Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review
Abstract
:1. Introduction
2. Nanotheranostics
2.1. Gold-Based Nanoparticles
2.2. Gadolinium-Based Nanoparticles
2.3. Iron-Based Nanoparticles
2.4. Tungsten-Based Nanoparticles
2.5. Platinum-Based Nanoparticles
2.6. Bismuth-Based Nanoparticles
2.7. Tantalum-Based Nanoparticles
2.8. Ytterbium-Based Nanoparticles
3. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aminolroayaei, F.; Shahbazi-Gahrouei, D.; Shahbazi-Gahrouei, S.; Rasouli, N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol. 2021, 15, 247–256. [Google Scholar] [CrossRef]
- Rasouli, N.; Shahbazi-Gahrouei, D.; Hematti, S.; Baradaran, B.; Salehi, R.; Varshosaz, J.; Jafarizad, A. Assessment of Oxaliplatin-Loaded Iodine Nanoparticles for Chemoradiotherapy of Human Colorectal Cancer (HT-29) Cells. Polymers 2022, 14, 4131. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, T.; Shahbazi-Gahrouei, D.; Zahraei, M.; Hejazi, S.H.; Dousti, F.; Rostami, M. Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese–zinc ferrite nanoparticles: In vitro and in vivo assessments. J. Cancer Res. Clin. Oncol. 2022; 1–19, Online ahead of print. [Google Scholar]
- Kuchur, O.A.; Tsymbal, S.A.; Shestovskaya, M.V.; Serov, N.S.; Dukhinova, M.S.; Shtil, A.A. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J. Inorg. Biochem. 2020, 209, 111117. [Google Scholar] [CrossRef] [PubMed]
- Ben-Akiva, E.; Meyer, R.A.; Yu, H.; Smith, J.T.; Pardoll, D.M.; Green, J.J. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci. Adv. 2020, 6, eaay9035. [Google Scholar] [CrossRef]
- Aslan, N.; Ceylan, B.; Koç, M.M.; Findik, F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J. Mol. Struct. 2020, 1219, 128599. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Luo, P.; Gao, L.; Liao, X.; Ma, L.; Jiang, Z.; Liu, D.; Yang, Z.; Jiang, Q. Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia–targeted imaging and therapy. Sci. Adv. 2021, 7, eabb6104. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, S.; Zhang, C.; Liao, X.; Liu, T.; Jiang, Z.; Liu, D.; Tan, X.; Long, L.; Wang, Y. An NIR-Fluorophore-Based Therapeutic Endoplasmic Reticulum Stress Inducer. Adv. Mater. 2018, 30, 1800475. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, N.; Chen, J.; Zheng, C.; Guo, Y.; Ye, R.; Qi, R.; Shen, J. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J. Nanobiotechnol. 2021, 19, 375. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Song, W.; Jiang, X.; Deng, Z.; Xiong, W.; Shen, J. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. J. Control. Release 2022, 352, 793–812. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Wang, S.; Fan, Z.; Ma, Y.; Yin, Y.; Wang, W.; Xi, R.; Meng, M. A tumor-targeting near-infrared heptamethine cyanine photosensitizer with twisted molecular structure for enhanced imaging-guided cancer phototherapy. J. Am. Chem. Soc. 2021, 143, 20828–20836. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, J.; Liu, Y.; Zheng, C.; Luo, W.; Chen, L.; Zhou, S.; Li, Z.; Shen, J. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm. Sin. B 2022, 12, 4204–4223. [Google Scholar] [CrossRef] [PubMed]
- Musielak, M.; Potoczny, J.; Boś-Liedke, A.; Kozak, M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging—A Review. Int. J. Mol. Sci. 2021, 22, 6229. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.-V.; Ngo, N.M.; Medhi, R.; Srinoi, P.; Liu, T.; Rittikulsittichai, S.; Lee, T.R. Multifunctional iron oxide magnetic nanoparticles for biomedical applications: A review. Materials 2022, 15, 503. [Google Scholar] [CrossRef]
- Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett. 2019, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold Nanomaterials at Work in Biomedicine. In Nanomaterials and Neoplasms; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2021; pp. 219–446. ISBN 0429027818. [Google Scholar]
- Zhou, R.; Zhang, M.; Xi, J.; Li, J.; Ma, R.; Ren, L.; Bai, Z.; Qi, K.; Li, X. Gold nanorods-based photothermal therapy: Interactions between biostructure, nanomaterial, and near-infrared irradiation. Nanoscale Res. Lett. 2022, 17, 68. [Google Scholar] [CrossRef]
- Wen, C.; Wang, L.; Liu, L.; Shen, X.; Chen, H. Surface-Enhanced Raman Probes Based on Gold Nanomaterials for in vivo Diagnosis and Imaging. Chem. Asian J. 2022, 17, e202200014. [Google Scholar] [CrossRef]
