The Immediate Hypoalgesic Effect of Low and High Force Thoracic Mobilizations in Asymptomatic Subjects as Measured by Pain Pressure Thresholds (PPT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design and Experimental Procedure
- (1)
- High force mobilization, target peak force 200 N
- (2)
- Low force mobilization, target peak force 30 N
2.3. Data Analysis
3. Results
3.1. Reliability of Baseline Data
3.2. Cumulative Responders Analysis
3.3. Main Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, R.; Brammah, T.; Lunt, M.; Urwin, M.; Allison, T.; Symmons, D. Prevalence and Predictors of Intense, Chronic, and Disabling Neck and Back Pain in the UK General Population. Spine 2003, 28, 1195–1202. [Google Scholar] [CrossRef]
- Froud, R.; Patterson, S.; Eldridge, S.; Seale, C.; Pincus, T.; Rajendran, D.; Fossum, C.; Underwood, M. A systematic review and meta-synthesis of the impact of low back pain on people’s lives. BMC Musculoskelet. Disord. 2014, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Leboeuf-Yde, C.; Nielsen, J.; Kyvik, K.O.; Fejer, R.; Hartvigsen, J. Pain in the lumbar, thoracic or cervical regions: Do age and gender matter? A population-based study of 34,902 Danish twins 20–71 years of age. BMC Musculoskelet. Disord. 2009, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Briggs, A.M.; Smith, A.J.; Straker, L.M.; Bragge, P. Thoracic spine pain in the general population: Prevalence, incidence and associated factors in children, adolescents and adults. A systematic review. BMC Musculoskelet. Disord. 2009, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Maitland, G.D. Vertebral Manipulation, 5th ed.; Butterworth-Heinemann Ltd.: London, UK, 1986; pp. 233–235. [Google Scholar]
- Hengeveld, E.; Banks, K. (Eds.) Maitland’s Vertebral Manipulation-Volume 1, 8th ed.; Churcill Livingstone Elsevier Ltd.: London, UK, 2014; pp. 140–142. [Google Scholar]
- Lee, R.Y.; McGregor, A.H.; Bull, A.M.; Wragg, P. Dynamic response of the cervical spine to posteroanterior mobilisation. Clin. Biomech. 2005, 20, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Brunner, F.; Wright, A.; Bachmann, L.M. Paradigm shift in manual therapy? Evidence for a central nervous system component in the response to passive cervical joint mobilisation. Man. Ther. 2008, 13, 387–396. [Google Scholar] [CrossRef]
- Voogt, L.; de Vries, J.; Meeus, M.; Struyf, F.; Meuffels, D.; Nijs, J. Analgesic effects of manual therapy in patients with musculoskeletal pain: A systematic review. Man. Ther. 2015, 20, 250–256. [Google Scholar] [CrossRef]
- Pfluegler, G.; Kasper, J.; Luedtke, K. The immediate effects of passive joint mobilisation on local muscle function. A systematic review of the literature. Musculoskelet. Sci. Pract. 2019, 45, 102106. [Google Scholar] [CrossRef]
- Bialosky, J.E.; Bishop, M.D.; Robinson, M.E.; Zeppieri, G.; George, S. Spinal Manipulative Therapy Has an Immediate Effect on Thermal Pain Sensitivity in People with Low Back Pain: A Randomized Controlled Trial. Phys. Ther. 2009, 89, 1292–1303. [Google Scholar] [CrossRef]
- Wright, A. Hypoalgesia post-manipulative therapy: A review of a potential neurophysiological mechanism. Man. Ther. 1995, 1, 11–16. [Google Scholar] [CrossRef]
- Bishop, M.D.; Beneciuk, J.M.; George, S.Z. Immediate reduction in temporal sensory summation after thoracic spinal manipulation. Spine J. 2011, 11, 440–446. [Google Scholar] [CrossRef] [PubMed]
