Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD
Abstract
:1. Introduction
2. Machine Learning in Gastrointestinal Disease
2.1. Acid Exposure Time (AET)
2.2. The Number of Reflux Episodes and Reflux–Symptom Association
2.3. Baseline Impedance
2.4. Postreflux Swallow-Induced Peristaltic Wave (PSPW)
2.5. Clinical Implications for pH-Impedance Conventional and Novel Metrics
3. Application of Artificial Intelligence for pH-Impedance
3.1. Artificial Intelligence for Measuring the Number of Reflux Episodes
3.2. Artificial Intelligence for Measuring Baseline Impedance
3.3. Artificial Intelligence for Measuring PSPW
4. Future Perspectives
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Serag, H.B.; Sweet, S.; Winchester, C.C.; Dent, J. Update on the epidemiology of gastro-oesophageal reflux disease: A systematic review. Gut 2014, 63, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Savarino, E.; Zentilin, P.; Savarino, V. NERD: An umbrella term including heterogeneous subpopulations. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Yadlapati, R.; Masihi, M.; Gyawali, C.P.; Carlson, D.A.; Kahrilas, P.J.; Nix, B.D.; Jain, A.; Triggs, J.R.; Vaezi, M.F.; Kia, L.; et al. Ambulatory Reflux Monitoring Guides Proton Pump Inhibitor Discontinuation in Patients With Gastroesophageal Reflux Symptoms: A Clinical Trial. Gastroenterology 2021, 160, 174–182.e1. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, A.; Boecxstaens, V.; Andrews, C.N.; Attwood, S.E.; Berrisford, R.; Bisschops, R.; Boeckxstaens, G.E.; Bor, S.; Bredenoord, A.J.; Cicala, M.; et al. How to select patients for antireflux surgery? The ICARUS guidelines (international consensus regarding preoperative examinations and clinical characteristics assessment to select adult patients for antireflux surgery). Gut 2019, 68, 1928–1941. [Google Scholar] [CrossRef] [Green Version]
- Roman, S.; Gyawali, C.P.; Savarino, E.; Yadlapati, R.; Zerbib, F.; Wu, J.; Vela, M.; Tutuian, R.; Tatum, R.; Sifrim, D.; et al. Ambulatory reflux monitoring for diagnosis of gastro-esophageal reflux disease: Update of the Porto consensus and recommendations from an international consensus group. Neurogastroenterol. Motil. 2017, 29, 1–15. [Google Scholar] [CrossRef]
- Gyawali, C.P.; Kahrilas, P.J.; Savarino, E.; Zerbib, F.; Mion, F.; Smout, A.J.; Vaezi, M.; Sifrim, D.; Fox, M.R.; Vela, M.F.; et al. Modern diagnosis of GERD: The Lyon Consensus. Gut 2018, 67, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- DuPree, C.E.; Blair, K.; Steele, S.R.; Martin, M.J. Laparoscopic sleeve gastrectomy in patients with preexisting gastroesophageal reflux disease: A national analysis. JAMA Surg. 2014, 149, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyawali, C.P. The Value of Reflux Monitoring: The Old and the New for the Diagnosis and Assessment of GERD. Foregut 2021, 1, 124–131. [Google Scholar] [CrossRef]
- Sawada, A.; Guzman, M.; Nikaki, K.; Sonmez, S.; Yazaki, E.; Aziz, Q.; Woodland, P.; Rogers, B.; Prakash Gyawali, C.; Sifrim, D. Identification of Different Phenotypes of Esophageal Reflux Hypersensitivity and Implications for Treatment. Clin. Gastroenterol. Hepatol. 2021, 19, 690–698.e2. [Google Scholar] [CrossRef]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.D.; Fournier, L.; Smail-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020, 158, 76–94.e2. [Google Scholar] [CrossRef] [Green Version]
- Ebigbo, A.; Palm, C.; Probst, A.; Mendel, R.; Manzeneder, J.; Prinz, F.; de Souza, L.A.; Papa, J.P.; Siersema, P.; Messmann, H. A technical review of artificial intelligence as applied to gastrointestinal endoscopy: Clarifying the terminology. Endosc. Int. Open 2019, 7, E1616–E1623. [Google Scholar] [CrossRef]
- Sana, M.K.; Hussain, Z.M.; Shah, P.A.; Maqsood, M.H. Artificial intelligence in celiac disease. Comput. Biol. Med. 2020, 125, 103996. [Google Scholar] [CrossRef] [PubMed]