- Herold, D.M.; Das, I.J.; Stobbe, C.C.; Iyer, R.V.; Chapman, J.D. Gold microspheres: A selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 2000, 76, 1357–1364. [Google Scholar] [PubMed]
- Tudda, A.; Donzelli, E.; Nicolini, G.; Semperboni, S.; Bossi, M.; Cavaletti, G.; Castriconi, R.; Mangili, P.; del Vecchio, A.; Sarno, A. Breast radiotherapy with kilovoltage photons and gold nanoparticles as radiosensitizer: An in vitro study. Med. Phys. 2022, 49, 568–578. [Google Scholar] [CrossRef]
- Luan, S.; Xie, R.; Yang, Y.; Xiao, X.; Zhou, J.; Li, X.; Fang, P.; Zeng, X.; Yu, X.; Chen, M. Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small 2022, 18, 2200115. [Google Scholar] [CrossRef]
- Zhao, R.; Xiang, J.; Wang, B.; Chen, L.; Tan, S. Recent advances in the development of noble metal NPs for cancer therapy. Bioinorg. Chem. Appl. 2022, 2022, 2444516. [Google Scholar] [CrossRef]
- Ouar, M.; Dib, A.S.A.; Belkaid, M.N.; Belbachir, A.H.; Ouar, M. Monte Carlo simulation of a new proton therapy technique using bio-nanoparticles and high energy proton beams. Int. J. Radiat. Res. 2022, 20, 615–619. [Google Scholar]
- Bianfei, S.; Fang, L.; Zhongzheng, X.; Yuanyuan, Z.; Tian, Y.; Tao, H.; Jiachun, M.; Xiran, W.; Siting, Y.; Lei, L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol. 2022, 18, 3101–3118. [Google Scholar] [CrossRef] [PubMed]
- Gerken, L.R.H.; Gogos, A.; Starsich, F.H.L.; David, H.; Gerdes, M.E.; Schiefer, H.; Psoroulas, S.; Meer, D.; Plasswilm, L.; Weber, D.C. Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy. Nat. Commun. 2022, 13, 3248. [Google Scholar] [CrossRef] [PubMed]
- Mzwd, E.; Ahmed, N.M.; Suradi, N.; Alsaee, S.K.; Altowyan, A.S.; Almessiere, M.A.; Omar, A.F. Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging. Sci. Rep. 2022, 12, 10549. [Google Scholar] [CrossRef]
- Li, C.; Zhao, L.; Jia, L.; Ouyang, Z.; Gao, Y.; Guo, R.; Song, S.; Shi, X.; Cao, X. 68Ga-labeled dendrimer-entrapped gold nanoparticles for PET/CT dual-modality imaging and immunotherapy of tumors. J. Mater. Chem. B 2022, 10, 3648–3656. [Google Scholar] [CrossRef]
- Zhang, W.; Zang, Y.; Lu, Y.; Han, J.; Xiong, Q.; Xiong, J. Photothermal Effect and Multi-Modality Imaging of Up-Conversion Nanomaterial Doped with Gold Nanoparticles. Int. J. Mol. Sci. 2022, 23, 1382. [Google Scholar] [CrossRef] [PubMed]
- Bromma, K.; Dos Santos, N.; Barta, I.; Alexander, A.; Beckham, W.; Krishnan, S.; Chithrani, D.B. Enhancing nanoparticle accumulation in two dimensional, three dimensional, and xenograft mouse cancer cell models in the presence of docetaxel. Sci. Rep. 2022, 12, 13508. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X. Gold nanoparticles for skin drug delivery. Int. J. Pharm. 2022, 625, 122122. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Moradi Khaniabadi, P.; Jameel, M.S.; Oladzadabbasabadi, N.; Mohammed, S.A.; Abdullah, R.S.; Mehrdel, B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int. J. Mol. Sci. 2022, 23, 7400. [Google Scholar] [CrossRef]
- Haghighi, R.R.; Chatterjee, S.; Chatterjee, V.V.; Hosseinipanah, S.; Tadrisinik, F. Dependence of the effective mass attenuation coefficient of gold nanoparticles on its radius. Phys. Med. 2022, 95, 25–31. [Google Scholar] [CrossRef]
- Safari, A.; Sarikhani, A.; Shahbazi-Gahrouei, D.; Alamzadeh, Z.; Beik, J.; Dezfuli, A.S.; Mahabadi, V.P.; Tohfeh, M.; Shakeri-Zadeh, A. Optimal scheduling of the nanoparticle-mediated cancer photo-thermo-radiotherapy. Photodiagn. Photodyn. Ther. 2020, 32, 102061. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, P.; Zhou, C.; Zhang, T.; Zhou, T.; Men, D.; Jiang, G.; Hang, L. Gold Nanobipyramid@ Copper Sulfide Nanotheranostics for Image-Guided NIR-II Photo/Chemodynamic Cancer Therapy with Enhanced Immune Response. Acta Biomater. 2023, 158, 649–659. [Google Scholar] [CrossRef]
- Ghahremani, F.; Kefayat, A.; Shahbazi-Gahrouei, D.; Motaghi, H.; Mehrgardi, M.A.; Haghjooy-Javanmard, S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine 2018, 13, 2563–2578. [Google Scholar] [CrossRef]
- Kitayama, Y.; Yamada, T.; Kiguchi, K.; Yoshida, A.; Hayashi, S.; Akasaka, H.; Igarashi, K.; Nishimura, Y.; Matsumoto, Y.; Sasaki, R. In vivo stealthified molecularly imprinted polymer nanogels incorporated with gold nanoparticles for radiation therapy. J. Mater. Chem. B 2022, 10, 6784–6791. [Google Scholar] [CrossRef]
- Baijal, G.; Somashekar, R.; Iyer, S.; Nayak, V. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers. Radiat. Phys. Chem. 2022, 194, 109990. [Google Scholar]
- Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Front. Chem. 2020, 8, 376. [Google Scholar] [CrossRef]
- Hu, R.; Guo, T.; Zeng, C.; Chen, M.; Zhu, X.; Chen, L.; Dong, Y.; Fu, F. Carbon-based dot-capped gold nanoparticles hybridized with manganese dioxide for enhanced photodynamic cancer therapy. New J. Chem. 2023, 47, 628–634. [Google Scholar] [CrossRef]
- Mahmood, F.; Nielsen, U.G.; Jørgensen, C.B.; Brink, C.; Thomsen, H.S.; Hansen, R.H. Safety of gadolinium based contrast agents in magnetic resonance imaging-guided radiotherapy–An investigation of chelate stability using relaxometry. Phys. Imaging Radiat. Oncol. 2022, 21, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; Hsu, S.H.; Verry, C.; Kaza, E.; Miao, X.; Keerthivasan, M.B.; Mamon, H.J.; Mak, R.H.; Mancias, J.D.; Cagney, D.N. Quantifying Gadolinium-Based, Theranostic Nanoparticle Uptake in MR Images of Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, e189. [Google Scholar] [CrossRef]
- Young, S.W.; Qing, F.A.N.; Harriman, A.; Sessler, J.L.; Dow, W.C.; Mody, T.D.; Hemmi, G.W.; Hao, Y.; Miller, R.A. Gadolinium (III) texaphyrin: A tumor selective radiation sensitizer that is detectable by MRI. Proc. Natl. Acad. Sci. USA 1996, 93, 6610–6615. [Google Scholar] [CrossRef] [Green Version]
- Pepper, N.B.; Stummer, W.; Eich, H.T. The use of radiosensitizing agents in the therapy of glioblastoma multiforme—A comprehensive review. Strahlenther. Onkol. 2022, 198, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Kuncic, Z.; Byrne, H.L.; Waddington, D. Nanoparticles for MRI-guided radiation therapy: A review. Cancer Nanotechnol. 2022, 13, 38. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Ye, D. Activatable multimodal probes for in vivo imaging and theranostics. Angew. Chem. 2022, 61, e202209512. [Google Scholar]
- Jin, R.; Fu, X.; Pu, Y.; Fu, S.; Liang, H.; Yang, L.; Nie, Y.; Ai, H. Clinical translational barriers against nanoparticle-based imaging agents. Adv. Drug Deliv. Rev. 2022, 191, 114587. [Google Scholar] [CrossRef]
- Parodi, A.; Kolesova, E.P.; Voronina, M.V.; Frolova, A.S.; Kostyushev, D.; Trushina, D.B.; Akasov, R.; Pallaeva, T.; Zamyatnin Jr, A.A. Anticancer Nanotherapeutics in Clinical Trials: The Work behind Clinical Translation of Nanomedicine. Int. J. Mol. Sci. 2022, 23, 13368. [Google Scholar] [CrossRef] [PubMed]
- Pallares, R.M.; Mottaghy, F.M.; Schulz, V.; Kiessling, F.; Lammers, T. Nanoparticle Diagnostics and Theranostics in the Clinic. J. Nucl. Med. 2022, 63, 1802–1808. [Google Scholar] [CrossRef]
- Abdullaeva, G.; Kulabdullaev, G.; Kim, A.; Nebesny, A.; Yuldashev, D. Calculation of radiation dose enhancement by gadolinium compounds for radiation therapy. J. Phys. Conf. Ser. 2022, 2155, 12030. [Google Scholar] [CrossRef]
- Borah, A.; Kumar, D.S. Nanotechnology-Mediated Radiation Therapy. In Bionanotechnology in Cancer; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2022; pp. 445–493. ISBN 0429422911. [Google Scholar]
- Schmidt, R.M.; Hara, D.; Vega, J.D.; Abuhaija, M.B.; Tao, W.; Dogan, N.; Pollack, A.; Ford, J.C.; Shi, J. Quantifying Radiosensitization of PSMA-Targeted Gold Nanoparticles on Prostate Cancer Cells at Megavoltage Radiation Energies by Monte Carlo Simulation and Local Effect Model. Pharmaceutics 2022, 14, 2205. [Google Scholar] [CrossRef] [PubMed]
- Varzandeh, M.; Labbaf, S.; Varshosaz, J.; Laurent, S. An overview of the intracellular localization of high-Z nanoradiosensitizers. Prog. Biophys. Mol. Biol. 2022, 175, 14–30. [Google Scholar] [CrossRef]
- Lee, C. High-Z Metal Encapsulated Carbon Dots for Enhancing Radiation Therapy. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2020. [Google Scholar]
- Schuemann, J.; Bagley, A.F.; Berbeco, R.; Bromma, K.; Butterworth, K.T.; Byrne, H.L.; Chithrani, B.D.; Cho, S.H.; Cook, J.R.; Favaudon, V. Roadmap for metal nanoparticles in radiation therapy: Current status, translational challenges, and future directions. Phys. Med. Biol. 2020, 65, 21RM02. [Google Scholar] [CrossRef]
- Tremi, I.; Spyratou, E.; Souli, M.; Efstathopoulos, E.P.; Makropoulou, M.; Georgakilas, A.G.; Sihver, L. Requirements for designing an effective metallic nanoparticle (NP)-boosted radiation therapy (RT). Cancers 2021, 13, 3185. [Google Scholar] [CrossRef]