- George, S.Z.; Wittmer, V.T.; Fillingim, R.B.; Robinson, M.E. Fear-Avoidance Beliefs and Temporal Summation of Evoked Thermal Pain Influence Self-Report of Disability in Patients with Chronic Low Back Pain. J. Occup. Rehabil. 2006, 16, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Bialosky, J.E.; Bishop, M.D.; Price, D.D.; Robinson, M.E.; George, S.Z. The mechanisms of manual therapy in the treatment of musculoskeletal pain: A comprehensive model. Man. Ther. 2009, 14, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Boal, R.W.; Gillette, R.G. Central Neuronal Plasticity, Low Back Pain and Spinal Manipulative Therapy. J. Manip. Physiol. Ther. 2004, 27, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Skyba, A.D.; Radhakrishnan, R.; Rohlwing, J.J.; Wright, A.; Sluka, A.K. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord. Pain 2003, 106, 159–168. [Google Scholar] [CrossRef]
- Malisza, K.L.; Stroman, P.W.; Turner, A.; Gregorash, L.; Foniok, T.; Wright, A. Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J. Magn. Reson. Imaging 2003, 18, 152–159. [Google Scholar] [CrossRef]
- Gay, C.W.; Robinson, M.E.; George, S.; Perlstein, W.M.; Bishop, M. Immediate Changes After Manual Therapy in Resting-State Functional Connectivity as Measured by Functional Magnetic Resonance Imaging in Participants with Induced Low Back Pain. J. Manip. Physiol. Ther. 2014, 37, 614–627. [Google Scholar] [CrossRef]
- Vicenzino, B.; Collins, D.; Wright, A. The initial effects of a cervical spine manipulative physiotherapy treatment on the pain and dysfunction of lateral epicondylalgia. Pain 1996, 68, 69–74. [Google Scholar] [CrossRef]
- Vicenzino, B.; Collins, D.; Benson, H.; Wright, A. An investigation of the interrelationship between manipulative thera-py-induced hypoalgesia and sympathoexcitation. J. Manip. Physiol. Ther. 1998, 21, 448–453. [Google Scholar]
- Sterling, M.; Jull, G.; Wright, A. Cervical mobilisation: Concurrent effects on pain, sympathetic nervous system activity and motor activity. Man. Ther. 2001, 6, 72–81. [Google Scholar] [CrossRef]
- Sterling, M.; Pedler, A.; Chan, C.; Puglisi, M.; Vuvan, V.; Vicenzino, B. Cervical lateral glide increases nociceptive flexion reflex threshold but not pressure or thermal pain thresholds in chronic whiplash associated disorders: A pilot randomised controlled trial. Man. Ther. 2010, 15, 149–153. [Google Scholar] [CrossRef] [PubMed]
- La Touche, R.; Paris-Alemany, A.; Mannheimer, J.S.; Angulo-Díaz-Parreño, S.; Bishop, M.; Centeno, A.L.-V.; von Piekartz, H.; Fernandez-Carnero, J. Does Mobilization of the Upper Cervical Spine Affect Pain Sensitivity and Autonomic Nervous System Function in Patients With Cervico-craniofacial Pain? A randomized-controlled trial. Clin. J. Pain 2013, 29, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Fryer, G.; Carub, J.; McIver, S. The effect of manipulation and mobilisation on pressure pain thresholds in the thoracic spine. J. Osteopat. Med. 2004, 7, 8–14. [Google Scholar] [CrossRef]
- Maitland, G.D.; Hengeveld, E.; Banks, K.; English, K. Maitland’s Vertebral Manipulation, 6th ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 2001; pp. 34–37. [Google Scholar]
- Petty, N.J. Principles of Neuromusculoskeletal Treatmentand Management: A Handbook for Therapists, 2nd ed.; Churchill Livingstone Elsevier Ltd.: London, UK, 2011; pp. 230–231. [Google Scholar]
- Krouwel, O.; Hebron, C.; Willett, E. An investigation into the potential hypoalgesic effects of different amplitudes of PA mobilisations on the lumbar spine as measured by pressure pain thresholds (PPT). Man. Ther. 2010, 15, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Willett, E.; Hebron, C.; Krouwel, O. The initial effects of different rates of lumbar mobilisations on pressure pain thresholds in asymptomatic subjects. Man. Ther. 2010, 15, 173–178. [Google Scholar] [CrossRef]
