Uniportal VATS for Diagnosis and Staging in Non-Small Cell Lung Cancer (NSCLC)
Abstract
:1. Introduction
2. Methods
3. Diagnosis of NSCLC
Uniportal VATS for NSCLC Diagnosis
4. Uniportal VATS for NSCLC Staging
4.1. Position and Lymph Node Dissection
- Sampling: it involves the removal of one or more lymph nodes based on preoperative findings.
- Systematic nodal dissection (MLND): it involves the removal of all mediastinal tissue, including the lymph nodes located within anatomical landmarks.
4.2. Instrumentation
- The “grasping” technique is performed using a grasper to grasp the target lymph nodes.
- The “non-grasping” technique essentially consists in performing an MLND by using only energy devices and a metallic endoscopic suction, avoiding directly grasping the lymph nodes in order to keep the capsule intact.
4.3. Surgeon’s Positioning
4.4. Nodal Stations
4.5. Technical Description
- Right side (Video S2):
- (a)
- Upper- and lower-right paratracheal stations (2R and 4R) (Figure 5):
- Procedure: First, divide the mediastinal pleura at the intersection of the azygous vein with the superior vena cava. Retracting the pleura with the suction and energy device, continue dividing the pleura over the azygous vein between the vagus nerve in the left and the superior vena cava. Next, using suction or a grasper, start removing all the fat and lymph nodes en bloc along the anterolateral side of the trachea, just below the caudal edge of the right brachiocephalic artery. Sometimes, the phrenic nerve runs more lateral to the superior vena cava and not over it; before deepening the dissection towards the posterior aspect of the superior vena cava, it is necessary to check the position of the nerve to avoid accidental damage. The most common complication of a complete paratracheal dissection is chylothorax, or bleeding from small vessels.
- Recommendations: Part of station 4R lies below the azygous vein, in continuity with station 10R. To facilitate dissection, once the lymphadenectomy at station 10R has been performed, the azygous vein can be dissected with the aid of a dissector, and a vessel-loop can be used to pull it to widen the view and facilitate access to this area.
- (b)
- Prevascular (3A):
- Procedure: It is an uncommon station that includes lymph nodes that are situated anterior to the phrenic nerve in the pericardial fat. Remove the pericardial fat and lymph nodes without damaging the phrenic nerve.
- Recommendations: Tilt the operating table posteriorly away from the surgeon so that the lung falls slightly backwards. Making use of table rotation can make it easier for the lung to remain away from the field without the need for traction.
- (c)
- Subcarinal (7R): (Figure 6)
- Procedure: After dividing the posterior mediastinal pleura from the pulmonary ligament to the right main bronchus, the operating table is turned anteriorly towards the surgeon so that the lung falls slightly anteriorly. The surgeon then pulls the lung towards him/her with a sponge stick. This station must be explored in depth in order to remove all the subcarinal space and not just the lymph nodes below the intermediate bronchus. The criteria from the IASLC for complete resection (R0) standards always include dissection of the subcarinal station. During this dissection, the contralateral left main bronchus can be visualised. The right bronchial artery runs from the descending aorta to the right main bronchus, crossing the subcarinal space.
- Recommendations: Sometimes it is useful to have the assistant pull up the pleura or oesophagus with the suction to have a better view and a more comfortable situation. Depending on the patient’s anatomy, it may be useful to position the assistant on either side of the surgeon.
- (d)
- Paraoesophageal and pulmonary ligament stations (8–9R): (Figure 7)
- Procedure: In order to access the lower stations, the lower lobe is retracted cranially and anteriorly to allow exposure of the inferior pulmonary ligament. The thoracoscope and the retractor can be held by the assistant while the surgeon uses bimanual instrumentation to divide the inferior pulmonary ligament. Pulmonary ligament lymph nodes can be located here, in close contact with the inferior pulmonary vein. Paraoesophageal nodes usually lie next to the oesophageal side or in the pericardial-oesophageal groove. As in the subcarinal space, pulling up the oesophagus with the suction (by the assistant) provides optimal visualisation and a more comfortable situation. Special care must be taken with the thoracic duct, which lies between the oesophagus and the aorta at this location.