- Lai, Y.-H.; Su, C.-Y.; Cheng, H.-W.; Chu, C.-Y.; Jeng, L.-B.; Chiang, C.-S.; Shyu, W.-C.; Chen, S.-Y. Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nat. Commun. 2023, 14, 285. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.; Chateau, A.; Jubréaux, J.; Devy, J.; Paquot, H.; Laurent, G.; Bazzi, R.; Roux, S.; Richet, N.; Reinhard-Ruch, A. Radiosensitization with Gadolinium Chelate-Coated Gold Nanoparticles Prevents Aggressiveness and Invasiveness in Glioblastoma. Int. J. Nanomed. 2023, 18, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-W.; Chen, T.-H.; Fa, Y.-C.; Yang, Y.-Y.; Lin, C.-Y.; Kuo, K.-L.; Wu, S.-T.; Lin, E.C.; Annie Ho, J.-A.; Hsiao, J.-K. Gadolinium-Engineered Magnetic Alloy Nanoparticles for Magnetic Resonance T1/T2 Dual-Modal and Computed Tomography Imaging. Chem. Mater. 2022, 34, 10050–10058. [Google Scholar] [CrossRef]
- Jin, J.H.; Um, H.; Oh, J.H.; Huh, Y.; Jung, Y.; Kim, D. Gadolinium silicate-coated porous silicon nanoparticles as an MRI contrast agent and drug delivery carrier. Mater. Chem. Phys. 2022, 287, 126345. [Google Scholar] [CrossRef]
- Liu, S.; Yue, H.; Ho, S.L.; Kim, S.; Park, J.A.; Tegafaw, T.; Ahmad, M.Y.; Kim, S.; Al Saidi, A.K.A.; Zhao, D. Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging. Int. J. Mol. Sci. 2022, 23, 1792. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, P.; Truong, A.H.T.; Brommesson, C.; du Rietz, A.; Kokil, G.R.; Boyd, R.D.; Hu, Z.; Dang, T.T.; Persson, P.O.A.; Uvdal, K. Cerium Oxide Nanoparticles with Entrapped Gadolinium for High T1 Relaxivity and ROS-Scavenging Purposes. ACS Omega 2022, 7, 21337–21345. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, J.; Zhang, M.; Li, G.; Hao, L. Gadolinium-Coated Mesoporous Silica Nanoparticle for Magnetic Resonance Imaging. Front. Chem. 2022, 10, 837032. [Google Scholar] [CrossRef]
- Wang, J.; Zha, M.; Zhao, H.; Yue, W.; Wu, D.; Li, K. Detection of Kidney Dysfunction through In Vivo Magnetic Resonance Imaging with Renal-Clearable Gadolinium Nanoprobes. Anal. Chem. 2022, 94, 4005–4011. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar Bahadori, S.; Mulgaonkar, A.; Hart, R.; Wu, C.; Zhang, D.; Pillai, A.; Hao, Y.; Sun, X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1671. [Google Scholar] [CrossRef]
- Chiarelli, P.A.; Revia, R.A.; Stephen, Z.R.; Wang, K.; Kievit, F.M.; Sandhu, J.; Upreti, M.; Chung, S.; Ellenbogen, R.G.; Zhang, M. Iron oxide nanoparticle-mediated radiation delivery for glioblastoma treatment. Mater. Today 2022, 56, 66–78. [Google Scholar] [CrossRef]
- Fathy, M.M.; Saad, O.A.; Elshemey, W.M.; Fahmy, H.M. Dose-enhancement of MCF 7 cell line radiotherapy using silica-iron oxide nanocomposite. Biochem. Biophys. Res. Commun. 2022, 632, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Guerra, D.B.; Oliveira, E.; Sonntag, A.R.; Sbaraine, P.; Fay, A.P.; Morrone, F.B.; Papaléo, R.M. Intercomparison of radiosensitization induced by gold and iron oxide nanoparticles in human glioblastoma cells irradiated by 6 MV photons. Sci. Rep. 2022, 12, 9602. [Google Scholar] [CrossRef] [PubMed]
- Buades, A.B.; Pereira, L.C.J.; Vieira, B.J.C.; Cerdeira, A.C.; Waerenborgh, J.C.; Pinheiro, T.; Matos, A.P.A.; Pinto, C.G.; Guerreiro, J.F.; Mendes, F. The Mössbauer effect using 57 Fe-ferrabisdicarbollide ([o-57 FESAN]−): A glance into the potential of a low-dose approach for glioblastoma radiotherapy. Inorg. Chem. Front. 2022, 9, 1490–1503. [Google Scholar] [CrossRef]
- Anwar, H.; Abbas, B.; Khalid, M.; Yunas, K.; Nosrati, H.; Danafar, H.; Sharma, S.K. Nanoradiosensitzers: Preparation, Characterization and Their Performance. In Harnessing Materials for X-ray Based Cancer Therapy and Imaging; Springer: Berlin/Heidelberg, Germany, 2022; pp. 77–134. [Google Scholar]
- Zhang, Y.; Han, X.; Liu, Y.; Wang, S.; Han, X.; Cheng, C. Research progress on nano-sensitizers for enhancing effects of radiotherapy. Mater. Adv. 2022, 3, 3709–3725. [Google Scholar] [CrossRef]
- Bilmez, B.; Toker, M.Ö.; Toker, O.; İçelli, O. Monte Carlo study on size-dependent radiation enhancement effects of spinel ferrite nanoparticles. Radiat. Phys. Chem. 2022, 199, 110364. [Google Scholar] [CrossRef]
