Medical Image Classifications for 6G IoT-Enabled Smart Health Systems
Abstract
:1. Introduction
- Proposing a 6G-enabled IoMT method that reduces human involvement in medical facilities while providing rapid diagnostic results. The new method is designed to be integrated into resource-constrained systems.
- Using the transfer learning approach to extract the features from the medical images.
- Enhancing the ability of the arithmetic optimization algorithm as a feature selection technique using operators of the hunger games search.
- Evaluating the developed 6G-IoMT model using four datasets and comparing its performance with other state-of-the-art techniques.
2. Related Works
2.1. IoMT-Based Deep Learning
2.2. Transfer Learning on Medical Images
2.3. Medical Images Classification Using FS Optimizers
DS | Model / Source | Methodology |
---|---|---|
ISIC-2016 | CUMED [47] | Integrating a fully convolutional residual network (FCRN) and other very deep residual networks for classification. |
BL-CNN [45] | Combining two different types of deep CNN (DCNN) features as local and global features, using deep ResNet for the global features and a bilinear (BL) pooling technique to extract local features. | |
DCNN-FV [62] | Integrating a ResNet method and a local descriptor encoding strategy. The local descriptors were based on a Fisher vector (FV) encoding to build a global image representation. | |
MC-CNN [52] | Using multiple DCNNs simultaneously and enabling them to mutually learn from each other. | |
MFA [63] | Cross-net-based combination of several fully convolutional were suggested. Used multiple CNNs for selecting semantic regions, local color and patterns in skin images. The FV was used to encode the selected features. | |
FUSION [64] | MobileNet and DenseNet were coupled to boost feature selectivity, computation complexity, and parameter settings. | |
PH2 | ANN [65] | A decision support system mad a doctor’s decision easier utilizing four distinct ML algorithms, where the artificial neural network (ANN) achieved the best performance. |
DenseNet201-SVM [66] | U-Net was used with spatial dropout to solve the problem of overfitting, and different augmentation effects were applied on the training images to increase the data samples. | |
DenseNet201-KNN [37] | Combined twelve CNN models as resource extractors with seven different classifier configurations, which the greatest results obtained using the DenseNet201 model with a KNN classifier. | |
ResNet50-NB [67] | A ResNet model was applied to map images and learn features through TL. The extracted features were optimized using a grasshopper optimization algorithm with a naïve Bayes classification. | |
Blood-Cell | CNN-SVM [68] | A CNN with SVM-based classifiers with features derived by a kernel principal component analysis of the intensity and histogram data was able to classify images. |
CNN [69] | An SVM and a granularity feature were used to detect and classify blood cells independently. CNNs were utilized to automatically extract high-level features from blood cells, and these features were then used to identify the other 3 types of blood cells using a random forest. | |
CNN-Augmentation [70] | The extraction and selection of features, as well as the classification of white blood cells, were all automated. A DL approach was used to automate the entire procedure with CNNs for binary and multiclass classification. |
3. Background
3.1. Enhanced Deep Learning
3.2. Arithmetic Optimization Algorithm
3.3. Hunger Games Search
4. Developed Approach
4.1. Feature-Extraction-Based Deep Learning
4.2. The Developed FS Algorithm
Algorithm 1 Pseudocode of the developed AOAHG algorithm |
|
4.3. Sixth-Generation-Enabled IoMT Framework
5. Experimental Studies and Results
5.1. Dataset
5.1.1. WBC Dataset
5.1.2. OCT Dataset
5.1.3. PH2 Dataset
5.1.4. ISIC Dataset
5.2. Experimental Results and Discussion
5.2.1. Results of FS Methods
5.2.2. Compared Methods