- Recommendations: The assistant is positioned more cranially, very close to the patient’s arms, so that the surgeon can dissect the lower part of the chest without constantly crashing the thoracoscope. Other consultants prefer the assistant to be positioned on the opposite side of the patient, but it takes longer to develop the skills to assist the camera in a mirror image. In small thoracic cavities or with a voluminous diaphragm, it is useful to push it away caudally with the help of the assistant.
- Left side (Video S3):
- (a)
- Prevascular (3AL): (Figure 8)
- Procedure: Similar to the right side, remove the pericardial fat and lymph nodes located anterior to the phrenic nerve. This station can be particularly difficult during uniportal VATS due to its anterior location.
- Recommendations: As described earlier, using table rotation can make it easier to keep the lung away from the field without the need for traction.
- (b)
- Lower paratracheal (4L): (Figure 9)
- Procedure: The left paratracheal station is placed deep inside the aortopulmonary window and is a surgical challenge for systematic lymph node dissection. The recurrent laryngeal nerve can be damaged, and, in some cases, the ligamentum arteriosum can hinder exposure. Station 4L can be easily reached and excised up to the point of visualising the left side of the trachea and left main bronchus. The dissection starts at the main bronchus under the aorta and continues until the left tracheobronchial angle is reached. Some authors recommend avoiding energy devices to prevent neural damage [71,72].
- Recommendations: Lymphadenectomy at stations 5 and 6 can facilitate access to this station. The assistant can pull up the aorta with the suction in order to provide better visualisation of this area.
- (c)
- Aortopulmonary window and para-aortic (5–6): (Figure 10)
- Procedure: It is possible to dissect this area with the assistant standing to the right of the surgeon. After initial division of the mediastinal pleura above the upper lobe vein, dissect the fat tissue and lymph nodes that are below the aortic arch and posterior to the phrenic nerve. By using a sponge stick, gently retract the upper lobe caudally. The assistant can hold both the suction and the grasper, allowing the surgeon the possibility of bimanual dissection.
- Recommendations: Care should be taken to avoid damage to the recurrent laryngeal nerve when dissecting lymph nodes below the aortic arch. Consider the balance of benefits and risks from systematic dissection and the chance of potential laryngeal nerve damage.
- (d)
- Subcarinal (7L): (Figure 11)
- Procedure: Perform as described in 7R. Note that the vagus lies behind, the aorta is above and the oesophagus runs deeper than on the right side.
- Recommendations: Sometimes it is useful to have the assistant pull up the aorta on the left side with the suction to have a better view and a more comfortable situation. Depending on the patient’s anatomy, it may be useful to position the assistant on either side of the surgeon.
- (e)
- Paraoesophageal and pulmonary ligament (8–9L): (Figure 12)
- Procedure: Performed as described in 8–9R. These stations can be safely dissected while dividing the pulmonary ligament and are easier to dissect with the assistant standing to the left of the surgeon, cranially and close to the patient’s arms.