- Pentelka, L.; Hebron, C.; Shapleski, R.; Goldshtein, I. The effect of increasing sets (within one treatment session) and different set durations (between treatment sessions) of lumbar spine posteroanterior mobilisations on pressure pain thresholds. Man. Ther. 2012, 17, 526–530. [Google Scholar] [CrossRef]
- Araujo, F.X.; Schell, M.S.; Ferreira, G.; Pessoa, M.D.; Pinho, A.S.; Plentz, R.; Silva, M.F. Short-Term Effects of Different Rates of Thoracic Mobilization on Pressure Pain Thresholds in Asymptomatic Individuals: A Randomized Crossover Trial. J. Chiropr. Med. 2019, 18, 33–41. [Google Scholar] [CrossRef]
- Vicenzino, B.G.T.; Naish, R. Preliminary evidence of a force threshold required to produce manipulation induced hypoal-gesia. In Proceedings of the More than Skin Deep, Adelaide, Australia, 21–24 November 2001. [Google Scholar]
- McLean, S.; Naish, R.; Reed, L.; Urry, S.; Vicenzino, B. A pilot study of the manual force levels required to produce manipulation induced hypoalgesia. Clin. Biomech. 2002, 17, 304–308. [Google Scholar] [CrossRef]
- Snodgrass, S.J.; Rivett, D.A.; Sterling, M.; Vicenzino, B. Dose Optimization for Spinal Treatment Effectiveness: A Randomized Controlled Trial Investigating the Effects of High and Low Mobilization Forces in Patients With Neck Pain. J. Orthop. Sports Phys. Ther. 2014, 44, 141–152. [Google Scholar] [CrossRef]
- Hebron, C. The Biomechanical and Analgesic Effects of Lumbar Mobilizations. Ph.D. Thesis, University of Brighton, Brighton, UK, 2014. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Grieve, G.P. Mobilization of the Spine: A Primary Handbook of Clinical Method, 5th ed.; Churchill Livingstone Inc.: New York, NY, USA, 1991. [Google Scholar]
- Fabio Antonaci, M.D. Pressure Algometry in Healthy Subjects: Inter-Examiner Variability. Scand. J. Rehab. Med. 1998, 30, 8. [Google Scholar]
- Nussbaum, E.L.; Downes, L. Reliability of Clinical Pressure-Pain Algometric Measurements Obtained on Consecutive Days. Phys. Ther. 1998, 78, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Chesterton, L.S.; Sim, J.; Wright, C.C.; Foster, N.E. Interrater Reliability of Algometry in Measuring Pressure Pain Thresholds in Healthy Humans, Using Multiple Raters. Clin. J. Pain 2007, 23, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Moseley, A.; Refshauge, K. Effect of Feedback on Learning a Vertebral Joint Mobilization Skill. Phys. Ther. 1990, 70, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A.; Finlay, B. Statistical Methods for the Social Sciences: With SPSS from A to Z: A Brief Step-by-Step Manual, 4th ed.; Allyn & Bacon Publishers: Boston, MA, USA, 2009. [Google Scholar]
- Farrar, J.T.; Dworkin, R.H.; Max, M.B. Use of the Cumulative Proportion of Responders Analysis Graph to Present Pain Data Over a Range of Cut-Off Points: Making Clinical Trial Data More Understandable. J. Pain Symptom Manag. 2006, 31, 369–377. [Google Scholar] [CrossRef]
- Lee, D.K. Alternatives to P value: Confidence interval and effect size. Korean J. Anesthesiol. 2016, 69, 555–562. [Google Scholar] [CrossRef]
- Moss, P.; Sluka, K.; Wright, A. The initial effects of knee joint mobilization on osteoarthritic hyperalgesia. Man. Ther. 2007, 12, 109–118. [Google Scholar] [CrossRef]
