Endoscopic Ultrasound in the Diagnosis of Extrahepatic Cholangiocarcinoma: What Do We Know in 2023?
Abstract
:1. Introduction
2. Methodology
3. Pathology
- Intraductal papillary neoplasm (IPNBs) can develop within intrahepatic or extrahepatic bile ducts following the classical adenoma-carcinoma sequence, have fine fibrovascular stalks, often yellow and friable, and may have a clinical and biochemical impact. In most cases, there is a high degree of dysplasia, and the epithelium from which the IPNB arises exhibits flat dysplasia [25,26]. It is possible to identify invasive CCAs in approximately half of IPNB cases, and the pancreaticobiliary subtype is more likely to be associated with invasive CCA than any other subtype [27]. In the case of IPNBs with atypia or stromal invasion, the outcomes are better compared to concurrent invasive carcinoma [28].
- Intraductal tubulopapillary neoplasm (ITPN) presents as a nodular mass up to 15 mm in size, with the same intraductal growth and tubular pattern as the pancreatic ITPNs [29], but with low mucin production and absent MUC5AC expression. The risk of invasive carcinoma is present in 70–80% of cases (typically tubular carcinoma [26,30]) but with a much better prognosis compared to IPNBs [26].
- Mucinous cystic neoplasms usually present as multilocular cysts with septation, or show a cyst-in-cyst appearance on preoperative imaging. They have a higher incidence in females and are usually diagnosed at a younger age than IPNBs, with an excellent prognosis when resected [31].
4. Cholangiocarcinoma Detection and Staging
4.1. Biliary Mass Detection
4.2. T Staging
4.3. N Staging
5. Cholangiocarcinoma Presents as Strictures
6. EUS Tissue Acquisition of Mass-Forming Cholangiocarcinoma
7. EUS Tissue Acquisition from Lymph Nodes
8. EUS Tissue Acquisition vs. ERCP Sampling
9. EUS Tissue Acquisition of Biliary Strictures
10. Intraductal Ultrasonography for Biliary Strictures
11. Diagnostic Algorithm
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef]
- Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef]
- Krampitz, G.W.; Aloia, T.A. Staging of Biliary and Primary Liver Tumors. Surg. Oncol. Clin. N. Am. 2019, 28, 663–683. [Google Scholar] [CrossRef]
- Sarcognato, S.; Sacchi, D.; Fassan, M.; Fabris, L.; Cadamuro, M.; Zanus, G.; Cataldo, I.; Capelli, P.; Baciorri, F.; Cacciatore, M.; et al. Cholangiocarcinoma. Pathologica 2021, 113, 158–169. [Google Scholar] [CrossRef]
- Krasinskas, A.M. Cholangiocarcinoma. Surg. Pathol. Clin. 2018, 11, 403–429. [Google Scholar] [CrossRef]
- Soares, K.C.; Jarnagin, W.R. The Landmark Series: Hilar Cholangiocarcinoma. Ann. Surg. Oncol. 2021, 28, 4158–4170. [Google Scholar] [CrossRef]
- Saleh, M.; Virarkar, M.; Bura, V.; Valenzuela, R.; Javadi, S.; Szklaruk, J.; Bhosale, P. Intrahepatic cholangiocarcinoma: Pathogenesis, current staging, and radiological findings. Abdom. Radiol. 2020, 45, 3662–3680. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Beal, E.W.; Chakedis, J.; Chen, Q.; Lv, Y.; Ethun, C.G.; Salem, A.; Weber, S.M.; Tran, T.; Poultsides, G.; et al. Defining Early Recurrence of Hilar Cholangiocarcinoma After Curative-intent Surgery: A Multi-institutional Study from the US Extrahepatic Biliary Malignancy Consortium. World J. Surg. 2018, 42, 2919–2929. [Google Scholar] [CrossRef]
- Oliveira, I.S.; Kilcoyne, A.; Everett, J.M.; Mino-Kenudson, M.; Harisinghani, M.G.; Ganesan, K. Cholangiocarcinoma: Classification, diagnosis, staging, imaging features, and management. Abdom. Radiol. 2017, 42, 1637–1649. [Google Scholar] [CrossRef]
- Kendall, T.; Verheij, J.; Gaudio, E.; Evert, M.; Guido, M.; Goeppert, B.; Carpino, G. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019, 39 (Suppl. S1), 7–18. [Google Scholar] [CrossRef] [Green Version]
- Blechacz, B.; Komuta, M.; Roskams, T.; Gores, G.J. Clinical diagnosis and staging of cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 512–522. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S. Intrahepatic cholangiocarcinoma: Macroscopic type and stage classification. J. Hepatobiliary Pancreat. Surg. 2003, 10, 288–291. [Google Scholar] [CrossRef]
- Vijgen, S.; Terris, B.; Rubbia-Brandt, L. Pathology of intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Nakanuma, Y.; Sato, Y.; Harada, K.; Sasaki, M.; Xu, J.; Ikeda, H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol. 2010, 2, 419–427. [Google Scholar] [CrossRef]
- De Rose, A.M.; Cucchetti, A.; Clemente, G.; Ardito, F.; Giovannini, I.; Ercolani, G.; Giuliante, F.; Pinna, A.D.; Nuzzo, G. Prognostic significance of tumor doubling time in mass-forming type cholangiocarcinoma. J. Gastrointest. Surg. 2013, 17, 739–747. [Google Scholar] [CrossRef]