- Recommendations: In small thoracic cavities or with a highly inserted diaphragm, it is useful to push it away with a suction or sponge stick to clearly visualise the paraoesophageal groove.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, D.E.; Kazerooni, E.A.; Baum, S.L. Lung cancer screening, version 3.2018. J. Natl. Compr. Cancer Netw. 2018, 16, 412–441. [Google Scholar]
- Groome, P.A.; Bolejack, V.; Crowley, J.J.; Kennedy, C.; Krasnik, M.; Sobin, L.H. The IASLC Lung Cancer Staging Project: Validation of the Proposals for Revision of the T, N, and M Descriptors and Consequent Stage Groupings in the Forthcoming (Seventh) Edition of the TNM Classification of Malignant Tumours. J. Thorac. Oncol. 2007, 2, 694–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duma, N.; Santana-Davila, R.; Molina, J.R. NoneSmall Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin. Proc. 2019, 94, 1623–1640. [Google Scholar] [CrossRef]
- Li, W.W.; Lee, T.W.; Lam, S.S.; Calvin, S.H.; Alan, D.L.; Wan, Y.P.; Yim, A.P. Quality of Life Following Lung Cancer Resection* Video-Assisted Thoracic Surgery vs Thoracotomy. Chest 2002, 122, 584–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Xia, M.; Liu, C.; Wang, T.; Ren, Y.; Liu, Y. A meta-analysis of minimally invasive surgery versus thoracotomy for centrally located non-small cell lung cancer. J. Thorac. Dis. 2021, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Downey, R.J.; Kernstine, K.; Stanbridge, R.; Shennib, H.; Wolf, R.; Ohtsuka, T.; Schmid, R.; Waller, D.; Fernando, H.; et al. Video-Assisted Thoracic Surgery in Lung Cancer Resection. Innovations 2019, 2, 261–292. [Google Scholar] [CrossRef]
- Abbas, A.E. Surgical Management of Lung Cancer: History, Evolution, and Modern Advances. Curr. Oncol. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Terra, R.M.; Leite, P.H.C.; dela Vega, A.J.M. Global status of the robotic thoracic surgery. J. Thorac. Dis. 2021, 13, 6123. [Google Scholar] [CrossRef]
- Zirafa, C.C.; Romano, G.; Key, T.H.; Davini, F.; Melfi, F. The evolution of robotic thoracic surgery. Ann. Cardiothorac. Surg. 2019, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Rocco, G.; Martin-Ucar, A.; Passera, E. Uniportal VATS wedge pulmonary resections. Ann. Thorac. Surg. 2004, 77, 726–728. [Google Scholar] [CrossRef]
- Gonzalez, D.; Paradela, M.; Garcia, J.; Dela Torre, M. Single-port video-assisted thoracoscopic lobectomy. Interact. Cardiovasc. Thorac. Surg. 2011, 12, 514–515. [Google Scholar] [CrossRef]
- Kuzdzał, J.; Zieliński, M. Complete resection in lung cancer surgery: Proposed definition by R. Rami-Porta, C. Wittekind and P. Goldstraw. Lung Cancer 2006, 51, 131–132. [Google Scholar] [CrossRef]
- Ng, C.S.H.; Kim, H.K.; Wong, R.H.L.; Mok, T.S.; Choi, Y.H. Single-Port Video-Assisted Thoracoscopic Major Lung Resections: Experience with 150 Consecutive Cases. Thorac. Cardiovasc. Surg. 2016, 64, 348–353. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, Q.; Han, H.; Zhang, Y.; Chen, H. Uniportal versus multiportal video-assisted thoracoscopic anatomical resection for NSCLC: A meta-analysis. J. Cardiothorac. Surg. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Harris, C.G.; James, R.S.; Tian, D.H.; Yan, T.D.; Doyle, M.P.; Gonzalez-Rivas, D.; Cao, C. Systematic review and meta-analysis of uniportal versus multiportal video-assisted thoracoscopic lobectomy for lung cancer. Ann. Cardiothorac. Surg. 2016, 5, 764–784. [Google Scholar] [CrossRef] [Green Version]
- Nagano, H.; Suda, T.; Ishizawa, H.; Negi, T.; Kawai, H.; Kawakami, T.; Tochii, D.; Tochii, S.; Hoshikawa, Y. Uniportal video-assisted thoracic surgery lowers the incidence of post-thoracotomy pain syndrome. Fujita Med. J. 2020, 6, 31. [Google Scholar]
- Halezeroğlu, S. Advantages and disadvantages of single incision VATS in major anatomical resection for lung cancer. J. Vis. Surg. 2017, 3, 115. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhang, L.; Li, Z.; Wang, F.; Qiu, L.; Dou, X.; Li, C.; Zhu, Y.; Ma, G.; Jiang, G.; et al. UniPortal thoracoscopic pneumonectomy does not compromise perioperative and long-term survival in patients with NSCLC: A retrospective, multicenter, and propensity score matching study. Lung Cancer 2021, 159, 135–144. [Google Scholar] [CrossRef]
- Nachira, D.; Congedo, M.T.; Tabacco, D.; Sassorossi, C.; Calabrese, G.; Ismail, M.; Vita, M.L.; Petracca-Ciavarella, L.; Margaritora, S.; Meacci, E. Surgical Effectiveness of Uniportal-VATS Lobectomy Compared to Open Surgery in Early-Stage Lung Cancer. Front. Surg. 2022, 9, 840070. [Google Scholar] [CrossRef]
- Zhong, D.; Lin, Q.; Zhang, J.; Liu, Y.; Zhan, Z. Short-and medium-term outcomes after uniportal and multiportal video-assisted thoracic surgery lobectomy in elderly patients with non-small cell lung cancer. JBUON 2021, 26, 1453–1459. [Google Scholar]
- Ettinger, D.S.; Wood, D.E.; Chair, V.; Aisner, D.L.; Akerley, W.; Bauman, J.R. NCCN Guidelines Version 3.2022 Non-Small Cell Lung Cancer Continue NCCN Guidelines Panel Disclosures. 2022. Available online: https://www.nccn.org (accessed on 15 December 2022).