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dao, N.N. Internet of wearable things: Advancements and benefits from 6G technologies. Future Gener. Comput. Syst. 2022, 138, 172184. [Google Scholar] [CrossRef]
- Koundal, D.; Sharma, B.; Guo, Y. Intuitionistic based segmentation of thyroid nodules in ultrasound images. Comput. Biol. Med. 2020, 121, 103776. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, B.; Singh, J.; Srivastava, G.; Sharma, S.; Aggarwal, A.; Cheng, X. Local statistics-based speckle reducing bilateral filter for medical ultrasound images. Mob. Netw. Appl. 2020, 25, 2367–2389. [Google Scholar] [CrossRef]
- Zhang, G.; Navimipour, N.J. A comprehensive and systematic review of the IoT-based medical management systems: Applications, techniques, trends and open issues. Sustain. Cities Soc. 2022, 2022, 103914. [Google Scholar] [CrossRef]
- Krishnadas, P.; Chadaga, K.; Sampathila, N.; Rao, S.; Prabhu, S. Classification of Malaria Using Object Detection Models. Informatics 2022, 9, 76. [Google Scholar] [CrossRef]
- Sampathila, N.; Chadaga, K.; Goswami, N.; Chadaga, R.P.; Pandya, M.; Prabhu, S.; Bairy, M.G.; Katta, S.S.; Bhat, D.; Upadya, S.P. Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images. Healthcare 2022, 10, 1812. [Google Scholar] [CrossRef]
- Acharya, V.; Dhiman, G.; Prakasha, K.; Bahadur, P.; Choraria, A.; Prabhu, S.; Chadaga, K.; Viriyasitavat, W.; Kautish, S.; Sushobhitha , M.; et al. AI-assisted tuberculosis detection and classification from chest X-rays using a deep learning normalization-free network model. Comput. Intell. Neurosci. 2022, 2022, 2399428. [Google Scholar] [CrossRef]
- Faruqui, N.; Yousuf, M.A.; Whaiduzzaman, M.; Azad, A.; Barros, A.; Moni, M.A. LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput. Biol. Med. 2021, 139, 104961. [Google Scholar] [CrossRef]
- Hu, M.; Zhong, Y.; Xie, S.; Lv, H.; Lv, Z. Fuzzy system based medical image processing for brain disease prediction. Front. Neurosci. 2021, 15, 714318. [Google Scholar] [CrossRef]
- Aurna, N.F.; Yousuf, M.A.; Taher, K.A.; Azad, A.; Moni, M.A. A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models. Comput. Biol. Med. 2022, 146, 105539. [Google Scholar] [CrossRef]
- Yang, J.; Shi, R.; Wei, D.; Liu, Z.; Zhao, L.; Ke, B.; Pfister, H.; Ni, B. MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Sci. Data 2023, 10, 41. [Google Scholar] [CrossRef]
- Nayak, S.; Patgiri, R. 6G communication technology: A vision on intelligent healthcare. In Health Informatics: A Computational Perspective in Healthcare; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- Eid, M.M.; Rashed, A.N.Z.; Bulbul, A.A.M.; Podder, E. Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 2021, 16, 717–727. [Google Scholar] [CrossRef]
- Jin, B.; Zhao, Y.; Liang, Y. Internet of things medical image detection and pediatric renal failure dialysis complicated with respiratory tract infection. Microprocess. Microsyst. 2021, 83, 104016. [Google Scholar] [CrossRef]
- Wang, W.; Liu, F.; Zhi, X.; Zhang, T.; Huang, C. An Integrated deep learning algorithm for detecting lung nodules with low-dose CT and its application in 6G-enabled internet of medical things. IEEE Internet Things J. 2020, 8, 5274–5284. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Mabrouk, A.; Dahou, A.; Chelloug, S.A. Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things. Comput. Intell. Neurosci. 2022, 2022, 5830766. [Google Scholar] [CrossRef]
- Mabrouk, A.; Dahou, A.; Elaziz, M.A.; Díaz Redondo, R.P.; Kayed, M. Medical Image Classification Using Transfer Learning and Chaos Game Optimization on the Internet of Medical Things. Comput. Intell. Neurosci. 2022, 2022, 9112634. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Li, J.; Niu, S.; Song, H. Machine learning for the detection and identification of internet of things (iot) devices: A survey. arXiv 2021, arXiv:2101.10181. [Google Scholar]
