MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajsic, S.; Gothe, H.; Borba, H.H.; Sroczynski, G.; Vujicic, J.; Toell, T.; Siebert, U. Economic Burden of Stroke: A Systematic Review on Post-Stroke Care. Eur. J. Health Econ. 2019, 20, 107–134. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Stroke Collaborators. Global, Regional, and National Burden of Stroke, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahey, M.; Crayton, E.; Wolfe, C.; Douiri, A. Clinical Prediction Models for Mortality and Functional Outcome Following Ischemic Stroke: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0185402. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; May, M.; Brindle, P. Derivation and Validation of QRISK, a New Cardiovascular Disease Risk Score for the United Kingdom: Prospective Open Cohort Study. BMJ 2007, 335, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Paynter, N.P.; Rifai, N.; Gaziano, J.M.; Cook, N.R. C-Reactive Protein and Parental History Improve Global Cardiovascular Risk Prediction: The Reynolds Risk Score for Men. Circulation 2008, 118, 2243–2251. [Google Scholar] [CrossRef] [Green Version]
- Roques, F.; Michel, P.; Goldstone, A.R.; Nashef, S.A.M. The Logistic EuroSCORE. Eur. Heart J. 2003, 24, 881–882. [Google Scholar] [CrossRef] [PubMed]
- Ntaios, G.; Gioulekas, F.; Papavasileiou, V.; Strbian, D.; Michel, P. ASTRAL, DRAGON and SEDAN Scores Predict Stroke Outcome More Accurately than Physicians. Eur. J. Neurol. 2016, 23, 1651–1657. [Google Scholar] [CrossRef]
- Papavasileiou, V.; Milionis, H.; Michel, P.; Makaritsis, K.; Vemmou, A.; Koroboki, E.; Manios, E.; Vemmos, K.; Ntaios, G. ASTRAL Score Predicts 5-Year Dependence and Mortality in Acute Ischemic Stroke. Stroke 2013, 44, 1616–1620. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Pednekar, N.; Lehrer, R.; Todo, A.; Sahni, R.; Marks, S.; Stiefel, M.F. DRAGON Score Predicts Functional Outcomes in Acute Ischemic Stroke Patients Receiving Both Intravenous Tissue Plasminogen Activator and Endovascular Therapy. Surg. Neurol. Int. 2017, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Brüning, T.; Al-Khaled, M. The SEDAN Score and the Risk of Intracerebral Hemorrhage in Monocenter-Study (S25.003). Neurology 2014, 82 (Supple. 10), S25.003. [Google Scholar]
- Chen, Q.; Xia, T.; Zhang, M.; Xia, N.; Liu, J.; Yang, Y. Radiomics in Stroke Neuroimaging: Techniques, Applications, and Challenges. Aging. Dis. 2021, 12, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmann, P.; Franceschi, E.; Vollmuth, P.; Dhermain, F.; Weller, M.; Preusser, M.; Smits, M.; Galldiks, N. Radiomics in Neuro-Oncological Clinical Trials. Lancet Digit. Health 2022, 4, e841–e849. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.S.; Fernandes, P.T.; Avelar, W.M.; Santos, S.L.M.; Castellano, G.; Li, L.M. Texture Analysis of Computed Tomography Images of Acute Ischemic Stroke Patients. Braz. J. Med. Biol. Res. 2009, 42, 1076–1079. [Google Scholar] [CrossRef]
- Sikiö, M.; Kölhi, P.; Ryymin, P.; Eskola, H.J.; Dastidar, P. MRI Texture Analysis and Diffusion Tensor Imaging in Chronic Right Hemisphere Ischemic Stroke. J. Neuroimaging 2015, 25, 614–619. [Google Scholar] [CrossRef]
- Ortiz-Ramón, R.; Valdés Hernández, M.D.C.; González-Castro, V.; Makin, S.; Armitage, P.A.; Aribisala, B.S.; Bastin, M.E.; Deary, I.J.; Wardlaw, J.M.; Moratal, D. Identification of the Presence of Ischaemic Stroke Lesions by Means of Texture Analysis on Brain Magnetic Resonance Images. Comput. Med. Imaging Graph. 2019, 74, 12–24. [Google Scholar] [CrossRef]