- Pecere, S.; Milluzzo, S.M.; Esposito, G.; Dilaghi, E.; Telese, A.; Eusebi, L.H. Applications of Artificial Intelligence for the Diagnosis of Gastrointestinal Diseases. Diagnostics 2021, 11, 1575. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- de Groof, A.J.; Struyvenberg, M.R.; van der Putten, J.; van der Sommen, F.; Fockens, K.N.; Curvers, W.L.; Zinger, S.; Pouw, R.E.; Coron, E.; Baldaque-Silva, F.; et al. Deep-Learning System Detects Neoplasia in Patients with Barrett’s Esophagus with Higher Accuracy than Endoscopists in a Multistep Training and Validation Study with Benchmarking. Gastroenterology 2020, 158, 915–929.e4. [Google Scholar] [CrossRef]
- Hashimoto, R.; Requa, J.; Dao, T.; Ninh, A.; Tran, E.; Mai, D.; Lugo, M.; Chehade, N.E.H.; Chang, K.J.; Karnes, W.E.; et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest. Endosc. 2020, 91, 1264–1271.e1. [Google Scholar] [CrossRef]
- Struyvenberg, M.R.; De Groof, A.J.; van der Putten, J.; van der Sommen, F.; Baldaque-Silva, F.; Omae, M.; Pouw, R.; Bisschops, R.; Vieth, M.; Schoon, E.J.; et al. A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastrointest. Endosc. 2021, 93, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cai, S.L.; Tan, W.M.; Li, J.C.; Yalikong, A.; Feng, X.S.; Yu, H.H.; Lu, P.X.; Feng, Z.; Yao, L.Q.; et al. Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging. World J. Gastroenterol. 2021, 27, 281–293. [Google Scholar] [CrossRef]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J. Med. Internet Res. 2020, 22, e21983. [Google Scholar] [CrossRef]
- Guimarães, P.; Keller, A.; Fehlmann, T.; Lammert, F.; Casper, M. Deep-learning based detection of gastric precancerous conditions. Gut 2020, 69, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lui, T.K.L.; Tsui, V.W.M.; Leung, W.K. Accuracy of artificial intelligence-assisted detection of upper GI lesions: A systematic review and meta-analysis. Gastrointest. Endosc. 2020, 92, 821–830.e9. [Google Scholar] [CrossRef]
- Maeda, Y.; Kudo, S.E.; Mori, Y.; Misawa, M.; Ogata, N.; Sasanuma, S.; Wakamura, K.; Oda, M.; Mori, K.; Ohtsuka, K. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest. Endosc. 2019, 89, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Klang, E.; Barash, Y.; Margalit, R.Y.; Soffer, S.; Shimon, O.; Albshesh, A.; Ben-Horin, S.; Amitai, M.M.; Eliakim, R.; Kopylov, U. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest. Endosc. 2020, 91, 606–613.e2. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Shi, H.; Zhang, H.; Meng, L.; Fan, M.; Han, C.; Zhang, K.; Ming, F.; Xie, X.; Liu, H.; et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology 2019, 157, 1044–1054.e5. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Harmon, D.M.; Behr, E.R.; Friedman, P.A. Application of artificial intelligence to the electrocardiogram. Eur. Heart J. 2021, 42, 4717–4730. [Google Scholar] [CrossRef]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef]
- Ma, F.; Yu, L.; Ye, L.; Yao, D.D.; Zhuang, W. Length-of-Stay Prediction for Pediatric Patients With Respiratory Diseases Using Decision Tree Methods. IEEE J. Biomed. Health Inform. 2020, 24, 2651–2662. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Wiener, G.J.; Morgan, T.M.; Copper, J.B.; Castell, D.O.; Sinclair, J.W.; Richter, J.E. Ambulatory 24-hour esophageal pH monitoring. Reproducibility and variability of pH parameters. Dig. Dis. Sci. 1988, 33, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Sayuk, G.S.; Gyawali, C.P. Parameters on esophageal pH-impedance monitoring that predict outcomes of patients with gastroesophageal reflux disease. Clin. Gastroenterol. Hepatol. 2015, 13, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Sayuk, G.S.; Gyawali, C.P. Prevalence, characteristics, and treatment outcomes of reflux hypersensitivity detected on pH-impedance monitoring. Neurogastroenterol. Motil. 2016, 28, 1382–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, B.D.; Valdovinos, L.R.; Crowell, M.D.; Bell, R.; Vela, M.F.; Gyawali, C.P. Number of reflux episodes on pH-impedance monitoring associates with improved symptom outcome and treatment satisfaction in gastro-oesophageal reflux disease (GERD) patients with regurgitation. Gut 2021, 70, 450–455. [Google Scholar] [CrossRef]