- Karimi, D.; Warfield, S.K.; Gholipour, A. Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations. Artif. Intell. Med. 2021, 116, 102078. [Google Scholar] [CrossRef]
- da Silva, G.L.F.; Valente, T.L.A.; Silva, A.C.; de Paiva, A.C.; Gattass, M. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Comput. Methods Progr. Biomed. 2018, 162, 109–118. [Google Scholar] [CrossRef]
- Vijh, S.; Sharma, S.; Gaurav, P. Brain tumor segmentation using OTSU embedded adaptive particle swarm optimization method and convolutional neural network. In Data Visualization and Knowledge Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 171–194. [Google Scholar]
- Onay, F.K.; Aydemir, S.B. Chaotic hunger games search optimization algorithm for global optimization and engineering problems. Math. Comput. Simul. 2022, 192, 514–536. [Google Scholar] [CrossRef]
- Adel, H.; Dahou, A.; Mabrouk, A.; Abd Elaziz, M.; Kayed, M.; El-Henawy, I.M.; Alshathri, S.; Amin Ali, A. Improving crisis events detection using distilbert with hunger games search algorithm. Mathematics 2022, 10, 447. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Yuan, H.; Khishe, M.; Mohammadi, M. Nodes clustering and multi-hop routing protocol optimization using hybrid chimp optimization and hunger games search algorithms for sustainable energy efficient underwater wireless sensor networks. Sustain. Comput. Inform. Syst. 2022, 35, 100731. [Google Scholar] [CrossRef]
- Devi, R.M.; Premkumar, M.; Jangir, P.; Kumar, B.S.; Alrowaili, D.; Nisar, K.S. BHGSO: Binary hunger games search optimization algorithm for feature selection problem. CMC-Comput. Mater. Contin. 2022, 70, 557–579. [Google Scholar]
- Fahim, S.R.; Hasanien, H.M.; Turky, R.A.; Alkuhayli, A.; Al-Shamma’a, A.A.; Noman, A.M.; Tostado-Véliz, M.; Jurado, F. Parameter identification of proton exchange membrane fuel cell based on hunger games search algorithm. Energies 2021, 14, 5022. [Google Scholar] [CrossRef]
- Kaveh, A.; Hamedani, K.B. Improved arithmetic optimization algorithm and its application to discrete structural optimization. Structures 2022, 35, 748–764. [Google Scholar] [CrossRef]
- Khatir, S.; Tiachacht, S.; Le Thanh, C.; Ghandourah, E.; Mirjalili, S.; Wahab, M.A. An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates. Compos. Struct. 2021, 273, 114287. [Google Scholar] [CrossRef]
- Wang, R.B.; Wang, W.F.; Xu, L.; Pan, J.S.; Chu, S.C. An adaptive parallel arithmetic optimization algorithm for robot path planning. J. Adv. Transp. 2021, 2021, 3606895. [Google Scholar] [CrossRef]
- Dahou, A.; Al-qaness, M.A.; Abd Elaziz, M.; Helmi, A. Human activity recognition in IoHT applications using arithmetic optimization algorithm and deep learning. Measurement 2022, 199, 111445. [Google Scholar] [CrossRef]
- Khodadadi, N.; Snasel, V.; Mirjalili, S. Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints. IEEE Access 2022, 10, 16188–16208. [Google Scholar] [CrossRef]
- Gupta, K.D.; Sharma, D.K.; Ahmed, S.; Gupta, H.; Gupta, D.; Hsu, C.H. A Novel Lightweight Deep Learning-Based Histopathological Image Classification Model for IoMT. Neural Process. Lett. 2021, 2021, 1–24. [Google Scholar]
- Sekhar, A.; Biswas, S.; Hazra, R.; Sunaniya, A.K.; Mukherjee, A.; Yang, L. Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE J. Biomed. Health Inform. 2021, 26, 983–991. [Google Scholar] [CrossRef]
- Abeltino, A.; Bianchetti, G.; Serantoni, C.; Ardito, C.F.; Malta, D.; De Spirito, M.; Maulucci, G. Personalized Metabolic Avatar: A Data Driven Model of Metabolism for Weight Variation Forecasting and Diet Plan Evaluation. Nutrients 2022, 14, 3520. [Google Scholar] [CrossRef]
- Bianchetti, G.; Abeltino, A.; Serantoni, C.; Ardito, F.; Malta, D.; De Spirito, M.; Maulucci, G. Personalized self-monitoring of energy balance through integration in a web-application of dietary, anthropometric, and physical activity data. J. Pers. Med. 2022, 12, 568. [Google Scholar] [CrossRef]