- Kassner, A.; Liu, F.; Thornhill, R.E.; Tomlinson, G.; Mikulis, D.J. Prediction of Hemorrhagic Transformation in Acute Ischemic Stroke Using Texture Analysis of Postcontrast T1-Weighted MR Images. J. Magn. Reson. Imaging 2009, 30, 933–941. [Google Scholar] [CrossRef]
- Qiu, W.; Kuang, H.; Nair, J.; Assis, Z.; Najm, M.; McDougall, C.; McDougall, B.; Chung, K.; Wilson, A.T.; Goyal, M.; et al. Radiomics-Based Intracranial Thrombus Features on CT and CTA Predict Recanalization with Intravenous Alteplase in Patients with Acute Ischemic Stroke. AJNR Am. J. Neuroradiol. 2019, 40, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Betrouni, N.; Yasmina, M.; Bombois, S.; Pétrault, M.; Dondaine, T.; Lachaud, C.; Laloux, C.; Mendyk, A.-M.; Henon, H.; Bordet, R. Texture Features of Magnetic Resonance Images: An Early Marker of Post-Stroke Cognitive Impairment. Transl. Stroke Res. 2020, 11, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Midya, A.; Chakraborty, J.; Gönen, M.; Do, R.K.G.; Simpson, A.L. Influence of CT Acquisition and Reconstruction Parameters on Radiomic Feature Reproducibility. J. Med. Imaging 2018, 5, 011020. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Ronald, J.; Vernuccio, F.; Nelson, R.C.; Ramirez-Giraldo, J.C.; Solomon, J.; Patel, B.N.; Samei, E.; Marin, D. Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings. Radiology 2019, 293, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, R.; Pastor-Juan, M.D.R.; Canales-Vázquez, J.; Castro-García, M.; Villas, M.V.; Mansilla Legorburo, F.; Sabater, S. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology 2018, 288, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring Computed Tomography Scanner Variability of Radiomics Features. Investig. Radiol. 2015, 50, 757–765. [Google Scholar] [CrossRef]
- Ugga, L.; Perillo, T.; Cuocolo, R.; Stanzione, A.; Romeo, V.; Green, R.; Cantoni, V.; Brunetti, A. Meningioma MRI Radiomics and Machine Learning: Systematic Review, Quality Score Assessment, and Meta-Analysis. Neuroradiology 2021, 63, 1293–1304. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, H.S.; Kim, D.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Kim, J.H. A Systematic Review Reporting Quality of Radiomics Research in Neuro-Oncology: Toward Clinical Utility and Quality Improvement Using High-Dimensional Imaging Features. BMC Cancer 2020, 20, 29. [Google Scholar] [CrossRef]
- Brancato, V.; Cerrone, M.; Lavitrano, M.; Salvatore, M.; Cavaliere, C. A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers 2022, 14, 2731. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. For the PROBAST Group† PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, G.; Ban, R.; Ren, J.-L.; Liu, Y.; Wang, W.; Dai, S.; Yuan, T. FLAIR and ADC Image-Based Radiomics Features as Predictive Biomarkers of Unfavorable Outcome in Patients With Acute Ischemic Stroke. Front. Neurosci. 2021, 15, 1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, Y.; Ge, Y.; Wu, P.-Y.; Lin, J.; Zhao, J.; Song, B. A Clinical-Radiomics Nomogram for Functional Outcome Predictions in Ischemic Stroke. Neurol. Ther. 2021, 10, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, D.; Yan, S.; Xie, Y.; Zhang, S.; Lv, W.; Qin, Y.; Liu, Y.; Liu, C.; Lu, J.; et al. Feasibility of a Clinical-Radiomics Model to Predict the Outcomes of Acute Ischemic Stroke. Korean. J. Radiol. 