- Gould, M.K.; Kuschner, W.G.; Rydzak, C.E.; Maclean, C.C.; Demas, A.N.; Shigemitsu, H.; Chan, J.K.; Owens, D.K. Test Performance of Positron Emission Tomography and Computed Tomography for Mediastinal Staging in Patients with Non–Small-Cell Lung Cancer. Ann. Intern. Med. 2003, 139, 879. [Google Scholar] [CrossRef]
- Ceron, L.; Michieletto, L.; Zamperlin, A. Mediastinal staging in lung cancer: A rational approach. Monaldi Arch. Chest Dis. 2009, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detterbeck, F.C.; Jantz, M.A.; Wallace, M.; Vansteenkiste, J.; Silvestri, G.A.; American College of Chest Physicians. Invasive Mediastinal Staging of Lung Cancer. Chest 2007, 132, 202S–220S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herth, F.; Becker, H.D.; Ernst, A. Conventional vs Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Chest 2004, 125, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Aisner, D.L.; Akerley, W.; Bauman, J.R. NCCN Guidelines Version 6.2022 Non-Small Cell Lung Cancer Continue NCCN Guidelines Panel Disclosures. 2022. Available online: https://www.nccn.org (accessed on 15 December 2022).
- Howington, J.A. The Role of VATS for Staging and Diagnosis in Patients with Non-Small Cell Lung Cancer. Semin. Thorac. Cardiovasc. Surg. 2007, 19, 212–216. [Google Scholar] [CrossRef]
- McWilliams, A.; Tammemagi, M.C.; Mayo, J.R.; Roberts, H.; Liu, G.; Soghrati, K.; Yasufuku, K.; Martel, S.; Laberge, F.; Gingras, M.; et al. Probability of Cancer in Pulmonary Nodules Detected on First Screening CT. N. Engl. J. Med. 2013, 369, 910. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, J.H.; Rzyman, W.; Veronesi, G.; D’Amico, T.A.; Van Schil, P.; Molins, L.; Massard, G.; Rocco, G. Recommendations from the European Society of Thoracic Surgeons (ESTS) regarding computed tomography screening for lung cancer in Europe. Eur. J. Cardiothorac. Surg. 2017, 51, 411. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.L.; Myers, R.; Grant, K.; Lam, S.; Yee, J. The diagnostic accuracy and sensitivity for malignancy of radial-endobronchial ultrasound and electromagnetic navigation bronchoscopy for sampling of peripheral pulmonary lesions: Systematic review and meta-analysis. J. Bronchol. Interv. Pulmonol. 2020, 27, 106–121. [Google Scholar] [CrossRef]
- Rivera, M.P.; Mehta, A.C.; Wahidi, M.M. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. 5), e142S–e165S. [Google Scholar] [CrossRef]
- Shinagawa, N. A review of existing and new methods of bronchoscopic diagnosis of lung cancer. Respir. Investig. 2019, 57, 3–8. [Google Scholar] [CrossRef]
- Folch, E.E.; Pritchett, M.A.; Nead, M.A.; Bowling, M.R.; Murgu, S.D.; Krimsky, W.S.; Murillo, B.A.; LeMense, G.P.; Minnich, D.J.; Bansal, S.; et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J. Thorac. Oncol. 2019, 14, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Steinfort, D.P.; Khor, Y.H.; Manser, R.L.; Irving, L.B. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: Systematic review and meta-analysis. Eur. Respir. J. 2011, 37, 902–910. [Google Scholar] [CrossRef] [Green Version]
- de Margerie-Mellon, C.; de Bazelaire, C.; de Kerviler, E. Image-guided biopsy in primary lung cancer: Why, when and how. Diagn. Interv. Imaging 2016, 97, 965–972. [Google Scholar] [CrossRef]