- Serantoni, C.; Zimatore, G.; Bianchetti, G.; Abeltino, A.; De Spirito, M.; Maulucci, G. Unsupervised clustering of heartbeat dynamics allows for real time and personalized improvement in cardiovascular fitness. Sensors 2022, 22, 3974. [Google Scholar] [CrossRef]
- Rodrigues, D.D.A.; Ivo, R.F.; Satapathy, S.C.; Wang, S.; Hemanth, J.; Reboucas Filho, P.P. A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern Recognit. Lett. 2020, 136, 8–15. [Google Scholar] [CrossRef]
- Han, T.; Nunes, V.X.; Souza, L.F.D.F.; Marques, A.G.; Silva, I.C.L.; Junior, M.A.A.F.; Sun, J.; Reboucas Filho, P.P. Internet of Medical Things—Based on Deep Learning Techniques for Segmentation of Lung and Stroke Regions in CT Scans. IEEE Access 2020, 8, 71117–71135. [Google Scholar] [CrossRef]
- Bianchetti, G.; Taralli, S.; Vaccaro, M.; Indovina, L.; Mattoli, M.; Capotosti, A.; Scolozzi, V.; Calcagni, M.L.; Giordano, A.; De Spirito, M.; et al. Automated detection and classification of tumor histotypes on dynamic PET imaging data through machine-learning driven voxel classification. Comput. Biol. Med. 2022, 145, 105423. [Google Scholar] [CrossRef]
- Hossen, M.N.; Panneerselvam, V.; Koundal, D.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M. Federated machine learning for detection of skin diseases and enhancement of internet of medical things (IoMT) security. IEEE J. Biomed. Health Inform. 2022, 27, 835–841. [Google Scholar] [CrossRef]
- Jain, S.; Nehra, M.; Kumar, R.; Dilbaghi, N.; Hu, T.; Kumar, S.; Kaushik, A.; Li, C.Z. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens. Bioelectron. 2021, 179, 113074. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained models: Past, present and future. AI Open 2021, 2, 225–250. [Google Scholar] [CrossRef]
- Cheplygina, V.; de Bruijne, M.; Pluim, J.P. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 2019, 54, 280–296. [Google Scholar] [CrossRef] [Green Version]
- Ayan, E.; Ünver, H.M. Diagnosis of pneumonia from chest X-ray images using deep learning. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; pp. 1–5. [Google Scholar]
- Ge, Z.; Demyanov, S.; Bozorgtabar, B.; Abedini, M.; Chakravorty, R.; Bowling, A.; Garnavi, R. Exploiting local and generic features for accurate skin lesions classification using clinical and dermoscopy imaging. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 986–990. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 2016, 36, 994–1004. [Google Scholar] [CrossRef]
- Guo, Y.; Ashour, A.S.; Si, L.; Mandalaywala, D.P. Multiple convolutional neural network for skin dermoscopic image classification. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 365–369. [Google Scholar]
- Kawahara, J.; BenTaieb, A.; Hamarneh, G. Deep features to classify skin lesions. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 1397–1400. [Google Scholar]
- Lopez, A.R.; Giro-i Nieto, X.; Burdick, J.; Marques, O. Skin lesion classification from dermoscopic images using deep learning techniques. In Proceedings of the 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, 20–21 February 2017; pp. 49–54. [Google Scholar]
- Ayan, E.; Ünver, H.M. Data augmentation importance for classification of skin lesions via deep learning. In Proceedings of the 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018; pp. 1–4. [Google Scholar]
- Zhang, J.; Xie, Y.; Wu, Q.; Xia, Y. Medical image classification using synergic deep learning. Med. Image Anal. 2019, 54, 10–19. [Google Scholar] [CrossRef]
- Hosseinzadeh Taher, M.R.; Haghighi, F.; Feng, R.; Gotway, M.B.; Liang, J. A systematic benchmarking analysis of transfer learning for medical image analysis. In Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–13. [Google Scholar]
- Dalmaz, O.; Yurt, M.; Çukur, T. ResViT: Residual vision transformers for multimodal medical image synthesis. IEEE Trans. Med. Imaging 2022, 41, 2598–2614. [Google Scholar] [CrossRef]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef] [Green Version]
- Samala, R.K.; Chan, H.P.; Hadjiiski, L.M.; Helvie, M.A.; Richter, C.; Cha, K. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Phys. Med. Biol. 2018, 63, 095005. [Google Scholar] [CrossRef]