2022, 23, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, Y.; Ge, Y.; Wu, P.-Y.; Zhao, J.; Wang, H.; Song, B. MRI Whole-Lesion Texture Analysis on ADC Maps for the Prognostic Assessment of Ischemic Stroke. BMC Med. Imaging 2022, 22, 115. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Zhu, J.; Zhuang, Y.; Song, B. Diffusion-Weighted Imaging-Based Radiomics for Predicting 1-Year Ischemic Stroke Recurrence. Front. Neurol. 2022, 13, 1012896. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Zheng, L.; Zhao, J.; Song, B.; Dai, Y. Texture Analysis Based on ADC Maps and T2-FLAIR Images for the Assessment of the Severity and Prognosis of Ischaemic Stroke. Clin. Imaging 2020, 67, 152–159. [Google Scholar] [CrossRef]
- Qiu, Q.; Duan, J.; Deng, H.; Han, Z.; Gu, J.; Yue, N.J.; Yin, Y. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved PCR After Neoadjuvant Chemoradiotherapy Followed by Surgery. Front. Oncol. 2020, 10, 1398. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nohara, Y.; Soejima, H.; Yonehara, T.; Nakashima, N.; Kamouchi, M. Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke. Stroke 2020, 51, 1477–1483. [Google Scholar] [CrossRef]
- Jauch, E.C.; Saver, J.L.; Adams, H.P.; Bruno, A.; Connors, J.J.B.; Demaerschalk, B.M.; Khatri, P.; McMullan, P.W.; Qureshi, A.I.; Rosenfield, K.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 870–947. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.J.; Singh, S.; Lees, K.R.; Bath, P.M.; Myint, P.K. Validating and Comparing Stroke Prognosis Scales. Neurology 2017, 89, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soun, J.E.; Chow, D.S.; Nagamine, M.; Takhtawala, R.S.; Filippi, C.G.; Yu, W.; Chang, P.D. Artificial Intelligence and Acute Stroke Imaging. AJNR Am. J. Neuroradiol. 2021, 42, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.-H.; Ng, D.K.S.; Chow, D.H.K. An Image Feature Approach for Computer-Aided Detection of Ischemic Stroke. Comput. Biol. Med. 2011, 41, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Toni, D.; Iweins, F.; von Kummer, R.; Busse, O.; Bogousslavsky, J.; Falcou, A.; Lesaffre, E.; Lenzi, G.L. Identification of Lacunar Infarcts before Thrombolysis in the ECASS I Study. Neurology 2000, 54, 684–688. [Google Scholar] [CrossRef]
- Ospel, J.M.; Volny, O.; Qiu, W.; Najm, M.; Kashani, N.; Goyal, M.; Menon, B.K. Displaying Multiphase CT Angiography Using a Time-Variant Color Map: Practical Considerations and Potential Applications in Patients with Acute Stroke. AJNR Am. J. Neuroradiol. 2020, 41, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Verdolotti, T.; Pilato, F.; Cottonaro, S.; Monelli, E.; Giordano, C.; Guadalupi, P.; Benenati, M.; Ramaglia, A.; Costantini, A.M.; Alexandre, A.; et al. ColorViz, a New and Rapid Tool for Assessing Collateral Circulation during Stroke. Brain Sci. 2020, 10, 882. [Google Scholar] [CrossRef]
- Murray, N.M.; Unberath, M.; Hager, G.D.; Hui, F.K. Artificial Intelligence to Diagnose Ischemic Stroke and Identify Large Vessel Occlusions: A Systematic Review. J. NeuroIntervent. Surg. 2020, 12, 156–164. [Google Scholar] [CrossRef]