- Wiener, G.J.; Richter, J.E.; Copper, J.B.; Wu, W.C.; Castell, D.O. The symptom index: A clinically important parameter of ambulatory 24-hour esophageal pH monitoring. Am. J. Gastroenterol. 1988, 83, 358–361. [Google Scholar] [PubMed]
- Singh, S.; Richter, J.E.; Bradley, L.A.; Haile, J.M. The symptom index. Differential usefulness in suspected acid-related complaints of heartburn and chest pain. Dig. Dis. Sci. 1993, 38, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Weusten, B.L.; Roelofs, J.M.; Akkermans, L.M.; Van Berge-Henegouwen, G.P.; Smout, A.J. The symptom-association probability: An improved method for symptom analysis of 24-h esophageal pH data. Gastroenterology 1994, 107, 1741–1745. [Google Scholar] [CrossRef] [PubMed]
- Ghillebert, G.; Janssens, J.; Vantrappen, G.; Nevens, F.; Piessens, J. Ambulatory 24 h intraoesophageal pH and pressure recordings v provocation tests in the diagnosis of chest pain of oesophageal origin. Gut 1990, 31, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Gyawali, C.P.; Rogers, B.; Frazzoni, M.; Savarino, E.; Roman, S.; Sifrim, D. Inter-reviewer Variability in Interpretation of pH-Impedance Studies: The Wingate Consensus. Clin. Gastroenterol. Hepatol. 2021, 19, 1976–1978 e1. [Google Scholar] [CrossRef]
- Van Oudenhove, L.; Demyttenaere, K.; Tack, J.; Aziz, Q. Central nervous system involvement in functional gastrointestinal disorders. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 663–680. [Google Scholar] [CrossRef] [Green Version]
- Barlow, W.J.; Orlando, R.C. The pathogenesis of heartburn in nonerosive reflux disease: A unifying hypothesis. Gastroenterology 2005, 128, 771–778. [Google Scholar] [CrossRef]
- van Malenstein, H.; Farre, R.; Sifrim, D. Esophageal dilated intercellular spaces (DIS) and nonerosive reflux disease. Am. J. Gastroenterol. 2008, 103, 1021–1028. [Google Scholar] [CrossRef]
- Farré, R.; Blondeau, K.; Clement, D.; Vicario, M.; Cardozo, L.; Vieth, M.; Mertens, V.; Pauwels, A.; Silny, J.; Jimenez, M.; et al. Evaluation of oesophageal mucosa integrity by the intraluminal impedance technique. Gut 2011, 60, 885–892. [Google Scholar] [CrossRef]
- Frazzoni, M.; Savarino, E.; de Bortoli, N.; Martinucci, I.; Furnari, M.; Frazzoni, L.; Mirante, V.G.; Bertani, H.; Marchi, S.; Conigliaro, R.; et al. Analyses of the Post-reflux Swallow-induced Peristaltic Wave Index and Nocturnal Baseline Impedance Parameters Increase the Diagnostic Yield of Impedance-pH Monitoring of Patients with Reflux Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 40–46. [Google Scholar] [CrossRef]
- Penagini, R.; Sweis, R.; Mauro, A.; Domingues, G.; Vales, A.; Sifrim, D. Inconsistency in the Diagnosis of Functional Heartburn: Usefulness of Prolonged Wireless pH Monitoring in Patients With Proton Pump Inhibitor Refractory Gastroesophageal Reflux Disease. J. Neurogastroenterol. Motil. 2015, 21, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Pandolfino, J.E.; Richter, J.E.; Ours, T.; Guardino, J.M.; Chapman, J.; Kahrilas, P.J. Ambulatory esophageal pH monitoring using a wireless system. Am. J. Gastroenterol. 2003, 98, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Martinucci, I.; De Bortoli, N.; Savarino, E.; Piaggi, P.; Bellini, M.; Antonelli, A.; Savarino, V.; Frazzoni, M.; Marchi, S. Esophageal baseline impedance levels in patients with pathophysiological characteristics of functional heartburn. Neurogastroenterol. Motil. 2014, 26, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Hoshikawa, Y.; Sawada, A.; Sonmez, S.; Nikaki, K.; Woodland, P.; Yazaki, E.; Sifrim, D. Measurement of Esophageal Nocturnal Baseline Impedance: A Simplified Method. J. Neurogastroenterol. Motil. 2020, 26, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandulski, A.; Weigt, J.; Caro, C.; Jechorek, D.; Wex, T.; Malfertheiner, P. Esophageal intraluminal baseline impedance differentiates gastroesophageal reflux disease from functional heartburn. Clin. Gastroenterol. Hepatol. 2015, 13, 1075–1081. [Google Scholar] [CrossRef]