- Shankar, K.; Lakshmanaprabu, S.; Khanna, A.; Tanwar, S.; Rodrigues, J.J.; Roy, N.R. Alzheimer detection using Group Grey Wolf Optimization based features with convolutional classifier. Comput. Electr. Eng. 2019, 77, 230–243. [Google Scholar]
- Goel, T.; Murugan, R.; Mirjalili, S.; Chakrabartty, D.K. OptCoNet: An optimized convolutional neural network for an automatic diagnosis of COVID-19. Appl. Intell. 2021, 51, 1351–1366. [Google Scholar] [CrossRef]
- Elhoseny, M.; Shankar, K. Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements. Measurement 2019, 143, 125–135. [Google Scholar] [CrossRef]
- Zhang, N.; Cai, Y.X.; Wang, Y.Y.; Tian, Y.T.; Wang, X.L.; Badami, B. Skin cancer diagnosis based on optimized convolutional neural network. Artif. Intell. Med. 2020, 102, 101756. [Google Scholar] [CrossRef]
- El-Shafeiy, E.; Sallam, K.M.; Chakrabortty, R.K.; Abohany, A.A. A clustering based Swarm Intelligence optimization technique for the Internet of Medical Things. Expert Syst. Appl. 2021, 173, 114648. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, X.; Zhou, F.; Qin, J.; Ni, D.; Chen, S.; Lei, B.; Wang, T. Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans. Biomed. Eng. 2018, 66, 1006–1016. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, F.; Zhou, F.; He, X.; Ni, D.; Chen, S.; Wang, T.; Lei, B. Convolutional descriptors aggregation via cross-net for skin lesion recognition. Appl. Soft Comput. 2020, 92, 106281. [Google Scholar] [CrossRef]
- Wei, L.; Ding, K.; Hu, H. Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network. IEEE Access 2020, 8, 99633–99647. [Google Scholar] [CrossRef]
- Ozkan, I.A.; Koklu, M. Skin lesion classification using machine learning algorithms. Int. J. Intell. Syst. Appl. Eng. 2017, 5, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Al Nazi, Z.; Abir, T.A. Automatic skin lesion segmentation and melanoma detection: Transfer learning approach with u-net and dcnn-svm. In Proceedings of the International Joint Conference on Computational Intelligence, Budapest, Hungary, 2–4 November 2020; pp. 371–381. [Google Scholar]
- Afza, F.; Sharif, M.; Mittal, M.; Khan, M.A.; Hemanth, D.J. A hierarchical three-step superpixels and deep learning framework for skin lesion classification. Methods 2021, 202, 88–102. [Google Scholar] [CrossRef]
- Habibzadeh, M.; Krzyżak, A.; Fevens, T. White blood cell differential counts using convolutional neural networks for low resolution images. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 9–13 June 2013; pp. 263–274. [Google Scholar]
- Zhao, J.; Zhang, M.; Zhou, Z.; Chu, J.; Cao, F. Automatic detection and classification of leukocytes using convolutional neural networks. Med. Biol. Eng. Comput. 2017, 55, 1287–1301. [Google Scholar] [CrossRef]
- Sharma, M.; Bhave, A.; Janghel, R.R. White blood cell classification using convolutional neural network. In Soft Computing and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 135–143. [Google Scholar]
- Mabrouk, A.; Díaz Redondo, R.P.; Dahou, A.; Abd Elaziz, M.; Kayed, M. Pneumonia Detection on Chest X-ray Images Using Ensemble of Deep Convolutional Neural Networks. Appl. Sci. 2022, 12, 6448. [Google Scholar] [CrossRef]
- Ignatov, A.; Romero, A.; Kim, H.; Timofte, R. Real-time video super-resolution on smartphones with deep learning, mobile ai 2021 challenge: Report. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2535–2544. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 1–26 July 2016; pp. 770–778. [Google Scholar]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Mendonça, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J. PH 2-A dermoscopic image database for research and benchmarking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5437–5440. [Google Scholar]
- Gutman, D.; Codella, N.C.; Celebi, E.; Helba, B.; Marchetti, M.; Mishra, N.; Halpern, A. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv 2016, arXiv:1605.01397. [Google Scholar]