- Russell, E.; Dunne, V.; Russell, B.; Mohamud, H.; Ghita, M.; McMahon, S.J.; Butterworth, K.T.; Schettino, G.; McGarry, C.K.; Prise, K.M. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat. Oncol. 2021, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, B.B.; Malekzadeh, R.; Azar, F.P.; Salehnia, F.; Naseri, A.R.; Ghorbani, M.; Hamishehkar, H.; Farajollahi, A.R. Main approaches to enhance radiosensitization in cancer cells by nanoparticles: A systematic review. Adv. Pharm. Bull. 2021, 11, 212. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Wen, C.; Bai, S.; Wei, P.; Xu, B.; Xu, Y.; Liang, C.; Zhang, Y.; Zhang, G. Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice. J. Nanobiotechnol. 2022, 20, 98. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, U.; Afzia, M.; Shah, F.; Ismail, B.; Rahim, A.; Khan, R.A. Improved magnetic and electrical properties of transition metal doped nickel spinel ferrite nanoparticles for prospective applications. Mater. Sci. Semicond. Process. 2022, 148, 106830. [Google Scholar] [CrossRef]
- Canese, R.; Vurro, F.; Marzola, P. Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials 2021, 11, 1950. [Google Scholar] [CrossRef]
- Manuja, A.; Kumar, B.; Kumar, R.; Chhabra, D.; Ghosh, M.; Manuja, M.; Brar, B.; Pal, Y.; Tripathi, B.N.; Prasad, M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol. Rep. 2021, 8, 1970–1978. [Google Scholar] [CrossRef]
- Huang, Y.; Hsu, J.C.; Koo, H.; Cormode, D.P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 2022, 12, 796. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Amatya, R.; Min, K.A.; Shin, M.C. Liposomal Iron Oxide Nanoparticles Loaded with Doxorubicin for Combined Chemo-Photothermal Cancer Therapy. Pharmaceutics 2023, 15, 292. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, R.; Esmaeili, A.; Nematollahzadeh, A. Preparation of Fe3O4/Ag3VO4/Au nanocomposite coated with Caerophyllum macropodum extract modified with oleic acid for theranostics agent in medical imaging. J. Photochem. Photobiol. A Chem. 2022, 425, 113724. [Google Scholar] [CrossRef]
- Tay, Z.W.; Savliwala, S.; Hensley, D.W.; Fung, K.L.B.; Colson, C.; Fellows, B.D.; Zhou, X.; Huynh, Q.; Lu, Y.; Zheng, B. Superferromagnetic nanoparticles enable order-of-magnitude resolution & sensitivity gain in magnetic particle imaging. Small Methods 2021, 5, 2100796. [Google Scholar]
- Dash, A.; Blasiak, B.; Tomanek, B.; Banerjee, A.; Trudel, S.; Latta, P.; van Veggel, F.C.J.M. Colloidally Stable Monodisperse Fe Nanoparticles as T 2 Contrast Agents for High-Field Clinical and Preclinical Magnetic Resonance Imaging. ACS Appl. Nano Mater. 2021, 4, 1235–1242. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, M.; Li, J.; Qin, F.; Wang, Y.; Liu, T.; Liu, J.; Sabet, Z.F.; Wang, Y.; Liu, Y. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J. Am. Chem. Soc. 2021, 143, 1846–1853. [Google Scholar] [CrossRef] [PubMed]
- Marasini, R.; Rayamajhi, S.; Moreno-Sanchez, A.; Aryal, S. Iron (iii) chelated paramagnetic polymeric nanoparticle formulation as a next-generation T 1-weighted MRI contrast agent. RSC Adv. 2021, 11, 32216–32226. [Google Scholar] [CrossRef]
- Chen, C.; Ge, J.; Gao, Y.; Chen, L.; Cui, J.; Zeng, J.; Gao, M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1740. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, L.; Mo, C.; Zhou, X.; Chen, D.; He, Y.; He, H.; Kang, W.; Zhao, Y.; Jin, G. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy. J. Nanobiotechnol. 2021, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.-E.; Veiseh, O.; Bhattarai, N.; Sun, C.; Hansen, S.J.; Ditzler, S.; Knoblaugh, S.; Lee, D.; Ellenbogen, R.; Zhang, M. Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: A novel non-radioactive method. PLoS ONE 2010, 5, e9536. [Google Scholar]
- Chen, X.; Jiang, Z.; Han, X.; Wang, X.; Tang, X. The reconstruction of magnetic particle imaging: Current approaches based on the system matrix. Diagnostics 2021, 11, 773. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekharan, P.; Tay, Z.W.; Hensley, D.; Zhou, X.Y.; Fung, B.K.L.; Colson, C.; Lu, Y.; Fellows, B.D.; Huynh, Q.; Saayujya, C. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965. [Google Scholar] [CrossRef]
- Melo, K.P.; Makela, A.V.; Knier, N.N.; Hamilton, A.M.; Foster, P.J. Development of magnetic particle imaging (MPI) for cell tracking and detection. bioRxiv 2020, 2007–2020. [Google Scholar] [CrossRef]
- Yoshida, T.; Enpuku, K.; Ludwig, F.; Dieckhoff, J.; Wawrzik, T.; Lak, A.; Schilling, M. Characterization of Resovist® nanoparticles for magnetic particle imaging. In Magnetic Particle Imaging: A Novel SPIO Nanoparticle Imaging Technique; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–7. [Google Scholar]