- Zhong, C.; Duan, L.; Wang, K.; Xu, Z.; Ge, Y.; Yang, C.; Han, Y. Esophageal intraluminal baseline impedance is associated with severity of acid reflux and epithelial structural abnormalities in patients with gastroesophageal reflux disease. J. Gastroenterol. 2013, 48, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Woodland, P.; Al-Zinaty, M.; Yazaki, E.; Sifrim, D. In vivo evaluation of acid-induced changes in oesophageal mucosa integrity and sensitivity in non-erosive reflux disease. Gut 2013, 62, 1256–1261. [Google Scholar] [CrossRef]
- Ribolsi, M.; Savarino, E.; De Bortoli, N.; Balestrieri, P.; Furnari, M.; Martinucci, I.; Casale, M.; Greco, F.; Salvinelli, F.; Savarino, V.; et al. Reflux pattern and role of impedance-pH variables in predicting PPI response in patients with suspected GERD-related chronic cough. Aliment Pharmacol. Ther. 2014, 40, 966–973. [Google Scholar] [CrossRef]
- Patel, A.; Wang, D.; Sainani, N.; Sayuk, G.S.; Gyawali, C.P. Distal mean nocturnal baseline impedance on pH-impedance monitoring predicts reflux burden and symptomatic outcome in gastro-oesophageal reflux disease. Aliment Pharmacol. Ther. 2016, 44, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, A.; Savarino, E.; Coletta, M.D.; Ghisa, M.; Patel, A.; Gyawali, C.P. Mean Nocturnal Baseline Impedance Correlates with Symptom Outcome When Acid Exposure Time Is Inconclusive on Esophageal Reflux Monitoring. Clin. Gastroenterol. Hepatol. 2020, 18, 589–595. [Google Scholar] [CrossRef]
- Zhang, M.; Yaman, B.; Roman, S.; Savarino, E.; Gyawali, C.P.; Gardner, J.D.; Sifrim, D. Post-reflux swallow-induced peristaltic wave (PSPW): Physiology, triggering factors and role in reflux clearance in healthy subjects. J. Gastroenterol. 2020, 55, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Roman, S.; des Varannes, S.B.; Pouderoux, P.; Chaput, U.; Mion, F.; Galmiche, J.P.; Zerbib, F.; Consortium de Recherche Indépendant sur le Traitement et l’Exploration du Reflux gastro-oesophagien et de l’Endobrachyoesophage (CRITERE). Ambulatory 24-h oesophageal impedance-pH recordings: Reliability of automatic analysis for gastro-oesophageal reflux assessment. Neurogastroenterol. Motil. 2006, 18, 978–986. [Google Scholar] [CrossRef] [PubMed]
- De Bortoli, N.; Martinucci, I.; Savarino, E.; Tutuian, R.; Frazzoni, M.; Piaggi, P.; Bertani, L.; Furnari, M.; Franchi, R.; Russo, S.; et al. Association between baseline impedance values and response proton pump inhibitors in patients with heartburn. Clin. Gastroenterol. Hepatol. 2015, 13, 1082–1088.e1. [Google Scholar] [CrossRef]
- Frazzoni, M.; de Bortoli, N.; Frazzoni, L.; Furnari, M.; Martinucci, I.; Tolone, S.; Farioli, A.; Marchi, S.; Fuccio, L.; Savarino, V.; et al. Impairment of chemical clearance and mucosal integrity distinguishes hypersensitive esophagus from functional heartburn. J. Gastroenterol. 2017, 52, 444–451. [Google Scholar] [CrossRef]
- Rogers, B.; Rogers, B.; Frazzoni, M.; Savarino, E.; Roman, S.; Sifrim, D.; Gyawali, C.P. Episode-level reflux characteristics: How experienced reviewers differentiate true reflux from artifact on pH-impedance studies. Neurogastroenterol. Motil. 2022, 34, e14153. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.J.; Loots, C.M.; Van Wijk, M.P.; Bredenoord, A.J.; Benninga, M.A.; Smout, A.J.P.M. An expert panel-based study on recognition of gastro-esophageal reflux in difficult esophageal pH-impedance tracings. Neurogastroenterol. Motil. 