- Aishima, S.; Oda, Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: Different characters of perihilar large duct type versus peripheral small duct type. J. Hepatobiliary Pancreat. Sci. 2015, 22, 94–100. [Google Scholar] [CrossRef]
- Komuta, M.; Govaere, O.; Vandecaveye, V.; Akiba, J.; Van Steenbergen, W.; Verslype, C.; Laleman, W.; Pirenne, J.; Aerts, R.; Yano, H.; et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012, 55, 1876–1888. [Google Scholar] [CrossRef]
- Liau, J.-Y.; Tsai, J.-H.; Yuan, R.-H.; Chang, C.-N.; Lee, H.-J.; Jeng, Y.-M. Morphological subclassification of intrahepatic cholangiocarcinoma: Etiological, clinicopathological, and molecular features. Mod. Pathol. 2014, 27, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, V.; Wang, Y.; Carpino, G.; Reid, L.M.; Gaudio, E.; Alvaro, D. Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology 2012, 55, 2041–2042. [Google Scholar] [CrossRef]
- Carpino, G.; Cardinale, V.; Folseraas, T.; Overi, D.; Grzyb, K.; Costantini, D.; Berloco, P.B.; Di Matteo, S.; Karlsen, T.H.; Alvaro, D.; et al. Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology 2019, 69, 622–638. [Google Scholar] [CrossRef] [Green Version]
- Komuta, M.; Spee, B.; Borght, S.V.; De Vos, R.; Verslype, C.; Aerts, R.; Yano, H.; Suzuki, T.; Matsuda, M.; Fujii, H.; et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 2008, 47, 1544–1556. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Sasaki, M.; Harada, K.; Aishima, S.; Fukusato, T.; Ojima, H.; Kanai, Y.; Kage, M.; Nakanuma, Y.; Tsubouchi, H. Pathological diagnosis of flat epithelial lesions of the biliary tract with emphasis on biliary intraepithelial neoplasia. J. Gastroenterol. 2014, 49, 64–72. [Google Scholar] [CrossRef]
- Hughes, N.R.; Pairojkul, C.; Royce, S.G.; Clouston, A.; Bhathal, P.S. Liver fluke-associated and sporadic cholangiocarcinoma: An immunohistochemical study of bile duct, peribiliary gland and tumor cell phenotypes. J. Clin. Pathol. 2006, 59, 1073–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.-T.; Levy, M.; Correa, A.M.; Rosen, C.B.; Abraham, S.C. Biliary intraepithelial neoplasia in patients without chronic biliary disease: Analysis of liver explants with alcoholic cirrhosis, hepatitis C infection, and noncirrhotic liver diseases. Cancer 2009, 115, 4564–4575. [Google Scholar] [CrossRef] [PubMed]
- Zen, Y.; Fujii, T.; Itatsu, K.; Nakamura, K.; Minato, H.; Kasashima, S.; Kurumaya, H.; Katayanagi, K.; Kawashima, A.; Masuda, S.; et al. Biliary papillary tumors share pathological features with intraductal papillary mucinous neoplasm of the pancreas. Hepatology 2006, 44, 1333–1343. [Google Scholar] [CrossRef]
- Schlitter, A.M.; Jang, K.-T.; Klöppel, G.; Saka, B.; Hong, S.-M.; Choi, H.; Offerhaus, G.J.; Hruban, R.H.; Zen, Y.; Konukiewitz, B.; et al. Intraductal tubulopapillary neoplasms of the bile ducts: Clinicopathologic, immunohistochemical, and molecular analysis of 20 cases. Mod. Pathol. 2016, 29, 93. [Google Scholar] [CrossRef] [Green Version]
- Schlitter, A.M.; Born, D.; Bettstetter, M.; Specht, K.; Kim-Fuchs, C.; Riener, M.-O.; Jeliazkova, P.; Sipos, B.; Siveke, J.T.; Terris, B.; et al. IIntraductal papillary neoplasms of the bile duct: Stepwise progression to carcinoma involves common molecular pathways. Mod. Pathol. 2014, 27, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Jung, G.; Park, K.-M.; Lee, S.S.; Yu, E.; Hong, S.-M.; Kim, J. Long-term clinical outcome of the surgically resected intraductal papillary neoplasm of the bile duct. J. Hepatol. 2012, 57, 787–793. [Google Scholar] [CrossRef]
- Park, H.J.; Jang, K.-T.; Heo, J.S.; Choi, Y.-L.; Han, J.; Kim, S.H. A potential case of intraductal tubulopapillary neoplasms of the bile duct. Pathol. Int. 2010, 60, 630–635. [Google Scholar] [CrossRef]
- Nakagawa, T.; Arisaka, Y.; Ajiki, T.; Fujikura, K.; Masuda, A.; Takenaka, M.; Shiomi, H.; Okabe, Y.; Fukumoto, T.; Ku, Y.; et al. Intraductal tubulopapillary neoplasm of the bile duct: A case report and review of the published work. Hepatol. Res. 2016, 46, 713–718. [Google Scholar] [CrossRef]
- Zen, Y.; Pedica, F.; Patcha, V.R.; Capelli, P.; Zamboni, G.; Casaril, A.; Quaglia, A.; Nakanuma, Y.; Heaton, N.; Portmann, B. Mucinous cystic neoplasms of the liver: A clinicopathological study and comparison with intraductal papillary neoplasms of the bile duct. Mod. Pathol. 2011, 24, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Lurie, R.H.; Cancer, C.; Abbott, D.E. Hepatobiliary Cancers; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®); Version 5.2022—13 January 2023. Available online: https://www.nccn.org (accessed on 11 February 2023).