- Chung, J.; Kim, Y.; Cha, J.; Choi, E.; Kim, B.M.; Seo, W.; Kim, G.; Bang, O.Y. Characterization of Clot Composition in Acute Cerebral Infarct Using Machine Learning Techniques. Ann. Clin. Transl. Neurol. 2019, 6, 739–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.-W.; Jeong, H.-G.; Kim, D.Y.; Yang, W.; Lee, S.-H. Prediction of Stroke Subtype and Recanalization Using Susceptibility Vessel Sign on Susceptibility-Weighted Magnetic Resonance Imaging. Stroke 2017, 48, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhou, Y.; Liu, C.; Zhang, M.; Yan, S.; Liebeskind, D.S.; Lou, M. Overestimation of Susceptibility Vessel Sign: A Predictive Marker of Stroke Cause. Stroke 2017, 48, 1993–1996. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Yoon, W.; Kim, T.S.; Kim, H.S.; Heo, T.W.; Park, M.S. Histologic Analysis of Retrieved Clots in Acute Ischemic Stroke: Correlation with Stroke Etiology and Gradient-Echo MRI. AJNR Am. J. Neuroradiol. 2015, 36, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, M.; Ishida, Y.; Kimura, A.; Kondo, T. Time-Dependent Organic Changes of Intravenous Thrombi in Stasis-Induced Deep Vein Thrombosis Model and Its Application to Thrombus Age Determination. Forensic. Sci. Int. 2010, 195, 143–147. [Google Scholar] [CrossRef]
- Thijs, V.N.; Lansberg, M.G.; Beaulieu, C.; Marks, M.P.; Moseley, M.E.; Albers, G.W. Is Early Ischemic Lesion Volume on Diffusion-Weighted Imaging an Independent Predictor of Stroke Outcome? Stroke 2000, 31, 2597–2602. [Google Scholar] [CrossRef] [Green Version]
- Nighoghossian, N.; Hermier, M.; Adeleine, P.; Derex, L.; Dugor, J.F.; Philippeau, F.; Ylmaz, H.; Honnorat, J.; Dardel, P.; Berthezène, Y.; et al. Baseline Magnetic Resonance Imaging Parameters and Stroke Outcome in Patients Treated by Intravenous Tissue Plasminogen Activator. Stroke 2003, 34, 458–463. [Google Scholar] [CrossRef]
- Tanriverdi, Z.; Gocmen, R.; Oguz, K.K.; Topcuoglu, M.A.; Arsava, E.M. Elevations in Tissue Fluid-Attenuated Inversion Recovery Signal Are Related to Good Functional Outcome after Thrombolytic Treatment. J. Stroke Cerebrovasc. Dis. 2016, 25, 480–483. [Google Scholar] [CrossRef]
- Heiss, W.-D.; Kidwell, C.S. Imaging for Prediction of Functional Outcome and Assessment of Recovery in Ischemic Stroke. Stroke 2014, 45, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Kranz, P.G.; Eastwood, J.D. Does Diffusion-Weighted Imaging Represent the Ischemic Core? An Evidence-Based Systematic Review. Am. J. Neuroradiol. 2009, 30, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Guadagno, J.V.; Warburton, E.A.; Jones, P.S.; Day, D.J.; Aigbirhio, F.I.; Fryer, T.D.; Harding, S.; Price, C.J.; Green, H.A.; Barret, O.; et al. How Affected Is Oxygen Metabolism in DWI Lesions?: A Combined Acute Stroke PET-MR Study. Neurology 2006, 67, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Li, Y.; He, X.; Xu, Y.; Shu, Z.; Hu, X.; Chen, J.; Jiang, H.; Gong, X. Prediction of Malignant Acute Middle Cerebral Artery Infarction via Computed Tomography Radiomics. Front. Neurosci. 2020, 14, 708. [Google Scholar] [CrossRef] [PubMed]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Castellano, G.; Bonilha, L.; Li, L.M.; Cendes, F. Texture Analysis of Medical Images. Clin. Radiol. 2004, 59, 1061–1069. [Google Scholar] [CrossRef]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The Facts and the Challenges of Image Analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Boss, S.M.; Moustafa, R.R.; Moustafa, M.A.; El Sadek, A.; Mostafa, M.M.; Aref, H.M. Lesion Homogeneity on Diffusion-Weighted Imaging Is a Marker of Outcome in Acute Ischemic Stroke. Egypt. J. Neurol. Psychiatry Neurosurg. 2019, 55, 59. [Google Scholar] [CrossRef] [Green Version]
- Lovett, J.K.; Coull, A.J.; Rothwell, P.M. Early Risk of Recurrence by Subtype of Ischemic Stroke in Population-Based Incidence Studies. Neurology 2004, 62, 569–573. [Google Scholar] [CrossRef]