- Salati, M.; Brunelli, A.; Rocco, G. Uniportal Video-Assisted Thoracic Surgery for Diagnosis and Treatment of Intrathoracic Conditions. Thorac. Surg. Clin. 2008, 18, 305–310. [Google Scholar] [CrossRef]
- Ujiie, H.; Effat, A.; Yasufuku, K. Image-guided thoracic surgery in the hybrid operation room. J. Vis. Surg. 2017, 3, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, S.; Fintelmann, F.J.; Bierhals, A.J.; Silin, D.D.; Price, M.C.; Ott, H.C.; Shepard, J.O.; Mayo, J.R.; Sharma, A. Image-guided preoperative localization of pulmonary nodules for video-assisted and robotically assisted surgery. Radiographics 2019, 39, 1264–1279. [Google Scholar] [CrossRef]
- Folch, E.E.; Labarca, G.; Ospina-Delgado, D.; Kheir, F.; Majid, A.; Khandhar, S.J.; Mehta, H.J.; Jantz, M.A.; Fernandez-Bussy, S. Sensitivity and Safety of Electromagnetic Navigation Bronchoscopy for Lung Cancer Diagnosis: Systematic Review and Meta-analysis. Chest 2020, 158, 1753–1769. [Google Scholar] [CrossRef]
- Chao, Y.K.; Pan, K.T.; Wen, C.T.; Fang, H.Y.; Hsieh, M.J. A comparison of efficacy and safety of preoperative versus intraoperative computed tomography-guided thoracoscopic lung resection. J. Thorac. Cardiovasc. Surg. 2018, 156, 1974–1983.e1. [Google Scholar] [CrossRef] [Green Version]
- Rocco, G.; Khalil, M.; Jutley, R. Uniportal video-assisted thoracoscopic surgery wedge lung biopsy in the diagnosis of interstitial lung diseases. J. Thorac. Cardiovasc. Surg. 2005, 129, 947–948. [Google Scholar] [CrossRef] [Green Version]
- Galvez, C.; Sesma, J.; Bolufer, S.; Lirio, F.; Del Campo, J.M.; Maroto, S.; Corcoles, J.M. The techniques of uniportal video-assisted thoracoscopic surgery: Lower lobectomies and lymphadenectomy. J. Thorac. Dis. 2019, 11, S2095–S2107. [Google Scholar] [CrossRef]
- Rami-Porta, R.; Bolejack, V.; Crowley, J.; Ball, D.; Kim, J.; Lyons, G.; Rice, T.; Suzuki, K.; Thomas, C.F., Jr.; Travis, W.D.; et al. The IASLC lung cancer staging project: Proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2015, 10, 990–1003. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yu, T.; Zhang, Y.; Qian, L.; Xia, Q. Comparison of surgical outcomes and prognosis between wedge resection and simple Segmentectomy for GGO diameter between 2 cm and 3 cm in non-small cell lung cancer: A multicenter and propensity score matching analysis. BMC Cancer 2022, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Altorki, N.K.; Wang, X.; Kozono, D.; Watt, C.; Landreneau, R.; Wigle, D.; Port, J.; Jones, D.R.; Conti, M.; Ashrafi, A.S.; et al. PL03.06 Lobar or Sub-lobar Resection for Peripheral Clinical Stage IA = 2 cm Non-small Cell Lung Cancer (NSCLC): Results From an International Randomized Phase III Trial (CALGB 140503 [Alliance]). J. Thorac. Oncol. 2022, 17, S1–S2. [Google Scholar] [CrossRef]
- Callister, M.E.J.; Baldwin, D.R. How should pulmonary nodules be optimally investigated and managed? Lung Cancer 2016, 91, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Armand, E.; Boulate, D.; Fourdrain, A.; Nguyen, N.A.T.; Resseguier, N.; Brioude, G.; Trousse, D.; Doddoli, C.; D’journo, X.B.; Thomas, P.A. Benignant and malignant epidemiology among surgical resections for suspicious solitary lung cancer without preoperative tissue diagnosis. Eur. J. Cardio-Thorac. Surg. 2022, 63, ezac590. [Google Scholar] [CrossRef]