- Zaheer, A.; Anwar, M.M.; Donohoe, C.; O’Keeffe, S.; Mushtaq, H.; Kelleher, B.; Clarke, E.; Kirca, M.; McKiernan, S.; Mahmud, N.; et al. The diagnostic accuracy of endoscopic ultrasound in suspected biliary obstruction and its impact on endoscopic retrograde cholangiopancreatography burden in real clinical practice: A consecutive analysis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 850–857. [Google Scholar] [CrossRef]
- Seicean, A.; Gincul, R. Mistakes in endoscopic ultrasonography and how to avoid them. UEG Educ. 2021, 21, 1–9. [Google Scholar]
- Lee, J.H.; Salem, R.; Aslanian, H.; Chacho, M.; Topazian, M. Endoscopic ultrasound and fine-needle aspiration of unexplained bile duct strictures. Am. J. Gastroenterol. 2004, 99, 1069–1073. [Google Scholar] [CrossRef]
- Mohamadnejad, M.; DeWitt, J.M.; Sherman, S.; LeBlanc, J.K.; Pitt, H.A.; House, M.G.; Jones, K.J.; Fogel, E.L.; McHenry, L.; Watkins, J.L.; et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: A large single-center experience. Gastrointest. Endosc. 2011, 73, 71–78. [Google Scholar] [CrossRef]
- Sai, J.K.; Suyama, M.; Kubokawa, Y.; Watanabe, S.; Maehara, T. Early detection of extrahepatic bile-duct carcinomas in the nonicteric stage by using MRCP followed by EUS. Gastrointest. Endosc. 2009, 70, 29–36. [Google Scholar] [CrossRef]
- Bruno, M.; Brizzi, R.F.; Mezzabotta, L.; Carucci, P.; Elia, C.; Gaia, S.; Mengozzi, G.; Romito, A.V.; Eloubeidi, M.A.; Rizzetto, M.; et al. Unexplained common bile duct dilatation with normal serum liver enzymes: Diagnostic yield of endoscopic ultrasound and follow-up of this condition. J. Clin. Gastroenterol. 2014, 48, e67–e70. [Google Scholar] [CrossRef] [PubMed]
- Tamada, K.; Ido, K.; Ueno, N.; Kimura, K.; Ichiyama, M.; Tomiyama, T. Preoperative staging of extrahepatic bile duct cancer with intraductal ultrasonography. Am. J. Gastroenterol. 1995, 90, 239–246. [Google Scholar]
- Gleeson, F.C.; Rajan, E.; Levy, M.J.; Clain, J.E.; Topazian, M.D.; Harewood, G.C.; Papachristou, G.I.; Takahashi, N.; Rosen, C.B.; Gores, G.J. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar cholangiocarcinoma. Gastrointest. Endosc. 2008, 67, 438–443. [Google Scholar] [CrossRef]
- Nguyen, N.Q.; Schoeman, M.N.; Ruszkiewicz, A. Clinical utility of EUS before cholangioscopy in the evaluation of difficult biliary strictures. Gastrointest. Endosc. 2013, 78, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Gausman, V.; Kokoy-Mondragon, C.; Munot, K.; Amin, S.P.; Desai, A.; Kipp, C.; Poneros, J.; Sethi, A.; Gress, F.G.; et al. Role of Fluorescent In Situ Hybridization, Cholangioscopic Biopsies, and EUS-FNA in the Evaluation of Biliary Strictures. Dig. Dis. Sci. 2018, 63, 636–644. [Google Scholar] [CrossRef]
- KHirata, K.; Kuwatani, M.; Suda, G.; Ishikawa, M.; Sugiura, R.; Kato, S.; Kawakubo, K.; Sakamoto, N. A Novel Approach for the Genetic Analysis of Biliary Tract Cancer Specimens Obtained Through Endoscopic Ultrasound-Guided Fine Needle Aspiration Using Targeted Amplicon Sequencing. Clin. Transl. Gastroenterol. 2019, 10, e00022. [Google Scholar] [CrossRef] [PubMed]
- Rompianesi, G.; Di Martino, M.; Gordon-Weeks, A.; Montalti, R.; Troisi, R. Liquid biopsy in cholangiocarcinoma: Current status and future perspectives. World J. Gastrointest. Oncol. 2021, 13, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Meacock, L.M.; Sellars, M.E.; Sidhu, P.S. Evaluation of gallbladder and biliary duct disease using microbubble contrast-enhanced ultrasound. Br. J. Radiol. 2010, 83, 615–627. [Google Scholar] [CrossRef]
- Otsuka, Y.; Kamata, K.; Hyodo, T.; Chikugo, T.; Hara, A.; Tanaka, H.; Yoshikawa, T.; Ishikawa, R.; Okamoto, A.; Yamazaki, T.; et al. Utility of contrast-enhanced harmonic endoscopic ultrasonography for T-staging of patients with extrahepatic bile duct cancer. Surg. Endosc. 2022, 36, 3254–3260. [Google Scholar] [CrossRef]
- Miyazaki, M.; Ohtsuka, M.; Miyakawa, S.; Nagino, M.; Yamamoto, M.; Kokudo, N.; Sano, K.; Endo, I.; Unno, M.; Chijiiwa, K.; et al. Classification of biliary tract cancers established by the Japanese Society of Hepato-Biliary-Pancreatic Surgery: 3(rd) English edition. J. Hepatobiliary. Pancreat. Sci. 2015, 22, 181–196. [Google Scholar] [CrossRef]