- Liang, G.; Hong, H.; Xie, W.; Zheng, L. Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 2018, 6, 36188–36197. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M. Chaos Game Optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2021, 54, 917–1004. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Fang, L.; Jin, Y.; Huang, L.; Guo, S.; Zhao, G.; Chen, X. Iterative fusion convolutional neural networks for classification of optical coherence tomography images. J. Vis. Commun. Image Represent. 2019, 59, 327–333. [Google Scholar] [CrossRef]
- Huang, L.; He, X.; Fang, L.; Rabbani, H.; Chen, X. Automatic classification of retinal optical coherence tomography images with layer guided convolutional neural network. IEEE Signal Process. Lett. 2019, 26, 1026–1030. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Sun, Z. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. J. Biomed. Opt. 2017, 22, 016012. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; He, W.; Huang, J.; Sun, Y. Efficient deep learning-based automated pathology identification in retinal optical coherence tomography images. Algorithms 2018, 11, 88. [Google Scholar] [CrossRef] [Green Version]
Alg. | Cls. | ISIC | PH2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | BA | F | R | P | ET | AC | BA | F | R | P | ET | ||
PSO | SVM | 85.75 | 72.04 | 84.78 | 85.75 | 84.68 | 0.13 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.12 |
XGB | 84.43 | 73.72 | 84.14 | 84.43 | 83.92 | 0.26 | 92.86 | 93.45 | 92.88 | 92.86 | 93.40 | 3.61 | |
KNN | 84.17 | 71.55 | 83.53 | 84.17 | 83.21 | 0.08 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.24 | |
RF | 85.22 | 74.72 | 84.90 | 85.22 | 84.68 | 0.33 | 91.79 | 91.67 | 91.85 | 91.79 | 92.60 | 0.56 | |
GWO | SVM | 84.43 | 71.21 | 83.65 | 84.43 | 83.34 | 0.16 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.09 |
XGB | 82.85 | 71.73 | 82.62 | 82.85 | 82.43 | 0.22 | 92.86 | 93.75 | 92.85 | 92.86 | 93.43 | 2.57 | |
KNN | 84.17 | 72.55 | 83.73 | 84.17 | 83.45 | 0.06 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.17 | |
RF | 85.22 | 73.71 | 84.72 | 85.22 | 84.46 | 0.30 | 91.79 | 91.67 | 91.85 | 91.79 | 92.60 | 0.48 | |
MFO | SVM | 86.54 | 73.03 | 85.57 | 86.54 | 85.60 | 0.15 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.09 |
XGB | 85.49 | 76.39 | 85.38 | 85.49 | 85.28 | 0.23 | 93.21 | 94.05 | 93.22 | 93.21 | 93.58 | 2.63 | |
KNN | 82.59 | 71.07 | 82.31 | 82.59 | 82.08 | 0.06 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.17 | |
RF | 85.22 | 73.71 | 84.72 | 85.22 | 84.46 | 0.31 | 92.14 | 91.96 | 92.21 | 92.14 | 92.87 | 0.50 | |
ArchOA | SVM | 86.28 | 74.88 | 85.73 | 86.28 | 85.51 | 0.09 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.06 |
XGB | 83.64 | 73.23 | 83.47 | 83.64 | 83.32 | 0.19 | 91.79 | 92.56 | 91.80 | 91.79 | 92.60 | 1.69 | |
KNN | 84.96 | 74.05 | 84.59 | 84.96 | 84.35 | 0.05 | 95.36 | 95.83 | 95.37 | 95.36 | 95.40 | 0.11 | |
RF | 85.75 | 74.55 | 85.27 | 85.75 | 85.03 | 0.29 | 93.57 | 93.75 | 93.61 | 93.57 | 94.00 | 0.45 | |
OA | SVM | 85.49 | 73.38 | 84.86 | 85.49 | 84.60 | 0.14 | 96.07 | 96.73 | 96.07 | 96.07 | 96.07 | 0.06 |
XGB | 84.70 | 73.39 | 84.27 | 84.70 | 84.01 | 0.27 | 93.57 | 94.35 | 93.58 | 93.57 | 93.97 | 1.81 | |
KNN | 85.49 | 74.38 | 85.04 | 85.49 | 84.79 | 0.07 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.12 | |
RF | 86.28 | 75.88 | 85.90 | 86.28 | 85.69 | 0.33 | 92.14 | 91.96 | 92.21 | 92.14 | 92.87 | 0.47 | |
BAT | SVM | 86.02 | 72.20 | 85.00 | 86.02 | 84.97 | 0.10 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.08 |
XGB | 85.75 | 75.05 | 85.36 | 85.75 | 85.13 | 0.19 | 92.86 | 93.75 | 92.86 | 92.86 | 93.28 | 2.48 | |
KNN | 82.32 | 68.39 | 81.55 | 82.32 | 81.12 | 0.05 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.16 | |
RF | 85.75 | 75.05 | 85.36 | 85.75 | 85.13 | 0.28 | 92.50 | 92.26 | 92.56 | 92.50 | 93.15 | 0.46 | |
