 kg/m2 | |
SBP (mmHg) | 104 | 118.1 ±1.0 | 92 | 147 | ||
DBP (mmHg) | 104 | 77.1 ±0.1 | 55 | 107 | ||
Endocrine | AMH (ng/mL) | 108 | 8.5 ± 7.9 | 0.1 | 52.5 | 0.9–9.5 ng/mL |
T (ng/dL) | 107 | 36.9 ± 20.6 | 6 | 151 | 8–60 ng/dL | |
SHBG (nmol/L) | 107 | 44.2 ± 31.2 | 6 | 185 | 2.2–14.6 pg/mL | |
Bioavailable T (ng/dL) | 106 | 16.7 ± 11.5 | 2.4 | 92.6 | 0.8–10.0 ng/dL | |
Free T (ng/dL) | 107 | 5.8 ± 4.1 | 1 | 32.5 | 0.3–1.9 ng/dL | |
DHEAS (ng/dL) | 102 | 229.8 ± 127.4 | 32 | 577 | 18–332 pg/dL | |
17OHP (ng/dL) | 67 | 59.9 ± 69.0 | 1 | 190 | 80 ng/dL | |
Prolactin (ng/mL) | 79 | 11.5 ± 6.1 | 3 | 31.8 | 4–30 ng/mL | |
LH (IU/L) | 49 | 7.3 ± 8.9 | 0.2 | 64 | 1.0–18.0 IU/mL | |
FSH (IU/L) | 49 | 4.9 ±1.9 | 0.3 | 9.9 | 2.0–12.0 mIU/mL | |
TSH (mIU/mL) | 102 | 1.8 ±0.8 | 0.75 | 6.3 | 0.4–4.5 mIU/mL | |
Metabolic | HgBA1c (%) | 95 | 5.5 ± 0.5 | 4.5 | 7.9 | 4.0–5.6% |
TC (mg/dL) | 50 | 179.4 + 31.5 | 134 | 236 | <200 mg/dL | |
HDL-C (mg/dL) | 51 | 47.8 ± 10.0 | 33 | 76 | >60 mg/dL | |
LDL-C (mg/dL) | 49 | 111.7 ± 33.7 | 57 | 239 | <100 mg/dL | |
TG (mg/dL) | 50 | 118.0 ± 69.9 | 37 | 377 | <150 mg/dL | |
Frequency % | ||||||
Subjective Symptoms | Amenorrhea | 37 | 34.3 | |||
Oligomenorrhea | 67 | 62.0 | ||||
Menorrhagia | 16 | 14.8 | ||||
Infertility | 15 | 13.9 | ||||
Acne | 29 | 26.9 | ||||
Facial Hair | 56 | 51.9 | ||||
Hirsutism | 33 | 30.6 | ||||
Hair Loss | 21 | 19.4 | ||||
Obesity | 45 | 41.7 | ||||
Weight Gain | 44 | 40.7 |
1st Quartile (n = 27) | 2nd Quartile (n = 25) | 3rd Quartile (n = 29) | 4th Quartile (n = 27) | ANOVA p | |
---|---|---|---|---|---|
AMH (ng/mL) | 2.1 ± 1.1 (27) | 5.1 ± −0.6 (25) | 8.0 ± 1.1 (29) | 18.5 ± 9.9 (27) | <0.0001 |
Age (years) | 31.2 ± 6.6 (27) | 28.8 ± 6.2 (25) | 28.0 ± 6.2 (29) | 27.5 ± 5.9 (27) | 0.2173 |
Weight (kg) | 101.8 ± 22.0 b (26) | 94.0 ± 20.6 (24) | 93.3 ± 36.1 (29) | 77.4 ± 18.7 (27) | 0.0107 |
BMI (kg/m2) | 36.7 ± 7.2 b (26) | 35.0 ± 7.6 a (24) | 34.0 ± 10.6 (29) | 29.4 ± 6.9 (27) | 0.0056 |
SBP (mmHg) | 117.8 ± 2.0 (27) | 117.5 ± 0.6 (27) | 116.9 ± 1.8 (27) | 120.7 ± 2.5 (27) | 0.4806 |
DBP (mmHg) | 77.9 ± 1.6 (27) | 75.6 ± 1.9 (24) | 75.7 ± 1.5 (27) | 79.4 ± 2.1 (27) | 0.3510 |
Testosterone (ng/dL) | 26.5 ± 10.4 b (27) | 34.4 ± 17.0 b (24) | 35.1 ± 16.3 a (29) | 51.3 ± 27.2 (27) | 0.0012 |
Bioavailable T (ng/dL) | 12.2 ± 6.6 a (27) | 15.9 ± 9.0 (24) | 16.5 ± 8.7 (28) | 22.1 ± 17.0 (27) | 0.0359 |
Free T (ng/dL) | 4.4 ± 2.3 (27) | 5.7 ± 3.2 (24) | 5.6 ± 3.1 (29) | 7.7 ± 6.0 (27) | 0.0845 |
SHBG (nmol/L) | 42.9 ± 33.5 (27) | 42.3 ± 36.1 (24) | 47.2 ± 28.2 (29) | 48.9 ± 28.6 (27) | 0.9782 |
17-OHP (nmol/L) | 44.7 ± 46.4 (17) | 41.5 ± 24.3 (16) | 41.0 ± 20.0 (18) | 79.9 ± 31.1 (16) | 0.0768 |
DHEAS (ng/dL) | 216.2 ± 115.1 (26) | 235.1 ± 156.8 (23) | 252.2 ± 128.3 (27) | 215.5 ± 112.2 (26) | 0.5054 |
Prolactin (ng/mL) | 10.1 ± 6.1 (16) | 12.8 ± 7.1 (17) | 12.7 ± 6.4 (25) | 9.9 ± 4.4 (21) | 0.2600 |