- Malikowski, T.; Levy, M.J.; Gleeson, F.C.; Storm, A.C.; Vargas, E.J.; Topazian, M.D.; Abu Dayyeh, B.K.; Iyer, P.G.; Rajan, E.; Gores, G.J.; et al. Endoscopic Ultrasound/Fine Needle Aspiration Is Effective for Lymph Node Staging in Patients with Cholangiocarcinoma. Hepatology 2020, 72, 940–948. [Google Scholar] [CrossRef]
- Bowlus, C.L.; Lim, J.K.; Lindor, K.D. AGA Clinical Practice Update on Surveillance for Hepatobiliary Cancers in Patients with Primary Sclerosing Cholangitis: Expert Review. Clin. Gastroenterol. Hepatol. 2019, 17, 2416–2422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWitt, J.; Misra, V.L.; Leblanc, J.K.; McHenry, L.; Sherman, S. EUS-guided FNA of proximal biliary strictures after negative ERCP brush cytology results. Gastrointest. Endosc. 2006, 64, 325–333. [Google Scholar] [CrossRef]
- Sun, B.; Moon, J.H.; Cai, Q.; Rerknimitr, R.; Ma, S.; Lakhtakia, S.; Ryozawa, S.; Kutsumi, H.; Yasuda, I.; Shiomi, H.; et al. Review article: Asia-Pacific consensus recommendations on endoscopic tissue acquisition for biliary strictures. Aliment. Pharmacol. Ther. 2018, 48, 138–151. [Google Scholar] [CrossRef]
- Torrealba, M.; Berzosa, M.; Raijman, I. Single-operator cholangioscopy for the diagnosis of bile duct lymphoma: A case report and brief review of the literature. Endoscopy 2013, 45 (Suppl. S2), E359–E360. [Google Scholar] [CrossRef] [Green Version]
- Paranandi, B.; Oppong, K.W. Biliary strictures: Endoscopic assessment and management. Frontline Gastroenterol. 2017, 8, 133–137. [Google Scholar] [CrossRef]
- Navaneethan, U.; Hasan, M.K.; Lourdusamy, V.; Njei, B.; Varadarajulu, S.; Hawes, R.H. Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: A systematic review. Gastrointest. Endosc. 2015, 82, 608–614.e2. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, A.; Mohamadnejad, M.; Islami, F.; Keshtkar, A.; Biglari, M.; Malekzadeh, R.; Eloubeidi, M.A. Diagnostic yield of EUS-guided FNA for malignant biliary stricture: A systematic review and meta-analysis. Gastrointest. Endosc. 2016, 83, 290–298.e1. [Google Scholar] [CrossRef] [PubMed]
- Onda, S.; Ogura, T.; Kurisu, Y.; Masuda, D.; Sano, T.; Takagi, W.; Fukunishi, S.; Higuchi, K. EUS-guided FNA for biliary disease as first-line modality to obtain histological evidence. Therap. Adv. Gastroenterol. 2016, 9, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Heinzow, H.S.; Kammerer, S.; Rammes, C.; Wessling, J.; Domagk, D.; Meister, T. Comparative analysis of ERCP, IDUS, EUS and CT in predicting malignant bile duct strictures. World J. Gastroenterol. 2014, 20, 10495–10503. [Google Scholar] [CrossRef]
- YLee, Y.N.; Moon, J.H.; Choi, H.J.; Kim, H.K.; Lee, H.W.; Lee, T.H.; Choi, M.H.; Cha, S.-W.; Cho, Y.D.; Park, S.-H. Tissue acquisition for diagnosis of biliary strictures using peroral cholangioscopy or endoscopic ultrasound-guided fine-needle aspiration. Endoscopy 2019, 51, 50–59. [Google Scholar]
- Yeo, S.J.; Cho, C.M.; Jung, M.K.; Seo, A.N.; Bae, H.I. Comparison of the Diagnostic Performances of Same-session Endoscopic Ultrasound- and Endoscopic Retrograde Cholangiopancreatography-guided Tissue Sampling for Suspected Biliary Strictures at Different Primary Tumor Sites. Korean J. Gastroenterol. 2019, 73, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weilert, F.; Bhat, Y.M.; Binmoeller, K.F.; Kane, S.; Jaffee, I.M.; Shaw, R.E.; Cameron, R.; Hashimoto, Y.; Shah, J.N. EUS-FNA is superior to ERCP-based tissue sampling in suspected malignant biliary obstruction: Results of a prospective, single-blind, comparative study. Gastrointest. Endosc. 2014, 80, 97–104. [Google Scholar] [CrossRef]
- Nayar, M.K.; Manas, D.M.; Wadehra, V.; Oppong, K.E. Role of EUS/EUS-guided FNA in the management of proximal biliary strictures. Hepatogastroenterology 2011, 58, 1862–1865. [Google Scholar] [CrossRef]