HGS | SVM | 84.96 | 73.05 | 84.40 | 84.96 | 84.12 | 0.12 | 96.07 | 96.73 | 96.07 | 96.07 | 96.07 | 0.07 |
XGB | 85.49 | 75.39 | 85.22 | 85.49 | 85.02 | 0.23 | 92.50 | 93.15 | 92.52 | 92.50 | 93.15 | 2.07 | |
KNN | 84.96 | 73.05 | 84.40 | 84.96 | 84.12 | 0.07 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.15 | |
RF | 84.96 | 74.05 | 84.59 | 84.96 | 84.35 | 0.30 | 92.14 | 92.56 | 92.18 | 92.14 | 92.85 | 0.47 | |
CGO | SVM | 86.02 | 74.71 | 85.50 | 86.02 | 85.27 | 0.14 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.07 |
XGB | 84.96 | 73.05 | 84.40 | 84.96 | 84.12 | 0.22 | 93.57 | 94.35 | 93.58 | 93.57 | 93.97 | 2.15 | |
KNN | 84.96 | 73.55 | 84.50 | 84.96 | 84.23 | 0.06 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.14 | |
RF | 85.22 | 73.21 | 84.63 | 85.22 | 84.36 | 0.30 | 92.86 | 92.56 | 92.91 | 92.86 | 93.44 | 0.46 | |
AOA | SVM | 86.28 | 74.88 | 85.73 | 86.28 | 85.51 | 0.16 | 96.07 | 96.73 | 96.07 | 96.07 | 96.10 | 0.11 |
XGB | 85.75 | 73.54 | 85.08 | 85.75 | 84.85 | 0.25 | 93.93 | 94.64 | 93.94 | 93.93 | 94.27 | 2.86 | |
KNN | 84.96 | 71.04 | 83.99 | 84.96 | 83.78 | 0.07 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.18 | |
RF | 85.49 | 73.88 | 84.95 | 85.49 | 84.69 | 0.31 | 91.43 | 91.37 | 91.50 | 91.43 | 92.33 | 0.50 | |
AOAHG | SVM | 87.34 | 74.53 | 86.47 | 87.34 | 86.53 | 0.06 | 96.43 | 97.02 | 96.43 | 96.43 | 96.44 | 0.10 |
XGB | 84.43 | 72.72 | 83.96 | 84.43 | 83.67 | 0.09 | 93.57 | 94.35 | 93.58 | 93.57 | 93.97 | 3.01 | |
KNN | 84.17 | 72.55 | 83.73 | 84.17 | 83.45 | 0.04 | 95.71 | 96.13 | 95.72 | 95.71 | 95.77 | 0.19 | |
RF | 85.75 | 75.05 | 85.36 | 85.75 | 85.13 | 0.26 | 91.79 | 91.67 | 91.85 | 91.79 | 92.60 | 0.53 |
Alg. | Cls. | WBC | OCT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | BA | F | R | P | ET | AC | BA | F | R | P | ET | ||
PSO | SVM | 88.46 | 88.46 | 88.65 | 88.46 | 90.49 | 1.1 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 16 |
XGB | 88.42 | 88.41 | 88.64 | 88.42 | 90.60 | 58.0 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 178 | |
KNN | 88.42 | 88.42 | 88.61 | 88.42 | 90.44 | 8.4 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 3 | |
RF | 88.46 | 88.46 | 88.66 | 88.46 | 90.53 | 6.4 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 104 | |
GWO | SVM | 88.50 | 88.50 | 88.69 | 88.50 | 90.51 | 0.9 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 11 |
XGB | 88.42 | 88.42 | 88.65 | 88.42 | 90.63 | 44.3 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 137 | |
KNN | 88.50 | 88.50 | 88.69 | 88.50 | 90.55 | 6.5 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 2 | |
RF | 88.42 | 88.41 | 88.61 | 88.42 | 90.43 | 5.5 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 90 | |
MFO | SVM | 88.54 | 88.54 | 88.74 | 88.54 | 90.59 | 0.8 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 9 |
XGB | 88.50 | 88.50 | 88.71 | 88.50 | 90.58 | 42.5 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 119 | |
KNN | 88.50 | 88.50 | 88.70 | 88.50 | 90.60 | 6.1 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 2 | |
RF | 88.46 | 88.46 | 88.66 | 88.46 | 90.55 | 5.4 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 89 | |
ArchOA | SVM | 88.26 | 88.25 | 88.44 | 88.26 | 90.32 | 0.4 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 7 |
XGB | 88.30 | 88.30 | 88.52 | 88.30 | 90.45 | 15.7 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 90 | |
KNN | 88.58 | 88.58 | 88.75 | 88.58 | 90.55 | 1.9 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 1 | |
RF | 88.46 | 88.46 | 88.67 | 88.46 | 90.58 | 3.3 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 74 | |
AO | SVM | 88.26 | 88.25 | 88.47 | 88.26 | 90.44 | 0.6 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 9 |
XGB | 88.34 | 88.33 | 88.56 | 88.34 | 90.48 | 29.9 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 125 | |
KNN | 88.46 | 88.46 | 88.65 | 88.46 | 90.51 | 4.0 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 2 | |