- Vogl, T.J.; Hammerstingl, R.; Schwarz, W.; KÜMMEL, S.; MÜLLER, P.K.; Balzer, T.; Lauten, M.J.; BALZER, J.O.; Mack, M.G.; Schimpfky, C. Magnetic resonance imaging of focal liver lesions: Comparison of the superparamagnetic iron oxide Resovist versus gadolinium-DTPA in the same patient. Investig. Radiol. 1996, 31, 696–708. [Google Scholar] [CrossRef] [PubMed]
- Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol. 2003, 13, 1266–1276. [Google Scholar] [CrossRef]
- Ryan, S.M.; Brayden, D.J. Progress in the delivery of nanoparticle constructs: Towards clinical translation. Curr. Opin. Pharmacol. 2014, 18, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Kiran, I.; Shad, N.A.; Munir Sajid, M.; Zeeshan Mahmood, H.; Javed, Y.; Hanif, M.; Ali, R.; Sarwar, M.; Nosrati, H.; Danafar, H. Emerging Nanomaterials as Radio-Sensitizer in Radiotherapy. In Harnessing Materials for X-ray Based Cancer Therapy and Imaging; Springer: Berlin/Heidelberg, Germany, 2022; pp. 59–75. [Google Scholar]
- Niknam, S.; Dehdast, S.A.; Pourdakan, O.; Shabani, M.; Koohi, M.K. Tungsten Disulfide Nanomaterials (WS2 NM) Application in Biosensors and Nanomedicine: A review. Nanomed. Res. J. 2022, 7, 214–226. [Google Scholar]
- Sharma, A.; Saini, A.K.; Kumar, N.; Tejwan, N.; Singh, T.A.; Thakur, V.K.; Das, J. Methods of preparation of metal-doped and hybrid tungsten oxide nanoparticles for anticancer, antibacterial, and biosensing applications. Surf. Interfaces 2022, 28, 101641. [Google Scholar] [CrossRef]
- Qin, J.; Wang, X.; Fan, G.; Lv, Y.; Ma, J. Recent Advances in Nano Drug Delivery System for Tumor Combination Treatment based on Photothermal Therapy. Adv. Ther. 2022, 2200218. [Google Scholar] [CrossRef]
- Chen, T.; Su, L.; Lin, L.; Ge, X.; Bai, F.; Niu, M.; Wang, C.; Song, J.; Guo, S.; Yang, H. Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Res. 2022, 15, 4154–4163. [Google Scholar] [CrossRef]
- Gholamzadeh, L.; Sharghi, H.; Aminian, M.K. Synthesis of barium-doped PVC/Bi2WO6 composites for X-ray radiation shielding. Nucl. Eng. Technol. 2022, 54, 318–325. [Google Scholar] [CrossRef]
- Al-Ghamdi, H.; Hemily, H.M.; Saleh, I.H.; Ghataas, Z.F.; Abdel-Halim, A.A.; Sayyed, M.I.; Yasmin, S.; Almuqrin, A.H.; Elsafi, M. Impact of WO3-nanoparticles on silicone rubber for radiation protection efficiency. Materials 2022, 15, 5706. [Google Scholar] [CrossRef]
- Azman, M.N.; Abualroos, N.J.; Yaacob, K.A.; Zainon, R. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding. Radiat. Phys. Chem. 2022, 202, 110492. [Google Scholar] [CrossRef]
- Hemily, H.M.; Saleh, I.H.; Ghataas, Z.F.; Abdel-Halim, A.A.; Hisam, R.; Shah, A.Z.; Sayyed, M.I.; Yasmin, S.; Elsafi, M. Radiation Shielding Enhancement of Polyester Adding Artificial Marble Materials and WO3 Nanoparticles. Sustainability 2022, 14, 13355. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, R.; Miao, F.; Zhang, G.; Li, W.; Song, Y. Multimodal ultra-small CoFe-WOx nanohybrids synthesized by a pilot microfluidic system. Chem. Eng. J. 2023, 452, 139355. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, S.; Ouyang, J.; Deng, L.; Liu, Y.-N. Oxygen-deficient tungsten oxide perovskite nanosheets-based photonic nanomedicine for cancer theranostics. Chem. Eng. J. 2022, 431, 133273. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Shi, Y.; Xing, D. Human-Body-Temperature Triggerable Phase Transition of W-VO2@ PEG Nanoprobes with Strong and Switchable NIR-II Absorption for Deep and Contrast-Enhanced Photoacoustic Imaging. ACS Nano 2022, 16, 2066–2076. [Google Scholar] [CrossRef] [PubMed]
- Abed, A.; Derakhshan, M.; Karimi, M.; Shirazinia, M.; Mahjoubin-Tehran, M.; Homayonfal, M.; Hamblin, M.R.; Mirzaei, S.A.; Soleimanpour, H.; Dehghani, S. Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles. Front. Pharmacol. 2022, 13, 797804. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wei, L.; Chen, B.; Luo, X.; Xu, P.; Cai, J.; Hu, Y. Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy. J. Nanobiotechnol. 2022, 20, 129. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, S.; Jia, H.; Zhou, J.; Xi, J.; Wang, J.; Chen, X.; Wu, L. Green synthesis of platinum nanoparticles by Nymphaea tetragona flower extract and their skin lightening, antiaging effects. Arab. J. Chem. 2023, 16, 104391. [Google Scholar] [CrossRef]