- Ohshima, Y.; Yasuda, I.; Kawakami, H.; Kuwatani, M.; Mukai, T.; Iwashita, T.; Doi, S.; Nakashima, M.; Hirose, Y.; Asaka, M.; et al. EUS-FNA for suspected malignant biliary strictures after negative endoscopic transpapillary brush cytology and forceps biopsy. J. Gastroenterol. 2011, 46, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Novis, M.; Ardengh, J.C.; Della Libera, E.; Nakao, F.S.; Ornellas, L.C.; Santo, G.C.; Venco, F.; Ferrari, A.P. Estudo prospectivo e comparativo do escovado obtido pela CPER à ecoendoscopia associada à punção aspirativa com agulha fina (EE-PAAF) no diagnóstico diferencial das estenoses biliares. Rev. Col. Bras. Cir. 2010, 37, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Byrne, M.F.; Gerke, H.; Mitchell, R.M.; Stiffler, H.L.; McGrath, K.; Branch, M.S.; Baillie, J.; Jowell, P.S. Yield of endoscopic ultrasound-guided fine-needle aspiration of bile duct lesions. Endoscopy 2004, 36, 715–719. [Google Scholar] [CrossRef]
- Eloubeidi, M.A.; Chen, V.K.; Jhala, N.C.; Eltoum, I.E.; Jhala, D.; Chhieng, D.C.; Syed, S.A.; Vickers, S.M.; Wilcox, C.M. Endoscopic ultrasound-guided fine needle aspiration biopsy of suspected cholangiocarcinoma. Clin. Gastroenterol. Hepatol. 2004, 2, 209–213. [Google Scholar] [CrossRef]
- Fritscher-Ravens, A.; Broering, D.C.; Knoefel, W.T.; Rogiers, X.; Swain, P.; Thonke, F.; Bobrowski, C.; Topalidis, T.; Soehendra, N. EUS-guided fine-needle aspiration of suspected hilar cholangiocarcinoma in potentially operable patients with negative brush cytology. Am. J. Gastroenterol. 2004, 99, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Rösch, T.; Hofrichter, K.; Frimberger, E.; Meining, A.; Born, P.; Weigert, N.; Allescher, H.-D.; Classen, M.; Barbur, M.; Schenck, U.; et al. ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study. Gastrointest. Endosc. 2004, 60, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Fritscher-Ravens, A.; Broering, D.C.; Sriram, P.V.; Topalidis, T.; Jaeckle, S.; Thonke, F.; Soehendra, N. EUS-guided fine-needle aspiration cytodiagnosis of hilar cholangiocarcinoma: A case series. Gastrointest. Endosc. 2000, 52, 534–540. [Google Scholar] [CrossRef]
- Schulick, R.D. Criteria of unresectability and the decision-making process. HPB 2008, 10, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimbach, J.K.; Sanchez, W.; Rosen, C.B.; Gores, G.J. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB 2011, 13, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Strongin, A.; Singh, H.; Eloubeidi, M.A.; Siddiqui, A.A. Role of endoscopic ultrasonography in the evaluation of extrahepatic cholangiocarcinoma. Endosc. Ultrasound 2013, 2, 71–76. [Google Scholar] [CrossRef] [Green Version]
- El Chafic, A.H.; DeWitt, J.; Leblanc, J.K.; I El Hajj, I.; Cote, G.; House, M.G.; Sherman, S.; McHenry, L.; Pitt, H.A.; Johnson, C.; et al. Impact of preoperative endoscopic ultrasound-guided fine needle aspiration on postoperative recurrence and survival in cholangiocarcinoma patients. Endoscopy 2013, 45, 883–889. [Google Scholar] [CrossRef]
- Menzel, J.; Poremba, C.; Dietl, K.H.; Domschke, W. Preoperative diagnosis of bile duct strictures--comparison of intraductal ultrasonography with conventional endosonography. Scand. J. Gastroenterol. 2000, 35, 77–82. [Google Scholar] [CrossRef]
- Tamada, K.; Ushio, J.; Sugano, K. Endoscopic diagnosis of extrahepatic bile duct carcinoma: Advances and current limitations. World J. Clin. Oncol. 2011, 2, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Troncone, E.; Gadaleta, F.; Paoluzi, O.A.; Gesuale, C.M.; Formica, V.; Morelli, C.; Roselli, M.; Savino, L.; Palmieri, G.; Monteleone, G.; et al. Endoscopic Ultrasound Plus Endoscopic Retrograde Cholangiopancreatography Based Tissue Sampling for Diagnosis of Proximal and Distal Biliary Stenosis Due to Cholangiocarcinoma: Results from a Retrospective Single-Center Study. Cancers 2022, 14, 1730. [Google Scholar] [CrossRef]
- Raine, T.; Thomas, J.P.; Brais, R.; Godfrey, E.; Carroll, N.R.; Metz, A.J. Test performance and predictors of accuracy of endoscopic ultrasound-guided fine-needle aspiration for diagnosing biliary strictures or masses. Endosc. Int. Open 2020, 8, E1537–E1544. [Google Scholar] [CrossRef]