- Millan, M.; Leboeuf-Yde, C.; Budgell, B.; Amorim, M.-A. The effect of spinal manipulative therapy on experimentally induced pain: A systematic literature review. Chiropr. Man. Ther. 2012, 20, 1–22. [Google Scholar] [CrossRef]
- Wright, A.; Vicenzino, B. Cervical mobilisation techniques, sympathetic nervous system effects and their relationship to analgesia. In Proceedings of the Moving in on Pain Conference, Adelaide, Australia, 18–21 April 1995. [Google Scholar]
- Wager, T.D.; Rilling, J.K.; Smith, E.E.; Sokolik, A.; Casey, K.L.; Davidson, R.J.; Kosslyn, S.M.; Rose, R.M.; Cohen, J.D. Placebo-Induced Changes in fMRI in the Anticipation and Experience of Pain. Science 2004, 303, 1162–1167. [Google Scholar] [CrossRef]
High Force | Low Force | p Value | |
---|---|---|---|
T6 level | 14 responders | 5 responders | p = 0.011 |
14 non-responders | 23 non-responders | ||
Mid-forearm | 19 responders | 6 responders | p = 0.000 |
9 non-responders | 22 non-responders | ||
Fibula | 11 responders | 4 responders | p = 0.035 |
17 non-responders | 24 non-responders |
High Force | Low Force | p Value | |
---|---|---|---|
T6 level | 2 responders | 0 responders | p = 0.150 |
26 non-responders | 28 non-responders | ||
Mid-forearm | 4 responders | 0 responders | p = 0.038 |
24 non-responders | 28 non-responders | ||
Fibula | 0 responders | 0 responders | - |
28 non-responders | 28 non-responders |
Site | ICC | 95% CI | SEM | MDC |
---|---|---|---|---|
T6 level | 0.76 | 0.54–0.88 | 1.12 | 3.1 |
Mid forearm | 0.87 | 0.75–0.94 | 0.76 | 2.1 |
Fibula | 0.74 | 0.51–0.87 | 0.94 | 2.6 |
Site | High Force | Low Force | ||||
---|---|---|---|---|---|---|
Mean (SD) Baseline Value (kg/cm2) (Range) | Mean (SD) Actual Change (kg/cm2) (Range) | %Change (SD) (Range) | Mean (SD) Baseline Value (kg/cm2) (Range) | Mean (SD) Actual Change (kg/cm2) (Range) | %Change (SD) (Range) | |
T6 level | 5.5 (±2) (11–3.1) | 1.2 (±1.3) (4.8–−1.3) | 25 (±29.5) (139.3–−23.8) | 5.9 (±2.5) (12.4–2.8) | 0.2 (±0.9) (2.4–−1.5) | 4.4 (±16.8) (66–−16.9) |
Mid forearm | 4.8 (±2) (9.5–1.8) | 0.9 (±0.9) (2.6–−0.6) | 19.7 (±24) (97.7–−11.9) | 4.9 (±2.3) (11.1–1.4) | 0.3 (±0.6) (1.5–−0.9) | 6.8 (±14.1) (31.4–−20.2) |
Fibula | 5.2 (±1.6) (8.5–2.4) | 0.7 (±0.9) (2.4–−1) | 14.6 (±19.5) (65.3–−18.9) | 5.6 (±2.1) (10.5–2.4) | 0.3 (±0.7) (1.8–−1) | 6.2 (±13.3) (37.5–−20.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrgiamiotis, C.; Krekoukias, G.; Gkouzioti, K.; Hebron, C. The Immediate Hypoalgesic Effect of Low and High Force Thoracic Mobilizations in Asymptomatic Subjects as Measured by Pain Pressure Thresholds (PPT). Diagnostics 2023, 13, 544. https://doi.org/10.3390/diagnostics13030544
Syrgiamiotis C, Krekoukias G, Gkouzioti K, Hebron C. The Immediate Hypoalgesic Effect of Low and High Force Thoracic Mobilizations in Asymptomatic Subjects as Measured by Pain Pressure Thresholds (PPT). Diagnostics. 2023; 13(3):544. https://doi.org/10.3390/diagnostics13030544
Chicago/Turabian StyleSyrgiamiotis, Charilaos, Georgios Krekoukias, Katerina Gkouzioti, and Clair Hebron. 2023. "The Immediate Hypoalgesic Effect of Low and High Force Thoracic Mobilizations in Asymptomatic Subjects as Measured by Pain Pressure Thresholds (PPT)" Diagnostics 13, no. 3: 544. https://doi.org/10.3390/diagnostics13030544
APA StyleSyrgiamiotis, C., Krekoukias, G., Gkouzioti, K., & Hebron, C. (2023). The Immediate Hypoalgesic Effect of Low and High Force Thoracic Mobilizations in Asymptomatic Subjects as Measured by Pain Pressure Thresholds (PPT). Diagnostics, 13(3), 544. https://doi.org/10.3390/diagnostics13030544