- Liu, S.; Wang, R.; Zhang, Y.; Li, Y.; Cheng, C.; Pan, Y.; Xiang, J.; Zhang, Y.; Chen, H.; Sun, Y. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma. J. Clin. Oncol. 2016, 34, 307–313. [Google Scholar] [CrossRef]
- Chiappetta, M.; Leuzzi, G.; Sperduti, I.; Li, Y.; Cheng, C.; Pan, Y.; Xiang, J.; Zhang, Y.; Chen, H.; Sun, Y. Lymph-node ratio predicts survival among the different stages of non-small-cell lung cancer: A multicentre analysis. Eur. J. Cardio-Thorac. Surg. 2019, 55, 405–412. [Google Scholar] [CrossRef]
- Friedel, G.; Steger, V.; Kyriss, T.; Zoller, J.; Toomes, H. Prognosis in N2 NSCLC. Lung Cancer 2004, 45, 45–53. [Google Scholar] [CrossRef]
- Liam, C.K.; Andarini, S.; Lee, P.; Ho, J.C.; Chau, N.Q.; Tscheikuna, J. Lung cancer staging now and in the future. Respirology 2015, 20, 526–534. [Google Scholar] [CrossRef]
- Naruke, T.; Tsuchiya, R.; Kondo, H.; Asamura, H.; Nakayama, H. Implications of staging in lung cancer. Chest 1997, 112 (Suppl. 4), 242S–248S. [Google Scholar] [CrossRef]
- Arita, T.; Matsumoto, T.; Kuramitsu, T.; Kawamura, M.; Matsunaga, N.; Sugi, K.; Esato, K. Is it Possible to Differentiate Malignant Mediastinal Nodes from Benign Nodes by Size? Chest 1996, 110, 1004–1008. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.S.; Hall, J.H.; Harrison, G.K. Anterior mediastinotomy. Thorax 1973, 28, 444–447. [Google Scholar] [CrossRef] [Green Version]
- Vansteenkiste, J.; Crinò, L.; Dooms, C.; Douillard, J.Y.; Faivre-Finn, C.; Lim, E.; Rocco, G.; Senan, S.; Van Schil, P.; Veronesi, G.; et al. 2nd ESMO consensus conference on lung cancer: Early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, 1462–1474. [Google Scholar] [CrossRef]
- Call, S.; Obiols, C.; Rami-Porta, R. Present indications of surgical exploration of the mediastinum. J. Thorac. Dis. 2018, 10 (Suppl. 22), S2601. [Google Scholar] [CrossRef]
- Wu, H.R.; Liu, C.Q.; Xu, M.Q.; Xu, G.W.; Xiong, R.; Li, C.W.; Xie, M.R. Systematic mediastinal lymph node dissection outcomes and conversion rates of uniportal video-assisted thoracoscopic lobectomy for lung cancer. ANZ J. Surg. 2019, 89, 1056–1060. [Google Scholar] [CrossRef]
- Mokhles, S.; Macbeth, F.; Treasure, T.; Younes, R.N.; Rintoul, R.C.; Fiorentino, F.; Bogers, A.J.J.C.; Takkenberg, J.J.M. Systematic lymphadenectomy versus sampling of ipsilateral mediastinal lymph-nodes during lobectomy for non-small-cell lung cancer: A systematic review of randomized trials and a meta-analysis. Eur. J. Cardio-Thorac. Surg. 2017, 51, 1149–1156. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Darling, G.E. Complete mediastinal lymph node dissection versus systematic lymph node sampling in surgical treatment of non-small cell lung cancer: Do we have the answer? J. Thorac. Dis. 2017, 9, 4169. [Google Scholar] [CrossRef] [Green Version]