- Onoyama, T.; Matsumoto, K.; Takeda, Y.; Kawata, S.; Kurumi, H.; Koda, H.; Yamashita, T.; Takata, T.; Isomoto, H. Endoscopic Ultrasonography-Guided Fine Needle Aspiration for Extrahepatic Cholangiocarcinoma: A Safe Tissue Sampling Modality. J. Clin. Med. 2019, 8, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.H.; Cho, C.M.; Jun, J.H.; Chung, M.J.; Kim, T.H.; Seo, D.W.; Kim, J.; Park, D.H. Same-session endoscopic ultrasound-guided fine needle aspiration and endoscopic retrograde cholangiopancreatography-based tissue sampling in suspected malignant biliary obstruction: A multicenter experience. J. Gastroenterol. Hepatol. 2019, 34, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Tummala, P.; Munigala, S.; Eloubeidi, M.A.; Agarwal, B. Patients with obstructive jaundice and biliary stricture ± mass lesion on imaging: Prevalence of malignancy and potential role of EUS-FNA. J. Clin. Gastroenterol. 2013, 47, 532–537. [Google Scholar] [CrossRef]
- Krishna, N.B.; Tummala, P.; Labundy, J.L.; Agarwal, B. EUS guided fine needle aspiration is useful in diagnostic evaluation of indeterminate proximal biliary strictures. Open J. Gastroenterol. 2012, 2, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Meara, R.S.; Jhala, D.; Eloubeidi, M.A.; Eltoum, I.; Chhieng, D.C.; Crowe, D.R.; Varadarajulu, S.; Jhala, N. Endoscopic ultrasound-guided FNA biopsy of bile duct and gallbladder: Analysis of 53 cases. Cytopathology 2006, 17, 42–49. [Google Scholar] [CrossRef]
- Crinò, S.F.; Bellocchi, M.C.C.; Antonini, F.; Macarri, G.; Carrara, S.; Lamonaca, L.; Di Mitri, R.; Conte, E.; Fabbri, C.; Binda, C.; et al. Impact of biliary stents on the diagnostic accuracy of EUS-guided fine-needle biopsy of solid pancreatic head lesions: A multicenter study. Endosc. Ultrasound 2021, 10, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Larghi, A.; Rimbaș, M.; Ardito, F.; Rizzatti, G.; Giuliante, F. Letter to the Editor: EUS-FNA for Lymph Nodes Staging in Cholangiocarcinoma: Should It Become Standard of Care? Hepatology 2020, 72, 1496. [Google Scholar] [CrossRef] [PubMed]
- Coronel, M.; Kumar, D.; Bahdi, F.; Kumar, S.; Lum, P.; Nogueras, G.; Weston, B.R.; Ross, W.; Raju, G.; Ge, P.S.; et al. S3208 The Use of ERCP in the Diagnosis of Indeterminate Biliary Strictures: Experience From a Large Tertiary Care Center. Off. J. Am. Coll. Gastroenterol. ACG 2021, 116, S1320. [Google Scholar] [CrossRef]
- Navaneethan, U.; Njei, B.; Lourdusamy, V.; Konjeti, R.; Vargo, J.J.; Parsi, M.A. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: A systematic review and meta-analysis. Gastrointest. Endosc. 2015, 81, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.B.; Moon, S.H.; Ko, S.W.; Lim, H.; Kang, H.S.; Kim, J.H. Brush Cytology, Forceps Biopsy, or Endoscopic Ultrasound-Guided Sampling for Diagnosis of Bile Duct Cancer: A Meta-Analysis. Dig. Dis. Sci. 2022, 67, 3284–3297. [Google Scholar] [CrossRef] [PubMed]
- Mathew, P.; Kanni, P.; Gowda, M.; Devarapu, C.; Ansari, J.; Garg, A. A Comparative Study of Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA) and Endoscopic Retrograde Cholangiopancreatography (ERCP)-Based Brush Cytology for Tissue Diagnosis in Malignant Biliary Obstruction. Cureus 2022, 14, e30291. [Google Scholar] [CrossRef]
- Chung, H.G.; Chang, J.-I.; Lee, K.H.; Park, J.K.; Lee, K.T.; Lee, J.K. Comparison of EUS and ERCP-guided tissue sampling in suspected biliary stricture. PLoS ONE 2021, 16, e0258887. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.F.; Sun, L.Q.; Hu, J.H.; Shi, Y.J.; Zhang, J.Y.; Jin, Z.D. Assessment of different modalities for repeated tissue acquisition in diagnosing malignant biliary strictures: A two-center retrospective study. J. Dig. Dis. 2021, 22, 102–107. [Google Scholar] [CrossRef]
- de Moura, D.T.H.; Ryou, M.; de Moura, E.; Ribeiro, I.B.; Bernardo, W.M.; Thompson, C.C. Endoscopic Ultrasound-Guided Fine Needle Aspiration and Endoscopic Retrograde Cholangiopancreatography-Based Tissue Sampling in Suspected Malignant Biliary Strictures: A Meta-Analysis of Same-Session Procedures. Clin. Endosc. 2020, 53, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Pouw, R.E.; Barret, M.; Biermann, K.; Bisschops, R.; Czakó, L.; Gecse, K.B.; de Hertogh, G.; Hucl, T.; Iacucci, M.; Jansen, M.; et al. Endoscopic tissue sampling—Part 1: Upper gastrointestinal and hepatopancreatobiliary tracts. European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2021, 53, 1174–1188. [Google Scholar] [CrossRef]