RF | 88.34 | 88.33 | 88.55 | 88.34 | 90.48 | 4.4 | 99.48 | 99.48 | 99.48 | 99.48 | 99.49 | 76 | |
BAT | SVM | 88.34 | 88.34 | 88.51 | 88.34 | 90.23 | 0.8 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 12 |
XGB | 88.06 | 88.05 | 88.31 | 88.06 | 90.42 | 43.0 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 141 | |
KNN | 88.46 | 88.46 | 88.63 | 88.46 | 90.41 | 6.5 | 99.48 | 99.48 | 99.48 | 99.48 | 99.49 | 2 | |
RF | 88.30 | 88.29 | 88.52 | 88.30 | 90.44 | 5.5 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 88 | |
HGS | SVM | 88.54 | 88.54 | 88.74 | 88.54 | 90.62 | 0.4 | 99.59 | 99.59 | 99.59 | 99.59 | 99.59 | 9 |
XGB | 88.26 | 88.25 | 88.47 | 88.26 | 90.39 | 20.5 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 122 | |
KNN | 88.38 | 88.38 | 88.58 | 88.38 | 90.46 | 2.7 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 2 | |
RF | 88.46 | 88.46 | 88.67 | 88.46 | 90.62 | 4.0 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 86 | |
CGO | SVM | 88.50 | 88.50 | 88.68 | 88.50 | 90.49 | 1.0 | 99.59 | 99.59 | 99.59 | 99.59 | 99.59 | 10 |
XGB | 87.94 | 87.93 | 88.21 | 87.94 | 90.41 | 36.6 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 125 | |
KNN | 88.22 | 88.21 | 88.43 | 88.22 | 90.32 | 5.4 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 2 | |
RF | 88.22 | 88.21 | 88.44 | 88.22 | 90.41 | 5.2 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 86 | |
AOA | SVM | 88.58 | 88.58 | 88.76 | 88.58 | 90.57 | 0.8 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 12 |
XGB | 88.42 | 88.41 | 88.62 | 88.42 | 90.54 | 47.6 | 99.17 | 99.17 | 99.18 | 99.17 | 99.20 | 142 | |
KNN | 88.42 | 88.42 | 88.61 | 88.42 | 90.44 | 7.4 | 99.28 | 99.28 | 99.28 | 99.28 | 99.30 | 2 | |
RF | 88.42 | 88.41 | 88.62 | 88.42 | 90.51 | 5.9 | 99.07 | 99.07 | 99.07 | 99.07 | 99.10 | 86 | |
AOAHG | SVM | 88.62 | 88.62 | 88.80 | 88.62 | 90.59 | 1.0 | 99.69 | 99.69 | 99.69 | 99.69 | 99.69 | 6 |
XGB | 88.30 | 88.30 | 88.51 | 88.30 | 90.40 | 48.7 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 68 | |
KNN | 88.46 | 88.46 | 88.63 | 88.46 | 90.42 | 6.7 | 99.59 | 99.59 | 99.59 | 99.59 | 99.59 | 1 | |
RF | 88.38 | 88.37 | 88.59 | 88.38 | 90.52 | 5.8 | 99.38 | 99.38 | 99.38 | 99.38 | 99.40 | 62 |
DS | Model | AC (%) | Year | Ref. |
---|---|---|---|---|
ISIC | BL-CNN | 85.00 | 2017 | [45] |
DCNN-FV | 86.81 | 2018 | [62] | |
MC-CNN | 86.30 | 2019 | [52] | |
MFA | 86.81 | 2020 | [63] | |
AOAHG + SVM | 87.30 | present | Ours | |
PH2 | ANN | 92.50 | 2017 | [65] |
DenseNet + SVM | 92.00 | 2020 | [66] | |
DenseNet + KNN | 93.16 | 2020 | [37] | |
ResNet + NB | 95.40 | 2021 | [67] | |
AOAHG + SVM | 96.40 | present | Ours | |
WBC | CNN + SVM | 85.00 | 2013 | [68] |
CNN | 87.08 | 2017 | [69] | |
CNN + Augm | 87.00 | 2019 | [70] | |
AOAHG + SVM | 88.60 | present | Ours | |
OCT | Transfer Learning | 80.30 | 2018 | [87] |
IFCNN | 87.30 | 2019 | [88] | |
LGCNN | 89.90 | 2019 | [89] | |
IBDL | 94.57 | 2018 | [87] | |
ScSPM | 97.75 | 2017 | [90] | |
InceptionV3 | 98.86 | 2018 | [91] | |
AOAHG + SVM | 99.69 | present | Ours |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elaziz, M.A.; Dahou, A.; Mabrouk, A.; Ibrahim, R.A.; Aseeri, A.O. Medical Image Classifications for 6G IoT-Enabled Smart Health Systems. Diagnostics 2023, 13, 834. https://doi.org/10.3390/diagnostics13050834
Elaziz MA, Dahou A, Mabrouk A, Ibrahim RA, Aseeri AO. Medical Image Classifications for 6G IoT-Enabled Smart Health Systems. Diagnostics. 2023; 13(5):834. https://doi.org/10.3390/diagnostics13050834
Chicago/Turabian StyleElaziz, Mohamed Abd, Abdelghani Dahou, Alhassan Mabrouk, Rehab Ali Ibrahim, and Ahmad O. Aseeri. 2023. "Medical Image Classifications for 6G IoT-Enabled Smart Health Systems" Diagnostics 13, no. 5: 834. https://doi.org/10.3390/diagnostics13050834
APA StyleElaziz, M. A., Dahou, A., Mabrouk, A., Ibrahim, R. A., & Aseeri, A. O. (2023). Medical Image Classifications for 6G IoT-Enabled Smart Health Systems. Diagnostics, 13(5), 834. https://doi.org/10.3390/diagnostics13050834