- Kolmos, M.; Christoffersen, L.; Kruuse, C. Recurrent Ischemic Stroke—A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105935. [Google Scholar] [CrossRef]
- Parekh, V.; Jacobs, M.A. Radiomics: A New Application from Established Techniques. Expert. Rev. Precis. Med. Drug. Dev. 2016, 1, 207–226. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-L.; Wang, W.-T.; Zhang, S.; Liu, H.-M.; Yuan, X.-Y.; Yang, X.; Gu, P. Cohort Study on the Prognosis of Acute Cerebral Infarction in Different Circulatory Systems at 1-Year Follow-Up. BMC Cardiovasc. Disord. 2021, 21, 521. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Oh, C.W.; Bae, H.-J.; Han, M.-K.; Park, H.; Bang, J.S. The Prognostic Factors That Influence Long-Term Survival in Acute Large Cerebral Infarction. J. Korean Neurosurg. Soc. 2011, 49, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Blagus, R.; Lusa, L. SMOTE for High-Dimensional Class-Imbalanced Data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Synhaeve, N.E.; Arntz, R.M.; van Alebeek, M.E.; van Pamelen, J.; Maaijwee, N.A.M.; Rutten-Jacobs, L.C.A.; Schoonderwaldt, H.C.; de Kort, P.L.M.; van Dijk, E.J.; de Leeuw, F.-E. Women Have a Poorer Very Long-Term Functional Outcome after Stroke among Adults Aged 18–50 Years: The FUTURE Study. J. Neurol. 2016, 263, 1099–1105. [Google Scholar] [CrossRef] [Green Version]
- Eren, F.; Ozguncu, C.; Ozturk, S. Short-Term Prognostic Predictive Evaluation in Female Patients With Ischemic Stroke: A Retrospective Cross-Sectional Study. Front. Neurol. 2022, 13, 329. [Google Scholar] [CrossRef]
- Ursprung, S.; Beer, L.; Bruining, A.; Woitek, R.; Stewart, G.D.; Gallagher, F.A.; Sala, E. Radiomics of Computed Tomography and Magnetic Resonance Imaging in Renal Cell Carcinoma-a Systematic Review and Meta-Analysis. Eur. Radiol. 2020, 30, 3558–3566. [Google Scholar] [CrossRef] [Green Version]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI Radiomics: A Systematic Review and Radiomic Quality Score Assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef]
- Granzier, R.W.Y.; van Nijnatten, T.J.A.; Woodruff, H.C.; Smidt, M.L.; Lobbes, M.B.I. Exploring Breast Cancer Response Prediction to Neoadjuvant Systemic Therapy Using MRI-Based Radiomics: A Systematic Review. Eur. J. Radiol. 2019, 121, 108736. [Google Scholar] [CrossRef] [Green Version]
- Cronin, P.; Kelly, A.M.; Altaee, D.; Foerster, B.; Petrou, M.; Dwamena, B.A. How to Perform a Systematic Review and Meta-Analysis of Diagnostic Imaging Studies. Acad. Radiol. 2018, 25, 573–593. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.W.; Choi, S.H.; Huh, J.; Park, S.H. Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part II. Statistical Methods of Meta-Analysis. Korean J. Radiol. 2015, 16, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- McCague, C.; Ramlee, S.; Reinius, M.; Selby, I.; Hulse, D.; Piyatissa, P.; Bura, V.; Crispin-Ortuzar, M.; Sala, E.; Woitek, R. Introduction to Radiomics for a Clinical Audience. Clin. Radiol. 2023, 78, 83–98. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies that investigated MRI radiomics features in patients with AIS Studies that assessed the clinical outcome based on RA features in AIS patients | Unavailable data on RA and predictive model performance CT-, CTA- or US-based RA studies Non-original investigations (reviews, editorials, letters or opinions) |