- De Moura, D.H.; De Moura, E.H.; Bernardo, W.; De Moura, E.H.; Baracat, F.; Kondo, A.; Matuguma, S.; Artifon, E.A. Endoscopic retrograde cholangiopancreatography versus endoscopic ultrasound for tissue diagnosis of malignant biliary stricture: Systematic review and meta-analysis. Endosc. Ultrasound 2018, 7, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Njei, B.; Venkatesh, P.G.; Lourdusamy, V.; Sanaka, M.R. Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary strictures: A systematic review and meta-analysis. Gastroenterol. Rep. 2015, 3, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.T.H.; de Moura, E.G.H.; Matuguma, S.E.; dos Santos, M.E.; Baracat, F.I.; LA Artifon, E.; Cheng, S.; Bernardo, W.M.; Chacon, D.; Tanigawa, R.; et al. EUS-FNA versus ERCP for tissue diagnosis of suspect malignant biliary strictures: A prospective comparative study. Endosc. Int. Open 2018, 6, E769–E777. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Austin, G.L.; Fukami, N.; Sethi, A.; Brauer, B.C.; Shah, R.J. Cholangiopancreatoscopy and endoscopic ultrasound for indeterminate pancreaticobiliary pathology. Dig. Dis. Sci. 2013, 58, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.T.; Chapman, C.G.; Xu, P.; Koons, A.; Konda, V.J.; Siddiqui, U.D.; Waxman, I. Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound. Gastroenterology 2015, 149, 1794–1803.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Buxbaum, J. Advanced Imaging of the Biliary System and Pancreas. Dig. Dis. Sci. 2022, 67, 1599–1612. [Google Scholar] [CrossRef]
- Varadarajulu, S.; Eloubeidi, M.A. The role of endoscopic ultrasonography in the evaluation of pancreatico-biliary cancer. Surg. Clin. N. Am. 2010, 90, 251–263. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Wu, J.-C.; Bie, L.; Xia, L.; Gong, B. Diagnostic Utility of Endoscopic Retrograde Cholangiography/Intraductal Ultrasound (ERC/IDUS) in Distinguishing Malignant from Benign Bile Duct Obstruction. Dig. Dis. Sci. 2016, 61, 610–617. [Google Scholar] [CrossRef]
- Tischendorf, J.J.W.; Meier, P.N.; Schneider, A.; Manns, M.P.; Krüger, M. Transpapillary intraductal ultrasound in the evaluation of dominant bile duct stenoses in patients with primary sclerosing cholangitis. Scand. J. Gastroenterol. 2007, 42, 1011–1017. [Google Scholar] [CrossRef]
- Kim, H.S.; Moon, J.H.; Lee, Y.N.; Choi, H.J.; Lee, H.W.; Kim, H.K.; Lee, T.H.; Choi, M.H.; Cha, S.-W.; Cho, Y.D.; et al. Prospective Comparison of Intraductal Ultrasonography-Guided Transpapillary Biopsy and Conventional Biopsy on Fluoroscopy in Suspected Malignant Biliary Strictures. Gut Liver 2018, 12, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Coronel, M.; Lee, J.H.; Coronel, E. Endoscopic Ultrasound for the Diagnosis and Staging of Biliary Malignancy. Clin. Liver Dis. 2022, 26, 115–125. [Google Scholar] [CrossRef] [PubMed]
Author, Year | No. of Patients (n) | Type of Study | Accuracy of T Staging (%) | Accuracy of N Staging (%) | Accuracy of Portal Vein Invasion (%) | Accuracy of Hepatic Artery Invasion (%) |
---|---|---|---|---|---|---|
Otsuka 2022, [40] | 38 (22 were T1 and T2 cases) | R 1 | CH-EUS 3 73.7 EUS 4 60.5 | - | CH-EUS 100 EUS 100 | CH-EUS 100 EUS 100 |
Malikowski 2020, [41] | 133 | R | - | 86 | - | - |
Sugiyama 1999, [42] | 19 | P 2 | - | - | 100 | - |
Tio 1993, [43] | 46 | R | 66 | 64 | - | - |
Mukai 1992, [44] | 16 | R | 81 | 81 | 88 | - |
Author, Year | No of Pts/No of Proximal Strictures, n/n | Type of Study | Type of FNA Needle | Diagnostic Value of EUS-FNA % | Diagnostic Value of EUS-FNA for Proximal Strictures % |
---|---|---|---|---|---|
Lee 2019, [58] | 27/0 | P 1 | FNA 3 22,25G | 96.3 | - |
Yeo 2019, [59] | 93/0 | R 2 | FNA 19,20,22,25G | 86.8 | - |
Weilert 2014, [60] | 15/8 | P | FNA 22,25G | 80 | - |