- Koulaxouzidis, G.; Karagkiouzis, G.; Konstantinou, M.; Gkiozos, I.; Syrigos, K. Sampling Versus Systematic Full Lymphatic Dissection in Surgical Treatment of Non-Small Cell Lung Cancer. Oncol. Rev. 2013, 7, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.A.; Smeltzer, M.P.; Faris, N.R.; Osarogiagbon, R.U. Survival After Mediastinal Node Dissection, Systematic Sampling, or Neither for Early Stage NSCLC. J. Thorac. Oncol. 2020, 15, 1670–1681. [Google Scholar] [CrossRef]
- Guo, C.; Xia, L.; Mei, J.; Liu, C.; Lin, F.; Ma, L.; Pu, Q.; Liu, L. A propensity score matching study of non-grasping en bloc mediastinal lymph node dissection versus traditional grasping mediastinal lymph node dissection for non-small cell lung cancer by video-assisted thoracic surgery. Transl. Lung Cancer Res. 2019, 8, 176–186. [Google Scholar] [CrossRef]
- Liu, C.; Ma, L.; Guo, C.; Liu, L. Non-grasping en bloc mediastinal lymph node dissection through uniportal video-assisted thoracic surgery for lung cancer surgery. J. Thorac. Dis. 2016, 8, 2956–2959. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.; Nachira, D.; Swierzy, M.; Ferretti, G.M.; Englisch, J.P.; Ossami Saidy, R.R.; Li, F.; Badakhshi, H.; Rueckert, J.C. Lymph node upstaging for non-small cell lung cancer after uniportal video-assisted thoracoscopy. J. Thorac. Dis. 2018, 10, S3648–S3654. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Lee, J.; Moon, Y.K.; Moon, S.W.; Park, J.K.; Moon, M.H. Nodal outcomes of uniportal versus multiportal video-assisted thoracoscopic surgery for clinical stage I lung cancer. Korean J. Thorac. Cardiovasc. Surg. 2020, 53, 104–113. [Google Scholar] [CrossRef]
- Wang, B.Y.; Liu, C.Y.; Hsu, P.K.; Shih, C.S.; Liu, C.C. Single-incision Versus Multiple-incision Thoracoscopic Lobectomy and Segmentectomy. Ann. Surg. 2015, 261, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Fieira, E.M.; González-Rivas, D.; Fernández, L.M.; Fernández Prado, R.; de la Torre, M. Uniportal video-assisted thoracoscopic lymph node dissection. J. Thorac. Dis. 2014, 6 (Suppl. 6), S665–S668. [Google Scholar]
- Bedetti, B.; Bertolaccini, L.; Panagiotopoulos, N.; Scarci, M. Uniportal video-thoracoscopic mediastinal lymphadenectomy. Video Assist. Thorac. Surg. 2016, 1, 34. [Google Scholar] [CrossRef]
- Andriolo, L.G.; Fegatelli, D.A.; Spagnoli, A.; Di Rienzo, G. VATS mediastinal lymph node dissection: Surgical technique and literature review. Video Assist. Thorac. Surg. 2022, 7, 5. [Google Scholar] [CrossRef]
- Rusch, V.W.; Asamura, H.; Watanabe, H.; Giroux, D.J.; Rami-Porta, R.; Goldstraw, P.; Members of IASLC Staging Committee. The IASLC lung cancer staging project: A proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2009, 4, 568–577. [Google Scholar] [CrossRef] [Green Version]
- Rami-Porta, R.; Asamura, H.; Detterbeck, F.C. Staging Handbook in Thoracic Oncology; IASLC: North Fort Myers, FL, USA, 2016; ISBN 978-0-9832958-6-0. [Google Scholar]
- Martin-Ucar, A.E.; Socci, L. Uniportal VATS lymphadenectomy. Video Assist. Thorac. Surg. 2017, 2, 55. [Google Scholar] [CrossRef]
Lymph Node Involvement | 5-Year Overall Survival (%) |
---|---|
N0 | 63.1% |
N1a (single N1 zone) | 48% |
N1b (multiple N1 zones) | 35% |
N2a (single N2 zone) | 34% |
N2b (multiple N2 zones) | 20% |
Lymph Node Compartments | Lymph Node Stations | Anatomical Limits |
---|---|---|
Superior mediastinum | 2R | Superior: thoracic inlet |