2015, 27, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.; Samanta, S.; Ghobadi, K.; Patel, A.; Savarino, E.; Roman, S.; Sifrim, D.; Gyawali, C.P. Artificial intelligence automates and augments baseline impedance measurements from pH-impedance studies in gastroesophageal reflux disease. J. Gastroenterol. 2021, 56, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.W.; Liu, M.X.; Lei, W.Y.; Liu, T.T.; Yi, C.H.; Hung, J.S.; Liang, S.W.; Lin, L.; Tseng, C.W.; Wang, J.H.; et al. Artificial intelligence facilitates measuring reflux episodes and postreflux swallow-induced peristaltic wave index from impedance-pH studies in patients with reflux disease. Neurogastroenterol. Motil. 2022, 35, e14506. [Google Scholar] [CrossRef]
- Helm, J.F.; Dodds, W.J.; Pelc, L.R.; Palmer, D.W.; Hogan, W.J.; Teeter, B.C. Effect of esophageal emptying and saliva on clearance of acid from the esophagus. N. Engl. J. Med. 1984, 310, 284–288. [Google Scholar] [CrossRef]
- Woodley, F.W.; Fernandez, S.; Mousa, H. Diurnal variation in the chemical clearance of acid gastroesophageal reflux in infants. Clin. Gastroenterol. Hepatol. 2007, 5, 37–43. [Google Scholar] [CrossRef]
- Frazzoni, M.; Manta, R.; Mirante, V.G.; Conigliaro, R.; Frazzoni, L.; Melotti, G. Esophageal chemical clearance is impaired in gastro-esophageal reflux disease--a 24-h impedance-pH monitoring assessment. Neurogastroenterol. Motil. 2013, 25, 399–406.e295. [Google Scholar] [CrossRef] [PubMed]
- Ribolsi, M.; Frazzoni, M.; Marabotto, E.; De Carlo, G.; Ziola, S.; Maniero, D.; Balestrieri, P.; Cicala, M.; Savarino, E. Novel impedance-pH parameters are associated with proton pump inhibitor response in patients with inconclusive diagnosis of gastro-oesophageal reflux disease according to Lyon Consensus. Aliment Pharmacol. Ther. 2021, 54, 412–418. [Google Scholar] [CrossRef] [PubMed]
Machine Learning | Deep Learning | |
---|---|---|
Definition | Learning the characteristics of data and finding the rules for its operation from data | Using multiple layers of nonlinear methods to learn data features |
Application | Data clustering, anomaly value detection, search for optimal solutions | Image recognition, image style transfer, language translation, speech recognition |
Advantages | Smaller model scale, model training and learning process is easier to understand | Widely applicable, able to solve complex problems |
Disadvantages | Data with high dimensions or complexity is not easy to learn | Larger model size, usually requires a large amount of data training to achieve better results |
Upper Limit of Physiologic Values | Role of AI | |
---|---|---|
AET | 4% >6%: pathologic 4–6%: inconclusive | N/A |
Number of reflux episodes | 40 >80: pathologic reflux; 40–80: inconclusive | Accuracy: 87–88.5% |
MNBI | >2292 Ω | Advanced to artificial intelligence baseline impedance |
PSPW index | >61% | Accuracy: 82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, M.-W.; Rogers, B.D.; Liu, M.-X.; Lei, W.-Y.; Liu, T.-T.; Yi, C.-H.; Hung, J.-S.; Liang, S.-W.; Tseng, C.-W.; Wang, J.-H.; et al. Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD. Diagnostics 2023, 13, 960. https://doi.org/10.3390/diagnostics13050960
Wong M-W, Rogers BD, Liu M-X, Lei W-Y, Liu T-T, Yi C-H, Hung J-S, Liang S-W, Tseng C-W, Wang J-H, et al. Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD. Diagnostics. 2023; 13(5):960. https://doi.org/10.3390/diagnostics13050960
Chicago/Turabian StyleWong, Ming-Wun, Benjamin D. Rogers, Min-Xiang Liu, Wei-Yi Lei, Tso-Tsai Liu, Chih-Hsun Yi, Jui-Sheng Hung, Shu-Wei Liang, Chiu-Wang Tseng, Jen-Hung Wang, and et al. 2023. "Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD" Diagnostics 13, no. 5: 960. https://doi.org/10.3390/diagnostics13050960
APA StyleWong, M. -W., Rogers, B. D., Liu, M. -X., Lei, W. -Y., Liu, T. -T., Yi, C. -H., Hung, J. -S., Liang, S. -W., Tseng, C. -W., Wang, J. -H., Wu, P. -A., & Chen, C. -L. (2023). Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD. Diagnostics, 13(5), 960. https://doi.org/10.3390/diagnostics13050960