- Hullo, M.; Grall, R.; Perrot, Y.; Mathé, C.; Ménard, V.; Yang, X.; Lacombe, S.; Porcel, E.; Villagrasa, C.; Chevillard, S. Radiation enhancer effect of platinum nanoparticles in breast cancer cell lines: In vitro and in silico analyses. Int. J. Mol. Sci. 2021, 22, 4436. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, D.; Talaei, S.; Abasi, M. Albumin stabilized Pt nanoparticles as radiosensitizer for sensitization of breast cancer cells under X-ray radiation therapy. Inorg. Chem. Commun. 2022, 140, 109423. [Google Scholar] [CrossRef]
- Reissig, F.; Runge, R.; Naumann, A.; Kotzerke, J. Cisplatin–A more Efficient Drug in Combination with Radionuclides? Nukl.-NuclearMed. 2022, 61, 325–332. [Google Scholar] [CrossRef]
- Alizadeh, E.; Chakraborty, D.; Ptasińska, S. Low-Energy Electron Generation for Biomolecular Damage Inquiry: Instrumentation and Methods. Biophysica 2022, 2, 475–497. [Google Scholar] [CrossRef]
- Gutiérrez de la Rosa, S.Y.; Muñiz Diaz, R.; Villalobos Gutiérrez, P.T.; Patakfalvi, R.; Gutiérrez Coronado, Ó. Functionalized platinum nanoparticles with biomedical applications. Int. J. Mol. Sci. 2022, 23, 9404. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, R.; Zhong, Z.; Huang, H.; Shao, J.; Xie, X.; Zhang, Y.; Wang, W.; Dong, X. Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chem. Eng. J. 2021, 409, 127381. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Y.; Li, C.; Hu, X. Bismuth-and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging. New J. Chem. 2022, 46, 16970–16980. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khademi, S.; Choghazardi, Y.; Irajirad, R.; Keshtkar, M.; Montazerabadi, A. Modified Bismuth Nanoparticles: A New Targeted Nanoprobe for Computed Tomography Imaging of Cancer. Cell J. 2022, 24, 515–521. [Google Scholar] [PubMed]
- Zhao, P.; Li, B.; Li, Y.; Chen, L.; Wang, H.; Ye, L. DNA-Templated ultrasmall bismuth sulfide nanoparticles for photoacoustic imaging of myocardial infarction. J. Colloid Interface Sci. 2022, 615, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Zelepukin, I.V.; Ivanov, I.N.; Mirkasymov, A.B.; Shevchenko, K.G.; Popov, A.A.; Prasad, P.N.; Kabashin, A.V.; Deyev, S.M. Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J. Control. Release 2022, 349, 475–485. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Li, X.; Li, Y.; Li, C.; Wang, X.; Wang, J.; Guan, S.; Xu, Y.; Deng, G. A biocompatible theranostic agent based on stable bismuth nanoparticles for X-ray computed tomography/magnetic resonance imaging-guided enhanced chemo/photothermal/chemodynamic therapy for tumours. J. Colloid Interface Sci. 2021, 604, 80–90. [Google Scholar] [CrossRef]
- Nosrati, H.; Salehiabar, M.; Mozafari, F.; Charmi, J.; Erdoğan, N.; Ghaffarlou, M.; Abhari, F.; Danafar, H.; Ramazani, A.; Nuri Ertas, Y. Preparation and evaluation of bismuth sulfide and magnetite-based theranostic nanohybrid as drug carrier and dual MRI/CT contrast agent. Appl. Organomet. Chem. 2022, 36, e6861. [Google Scholar] [CrossRef]
- Lakshmi, B.S.; Brindha, M.H.; Kumar, N.A.; Krishnamurthi, G. Impact of gold-decorated tantalum oxide (TaOx-Au) nano-probes for low energy cancer diagnostic agent. Mater. Lett. 2022, 308, 131234. [Google Scholar] [CrossRef]
- Lei, P.; Chen, H.; Feng, C.; Yuan, X.; Xiong, Z.; Liu, Y.; Liao, W. Noninvasive Visualization of Sub-5 mm Orthotopic Hepatic Tumors by a Nanoprobe-Mediated Positive and Reverse Contrast-Balanced Imaging Strategy. ACS Nano 2022, 16, 897–909. [Google Scholar] [CrossRef]
- Ji, C.; Zhao, M.; Wang, C.; Liu, R.; Zhu, S.; Dong, X.; Su, C.; Gu, Z. Biocompatible Tantalum Nanoparticles as Radiosensitizers for Enhancing Therapy Efficacy in Primary Tumor and Metastatic Sentinel Lymph Nodes. ACS Nano 2022, 16, 9428–9441. [Google Scholar] [CrossRef]
- Yeste, M.P.; Fernández-Ponce, C.; Félix, E.; Tinoco, M.; Fernández-Cisnal, R.; García-Villar, C.; Pfaff, C.; Kriwet, J.; Natividad, E.; Cauqui, M.A. Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques. Ceram. Int. 2022, 48, 31191–31202. [Google Scholar] [CrossRef]
- Dong, Y.C.; Kumar, A.; Rosario-Berríos, D.N.; Si-Mohamed, S.; Hsu, J.C.; Nieves, L.M.; Douek, P.; Noël, P.B.; Cormode, D.P. Ytterbium Nanoparticle Contrast Agents for Conventional and Spectral Photon-Counting CT and Their Applications for Hydrogel Imaging. ACS Appl. Mater. Interfaces 2022, 14, 39274–39284. [Google Scholar] [CrossRef]
- Yu, Z.; He, Y.; Schomann, T.; Wu, K.; Hao, Y.; Suidgeest, E.; Zhang, H.; Eich, C.; Cruz, L.J. Achieving effective multimodal imaging with rare-earth ion-doped CaF2 nanoparticles. Pharmaceutics 2022, 14, 840. [Google Scholar] [CrossRef]