Inferior: intersection of the caudal margin of the left brachiocephalic artery (BCA) with the trachea | ||
Left: left (2L) and right (2R) are divided along the midline of the trachea | ||
Right: mediastinal pleura | ||
Anterior: superior cava vein (SVC) | ||
Posterior: trachea | ||
3A | Superior: thoracic inlet | |
Inferior: carina | ||
Left: external posterior wall | ||
Right: anterior border of the SVC | ||
Anterior: mediastinal pleura | ||
Posterior: pericardium | ||
4R | Superior: intersection of the caudal margin of the left BCA with the trachea | |
Inferior: inferior border of the azygos vein | ||
Left: left (4L) and right (4R) are divided along the midline of the trachea | ||
Right: mediastinal pleura | ||
Anterior: SVC | ||
Posterior: trachea | ||
4L | Superior: superior border of the aortic arch | |
Inferior: carina | ||
Left: medial to arterial ligament | ||
Right: left (4L) and right (4R) are divided along the midline of the trachea | ||
Anterior: trachea anterior wall | ||
Posterior: trachea posterior wall | ||
Subaortic compartment | 5 | Superior: inferior border of the aortic arch |
Inferior: superior border of the left pulmonary artery | ||
Left: mediastinal pleura | ||
Right: plane between the arterial ligamentum and the left vagus nerve | ||
Anterior: left phrenic nerve | ||
Posterior: left vagus nerve | ||
6 | Superior: upper border of the aortic arch | |
Inferior: lower border of the aortic arch | ||
Left: mediastinal pleura | ||
Right: ascending aorta | ||
Anterior: ascending aorta anterior wall | ||
Posterior: ascending aorta posterior wall | ||
Subcarinal and inferior compartment | 7 | Superior: carina |
Inferior: upper border of the lower lobe bronchus on the left; lower border of the bronchus intermedius on the right | ||
Left: left main bronchus mediastinal wall | ||
Right: right main bronchus mediastinal wall | ||
Anterior: pericardium | ||
Posterior: oesophagus | ||
8 | Superior: upper border of the lower lobe bronchus on the left; lower border of the bronchus intermedius on the right | |
Inferior: diaphragm | ||
9 | Superior: inferior pulmonary vein | |
Inferior: diaphragm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Campo, J.M.; Maroto, S.; Sebastian, L.; Vaillo, X.; Bolufer, S.; Lirio, F.; Sesma, J.; Galvez, C. Uniportal VATS for Diagnosis and Staging in Non-Small Cell Lung Cancer (NSCLC). Diagnostics 2023, 13, 826. https://doi.org/10.3390/diagnostics13050826
Del Campo JM, Maroto S, Sebastian L, Vaillo X, Bolufer S, Lirio F, Sesma J, Galvez C. Uniportal VATS for Diagnosis and Staging in Non-Small Cell Lung Cancer (NSCLC). Diagnostics. 2023; 13(5):826. https://doi.org/10.3390/diagnostics13050826
Chicago/Turabian StyleDel Campo, Jone Miren, Sergio Maroto, Leyre Sebastian, Xavier Vaillo, Sergio Bolufer, Francisco Lirio, Julio Sesma, and Carlos Galvez. 2023. "Uniportal VATS for Diagnosis and Staging in Non-Small Cell Lung Cancer (NSCLC)" Diagnostics 13, no. 5: 826. https://doi.org/10.3390/diagnostics13050826
APA StyleDel Campo, J. M., Maroto, S., Sebastian, L., Vaillo, X., Bolufer, S., Lirio, F., Sesma, J., & Galvez, C. (2023). Uniportal VATS for Diagnosis and Staging in Non-Small Cell Lung Cancer (NSCLC). Diagnostics, 13(5), 826. https://doi.org/10.3390/diagnostics13050826