Nayar 2011, [61] | 32/32 | R | FNA * | 52 | 52 |
Ohshima 2011, [62] | 22/9 | R | FNA 19,22,25G | 100 | - |
Novis 2010, [63] | 11/3 | P | FNA 22G | 69.4 | - |
DeWitt 2006, [50] | 24/24 | P | FNA 22G | - | Sn 4 = 77, Sp 5 = 100, PPV 6 = 100, NPV 7 = 29 |
Byrne 2004, [64] | 35/3 | R | FNA 22G | 45–100 | - |
Eloubeidi 2004, [65] | 28/15 | P | FNA 22G | 86 | - |
Fritscher Ravens 2004, [66] | 44/44 | P | FNA 22G | - | 89 |
Lee 2004, [35] | 42/1 | R | FNA * | 47 | - |
Rosch 2004, [67] | 28/11 | P | FNA 22G | 43 | 25 |
Fritscher Ravens 2000, [68] | 10/10 | P | FNA 22G | - | 89 |
Author, Year | No. of Pts | Type of Study | Type of Needle | Final Diagnosis | Sn 7 % | Sp 8 % | PPV 9 % | NPV 10 % | Acc 11 % |
---|---|---|---|---|---|---|---|---|---|
Troncone 2022, [75] | 29 | R 1 | FNA 3/ FNB 4 22G | ERCP 6 or EUS or surgery | Distal 44.4 Proximal 90.1 | Distal 100 Proximal 100 | - | - | Distal 64.3 Proximal 91.7 |
Raine 2020, [76] | 80 | R | FNA 22G | surgery | 77 | 100 | 100 | 60 | - |
Onoyama 2019, [77] | 37 | R | FNA 22G | EUS-FNA or ERCP | 81.8 | 87.5 | 90 | 77.8 | 84.2 |
Jo 2018, [78] | 53 | R | FNA 22, 25, 19G | surgery or EUS-FNA and/or ERCP or follow-up | 75 | - | - | 18.1 | 76.3 |
Onda 2016, [56] | 37 | P 2 | FNA 22G | 37 EUS-FNA | 84 | 100 | 100 | 63 | 87 |
Weilert 2014, [60] | 13 | P | FNA 22, 25G | surgery or EUS-FNA and/or ERCP or follow-up | 79 | - | - | - | 80 |
Tummala 2013, [79] | 28 | R | FNA * | EUS | 91.5 | 94.6 | 97.8 | 80.9 | 92.4 |
Krishna 2012, [80] | 18 | P | FNA 22, 25G | Surgery or EUS or follow-up | 66.6 | 100 | 100 | 62.5 | 78.6 |
Mohamadnejad 2011, [36] | 74 | P | FNA 22G | surgery | Distal 81 Proximal 59 | - | - | - | - |
Meara 2006, [81] | 44 | P | FNA 22G + ROSE 5 | EUS-FNA+ follow-up | 87 | 100 | - | - | - |
Author, Year | Type of Lesions | Type of Study | Diagnostic Value of EUS-FNA 4 | Diagnostic Value of ERCP 10 Biopsy |
---|---|---|---|---|
Mattheu 2022, [87] | 77 biliary obstruction | R 2 | Se 5 90.6%, Acc 6 92.6% | Se 65.6%, Acc 71.4% |
Trocone 2022, [75] | 29 CCA 1 18 benign | R | Se 73.9%, Sp 7 100%, Acc 80% | Se 66.7%, Sp 100%, Acc 80% |
Chung 2021, [88] | 70 CCA 1 metastasis 14 benign | R | Se 80.3%, Acc 83.5% | Se 67.6%, Acc 72.9% |
Yang 2021, [89] | 307 malignant (136 CCA) 169 benign | R | Se 44.4%, Sp 100%, PPV 8 100%, NPV 9 28.6%, Acc 54.6% | Se 61.1%, Sp 100%, PPV 100%, NPV 56.3%, Acc 74.1% |
Jo 2019, [78] | 53 CCA | R | Se 75%, Acc 76.3% | Se 73.6%, Acc 75% |
Onoyama 2019, [77] | 37 CCA 36 benign | R | Se 81.8%, Sp 87.5%, PPV 90%, NPV 77.8%, Acc 84.2% | Se 76.0%, Sp 100%, PPV 100%, NPV 82%, Acc 88% |
Yeo 2019, [59] | 86 malignant (39 CCA) 7 benign | R | Se 86.8%, Sp 100%, Acc 87.8%, PPV 100%, NPV 37.5% | Se 78.9%, Sp 100%, Acc 80.5%, PPV 100%, NPV 27.3% |
Moura 2018, [90] | 47 malignant 1 suspicious 2 benign | P 3 | Se 93.8%, Ac 94% | Se 60.4%, Ac 62% |
Heinzow 2014, [57] | 56 CCA | R | Se 57%, Sp 78%, Acc 70% | Se 96%, Sp 89%, Acc 92% |
Weilert 2014, [60] | 48 malignant (14 CCA) 3 benign | P | Se 79%, Ac 94% | Se 79%, Ac 53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzan, R.I.; Pojoga, C.; Agoston, R.; Seicean, R.; Seicean, A. Endoscopic Ultrasound in the Diagnosis of Extrahepatic Cholangiocarcinoma: What Do We Know in 2023? Diagnostics 2023, 13, 1023. https://doi.org/10.3390/diagnostics13061023
Orzan RI, Pojoga C, Agoston R, Seicean R, Seicean A. Endoscopic Ultrasound in the Diagnosis of Extrahepatic Cholangiocarcinoma: What Do We Know in 2023? Diagnostics. 2023; 13(6):1023. https://doi.org/10.3390/diagnostics13061023
Chicago/Turabian StyleOrzan, Rares Ilie, Cristina Pojoga, Renata Agoston, Radu Seicean, and Andrada Seicean. 2023. "Endoscopic Ultrasound in the Diagnosis of Extrahepatic Cholangiocarcinoma: What Do We Know in 2023?" Diagnostics 13, no. 6: 1023. https://doi.org/10.3390/diagnostics13061023
APA StyleOrzan, R. I., Pojoga, C., Agoston, R., Seicean, R., & Seicean, A. (2023). Endoscopic Ultrasound in the Diagnosis of Extrahepatic Cholangiocarcinoma: What Do We Know in 2023? Diagnostics, 13(6), 1023. https://doi.org/10.3390/diagnostics13061023