LH (IU/L) | 7.3 ± 2.5 (7) | 4.8 ± 3.0 a (13) | 5.0 ± 3.1 (14) | 7.9 ± 2.8 (14) | 0.0332 |
FSH (IU/L) | 4.5 ± 1.4 (7) | 4.6 ± 2.9 (13) | 4.6 ± 1.4 (14) | 5.3 ± 1.0 (14) | 0.5919 |
TSH (mIU/mL) | 1.7 ± 0.8 (25) | 1.7 ± 0.1 (21) | 2.2 ± 0.2 (2.6) | 1.7 ± 0.1 (26) | 0.2643 |
HgBA1c (%) | 5.6 ± 0.5 (24) | 5.6 ± 0.4 (22) | 5.6 ± 0.7 (25) | 5.3 ± 0.4 (24) | 0.4388 |
TC (mg/dL) | 177.5 ± 33.7 (15) | 175.1 ± 31.2 (10) | 187 ± 28.6 (12) | 117.5 ± 34.2 (13) | 0.4530 |
HDL-C (mg/dL) | 44.8 ± 5.8 (15) | 47.2 ± 8.0 (10) | 46.5 ± 10.4 (12) | 53.2 ± 13.5 (13) | 0.0845 |
LDL-C (mg/dL) | 111.3 ± 31.9 (15) | 103 ± 21.1 (10) | 125.8 ± 45.1 (12) | 105 ± 30.6 (12) | 0.1651 |
TG (mg/dL) | 109.9 ± 50.1 (15) | 125.7 ± 100.9 (10) | 120.9 ± 60.0 (12) | 118.7 ± 77 (13) | 0.4812 |
Oligomenorrhea (%) | 55.6 ± 50.6 (27) | 60.0 ± 50.0 (25) | 58.6 ± 50.1 (29) | 74.1 ± 44.7 (27) | 0.6948 |
Amenorrhea (%) | 25.9 ± 44.7 (27) | 28.0 ± 45.8 (25) | 31.0 ± 47.1 (29) | 51.9 ± 50.9 (27) | 0.2116 |
Infertility (%) | 7.4 ± 26.7 (27) | 16.0 ± 37.4 (25) | 13.8 ± 35.1 (29) | 18.5 ± 39.6 (27) | 0.7383 |
Hirsutism (%) | 62.9 ± 49.2 (27) | 48.0 ± 51.0 (25) | 48.3 ± 50.8 (29) | 48.1 ± 50.9 (27) | 0.1892 |
Alopecia (%) | 22.2 ± 42.4 (27) | 12.0 ± 33.2 (25) | 17.2 ± 38.4 (29) | 25.9 ± 44.7 (27) | 0.6208 |
Weight Gain (%) | 37.0 ± 49.2 (27) | 48.0 ± 51.0 (25) | 55.2 ± 50.6 (29) | 25.9 ± 44.7 (27) | 0.1256 |
Age | BMI | T | SHBG | Bio–T | Free–T | |
---|---|---|---|---|---|---|
AMH (ng/mL) | −0.2102 (0.029) | −0.3795 (<0.0001) | 0.4164 (<0.0001) | 0.3232 (0.0007) | 0.2760 (0.004) | |
BMI (kg/m2) | −0.3927 (<0.0001) | |||||
Bio T (ng/dL) | 0.8466 (<0.0001) | −0.4321 (<0.0001) | ||||
Free T (ng/dL) | 0.8422 (<0.0001) | −0.4532 (<0.0001) | 0.9918 (<0.0001) | |||
DHEA-S (ng/dL) | −0.2149 (0.032) | |||||
HgBA1c (%) | 0.2217 (0.033) | −0.2180 (0.035) | ||||
Obesity (subjective) | 0.5948 (0.0001) | −0.3063 (0.001) | ||||
Weight Gain (subjective) | 0.2745 (0.004) | −0.3322 (0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.; Krishnan, S.; Phatak, S.V.; Karakas, S.E. Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics. Diagnostics 2023, 13, 500. https://doi.org/10.3390/diagnostics13030500
Nguyen MT, Krishnan S, Phatak SV, Karakas SE. Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics. Diagnostics. 2023; 13(3):500. https://doi.org/10.3390/diagnostics13030500
Chicago/Turabian StyleNguyen, Minhthao Thi, Sridevi Krishnan, Sonal V. Phatak, and Sidika E. Karakas. 2023. "Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics" Diagnostics 13, no. 3: 500. https://doi.org/10.3390/diagnostics13030500
APA StyleNguyen, M. T., Krishnan, S., Phatak, S. V., & Karakas, S. E. (2023). Anti-Mullerian Hormone-Based Phenotyping Identifies Subgroups of Women with Polycystic Ovary Syndrome with Differing Clinical and Biochemical Characteristics. Diagnostics, 13(3), 500. https://doi.org/10.3390/diagnostics13030500