Study, Year | Sample, Age, Sex | AIS Type | Tx | Onset-to-MRI Time | Outcome Criteria | Clinical Factors | MRI Markers | MRI Seq | RA Features | Predictive Models | AUC, 95% CI |
---|---|---|---|---|---|---|---|---|---|---|---|
Quan et al. [33], 2021 | 110, 62, 70.9% male | first AIS in MCA territory, onset ≤72 h | ivT, MT: 12 p | 26.5 ± 15.7 | 90 days unfavorable outcome mRS > 2 | Age, gender, admission NIHSS | DWI-ASPECT score, ODs | FLAIR ADC | 6, TA, wavelet | Clinical | 0.79, 0.68–0.89 |
Clinical + MRI | 0.78, 0.68–0.88 | ||||||||||
ADC radiomics | 0.77, 0.62–0.83 | ||||||||||
FLAIR radiomics | 0.73. 0.62–0.83 | ||||||||||
ADC + FLAIR radiomics | 0.81, 0.73–0.89 | ||||||||||
RA + Clinical + MRI | 0.92, 0.87–0.97 | ||||||||||
Wang et al. [34], 2021 | 399, 67, 63.9% male | NR | NR | within 24 h after AIS onset | 90 days outcome mRS > 2 | Age, 24-h NIHSS | Hemorrhage | DWI | 11, TA | Clinical model | 0.77, 0.71–0.84 |
Radiomics model | 0.70, 0.64–0.77 | ||||||||||
Clinical + radiomics | 0.80, 0.75–0.86 | ||||||||||
Zhou et al. [35], 2022 | 311, 58, 72.7% male | Pen artery: 43.1%, cMCA: 28.6%, cACA: 5.5%, cPCA = 8.4%, ≥2 territories: 14.5% | NR | <24 h: 6.1%24–72 h: 93.9% | 6-month good outcome (mRS ≤ 2), poor outcome (mRS > 2) | Age, gender, stroke history, DM, b-mRS, b-NIHSS | - | DWI, ADC | 7, first-order statistics, TA | Clinical model | 0.82, 0.77–0.87 |
Radiomics model | 0.76, 0.70–0.82 | ||||||||||
Clinical + radiomics | 0.86, 0.82–0.91 | ||||||||||
Zhang et al. [36], 2022 | 103, 65, 64% male | Unilateral anterior circulation | NR | NR | 90 days outcome mRS > 2 | Atrial fibrillation | - | ADC | 7, TA, wavelet, LGT | ADC | 0.60, 049–0.71 |
tADC | 0.83, 075–0.91 | ||||||||||
tADC + clinical | 0.86, 079–0.93 | ||||||||||
Wang et al. [37], 2022 | 1003, 67, 67.9% m | Ant-circ: 68.5%, Post-circ: 28.5%, Both: 3% | NR | 72 h of AIS onset | 90 d outcome 1y AIS recurrence | NR | - | DWI | 100, TA, wavelet | Radiomics model | 0.77, 0.75–0.80 |
Clinical + radiomics | 0.84, 0.82–0.87 | ||||||||||
Wang et al. [38], 2020 | 116, 64, 72% male | NR | NR | NR | 90 days outcome mRS > 2, stroke severity | - | - | FLAIR, ADC | 15, first-order statistics, TA | RA features were not predictive of mRS. ADC-entropy and T2-FLAIR 0.75 quantile predicted AIS severity (AUC = 0.7, p = 0.01). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoș, H.M.; Stan, A.; Pintican, R.; Feier, D.; Lebovici, A.; Panaitescu, P.-Ș.; Dina, C.; Strilciuc, S.; Muresanu, D.F. MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review. Diagnostics 2023, 13, 857. https://doi.org/10.3390/diagnostics13050857
Dragoș HM, Stan A, Pintican R, Feier D, Lebovici A, Panaitescu P-Ș, Dina C, Strilciuc S, Muresanu DF. MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review. Diagnostics. 2023; 13(5):857. https://doi.org/10.3390/diagnostics13050857
Chicago/Turabian StyleDragoș, Hanna Maria, Adina Stan, Roxana Pintican, Diana Feier, Andrei Lebovici, Paul-Ștefan Panaitescu, Constantin Dina, Stefan Strilciuc, and Dafin F. Muresanu. 2023. "MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review" Diagnostics 13, no. 5: 857. https://doi.org/10.3390/diagnostics13050857
APA StyleDragoș, H. M., Stan, A., Pintican, R., Feier, D., Lebovici, A., Panaitescu, P. -Ș., Dina, C., Strilciuc, S., & Muresanu, D. F. (2023). MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome—A Systematic Review. Diagnostics, 13(5), 857. https://doi.org/10.3390/diagnostics13050857