- da Silva Marques, N.; Nassar, E.J.; Verelst, M.; Mauricot, R.; Brunckova, H.; Rocha, L.A. Effect of ytterbium amount on LaNbO4: Tm3+, Yb3+ nanoparticles for bio-labelling applications. Adv. Med. Sci. 2020, 65, 324–331. [Google Scholar] [CrossRef]
- Silva, M.O.; Stok, K.S. Imaging the osteochondral interface for potential early diagnosis of osteoarthritis with a nanoparticle-based contrast agent. Osteoarthr. Cartil. 2021, 29, S343–S344. [Google Scholar] [CrossRef]
- Lazebnik, T.; Weitman, C.; Kaminka, G.A. Generic Purpose Pharmacokinetics-Pharmacodynamics Mathematical Model For Nanomedicine Targeted Drug Delivery: Mouse Model. bioRxiv 2022. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Cheng, Y.-H.; Hsieh, N.-H.; Wu, B.-C.; Chou, W.-C.; Ho, C.-C.; Chen, J.-K.; Liao, C.-M.; Lin, P. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int. J. Nanomed. 2015, 10, 6277. [Google Scholar]
- Siepmann, J. In-silico simulations of advanced drug delivery systems: What will the future offer? Int. J. Pharm. 2013, 454, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, T.; Weitman, H.; Kaminka, G.A. Graph-Based Pharmacokinetic-Pharmadynamic Modeling for Large Scale Systems: Nanoparticles Case. bioRxiv 2022. [Google Scholar] [CrossRef]
Authors | Nanoparticles | Application | Conclusion | |
---|---|---|---|---|
Imaging | Therapy | |||
Tudda et al. [20] | Au NPs | √ | AuNPs increase the effective dose in the radiotherapy of breast cancer | |
Safari et al. [33] | Fe3O4@Au/Alg NPs | √ | improves the photothermal efficiency and dose-enhancement of X-rays | |
Kitayama et al. [36] | Au MIP-NGs | √ | inhibits in-vivo tumor growth with low-dose radiation therapy | |
Young et al. [42] | Gd-tex2+ | √ | efficient radiation sensitizer in in vitro and in vivo | |
Zhang et al. [112] | Pt@BSA NPs | √ | radiation doses enhancement | |
Yang et al. [116] | BP/Pt-Ce6@PEG NPs | √ | radio-sensitization for the hypoxia region of the tumor | |
Guerra et al. [67] | SPION-DX | √ | radio-sensitization for 6 MV photon beam | |
Chen et al. [85] | Au NPs/UCNPs/WO3@C | √ | √ | theranostics nanoplatform |
Mzwd et al. [26] | GA-Au NPs | √ | √ | laser ablation technique and CT contrast agent |
Zhou et al. [17] | Au-UC NPs | √ | √ | multi-modality imaging and photothermal effect |
Zhang et al. [28] | Au-UCNPs-DSPE-PEG2k | √ | √ | MRI and CT contrast agents in vivo and in vitro may also be used for photothermal treatment |
Li et al. [27] | Au DENPs labeled with 68Ga-DG | √ | can be used for PET/CT imaging contrast agent | |
Baijal et al. [37] | Au-PEG-NPs Ag-PEG-NPs | √ | √ | Au/Ag-PEG-NPs can be used as a radio-sensitizer and CT contrast agent in oral cancer KB cell lines |
Meng et al. [117] | Bi, Gd-CQDs | √ | Bi, Gd-CQDs is a good nanoprobe for CT, MRI, and fluorescence imaging | |
Mohammadi et al. [118] | Bi2S3@BSA-Triptorelin NPs | √ | Bi2S3@BSA-Triptorelin NPs might be used as a CT contrast agent | |
Zhao et al. [119] | ultrasmall DNA-Bi2S3 NPs | √ | They suggested that ultrasmall DNA-Bi2S3 NPs can be used as a PAI contrast agent for myocardial infarction imaging. | |
Zelepukin et al. [120] | polymer-coated BiOcl nanosheets | √ | They suggested that polymer-coated BiOcl nanosheets can be used as CT contrast agents for GI imaging. | |
Zaho et al. [121] | Bi@mSio2@Mno2/DOX | √ | √ | They suggested that Bi@mSio2@Mno2/DOX is a powerful theragnostic agent for CT/MRI medical imaging and PPT/chemodynamic therapy (CDT)/chemotherapy. |
Nosrati et al. [122] | Bi2S3@BSA-Fe3O4 NPs | √ | They suggested that Bi2S3@BSA-Fe3O4 NPs can be used as a dual contrast agent for MRI and CT imaging. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorasani, A.; Shahbazi-Gahrouei, D.; Safari, A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics 2023, 13, 833. https://doi.org/10.3390/diagnostics13050833
Khorasani A, Shahbazi-Gahrouei D, Safari A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics. 2023; 13(5):833. https://doi.org/10.3390/diagnostics13050833
Chicago/Turabian StyleKhorasani, Amir, Daryoush Shahbazi-Gahrouei, and Arash Safari. 2023. "Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review" Diagnostics 13, no. 5: 833. https://doi.org/10.3390/diagnostics13050833
APA StyleKhorasani, A., Shahbazi-Gahrouei, D., & Safari, A. (2023). Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics, 13(5), 833. https://doi.org/10.3390/diagnostics13050833