The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.2. The Application of Regenerate Enamel Science System
2.3. The Application of Carbon Dioxide Laser CO2
2.4. Acid Challenge (pH-Cycling)
2.5. Raman Microspectroscopy
2.6. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDX) Analysis
2.7. Vickers Microhardness
2.8. Statistical Analyses
3. Results
3.1. Chemical Analysis of Enamel before and after pH-Cycling
3.2. Vickers Microhardness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langhorst, S.E.; O’donnell, J.N.R.; Skrtic, D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: Quantitative microradiographic study. Dent. Mater. 2009, 25, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, M.; Duggal, M.S.; Strafford, S.M.; Toumba, K.J. The effect on dental enamel of varying concentrations of fluoridated milk with a cariogenic challenge in situ. J. Dent. 2012, 40, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Joiner, A.; Chang, J. The remineralisation of enamel: A review of the literature. J. Dent. 2014, 42, S12–S20. [Google Scholar] [CrossRef] [PubMed]
- Amaechi, B.T.; Van Loveren, C. Fluorides and non-fluoride remineralization systems. Toothpastes Monogr. Oral Sci. Basel Karger 2013, 23, 15–26. [Google Scholar] [CrossRef]
- Hornby, K.; Ricketts, S.R.; Philpotts, C.J.; Joiner, A.; Schemehorn, B.; Willson, R. Enhanced enamel benefits from a novel toothpaste and dual phase gel containing calcium silicate and sodium phosphate salts. J. Dent. 2014, 42, S39–S45. [Google Scholar] [CrossRef]
- Barrera-Ortega, C.C.; Vázquez-Olmos, A.R.; Sato-Berrú, R.Y.; Araiza-Téllez, M.A. Study of demineralized dental enamel treated with different fluorinated compounds by Raman spectroscopy. J. Biomed. Phys. Eng. 2020, 10, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.; Ortiz-Ruiz, A.J.; González-Paz, B.M.; Martínez-Beneyto, Y.; Bravo-González, L.A. Effectiveness of a toothpaste and a serum containing calcium silicate on protecting the enamel after interproximal reduction against demineralization. Sci. Rep. 2021, 11, 834. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.S.; Patel, A.N.; Al Botros, R.; Snowden, M.E.; McKelvey, K.; Unwin, P.R.; Ashcroft, A.T.; Carvell, M.; Joiner, A.; Peruffo, M. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel. J. Dent. 2014, 42, S21–S29. [Google Scholar] [CrossRef]
- Fernandes, N.L.; da Cunha Juliellen, L.; de Oliveira Andressa, F.B.; D’Alpino, H.P.; Sampaio, C.F. Resistance against erosive challenge of dental enamel treated with 1,450-PPM fluoride toothpastes containing different biomimetic compounds. Eur. J. Dent. 2021, 15, 433–439. [Google Scholar] [CrossRef]
- Tomaz, P.L.S.; de Sousa, L.A.; de Aguiar, K.F.; de Sá Oliveira, T.; Matochek, M.H.; Polassi, M.R.; D’Alpino, P.H. Effects of 1450-ppm fluoride-containing toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. Eur. J. Dent. 2020, 14, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Schmidlin, P.; Zobrist, K.; Attin, T.; Wegehaupt, F. In vitro re-hardening of artificial enamel caries lesions using enamelmatrix proteins or self-assembling peptides. J. Appl. Oral. Sci. 2016, 24, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Kasraei, S.; Kasraei, P.; Valizadeh, S.; Azarsina, M. Rehardening of eroded enamel with CPP-ACFP paste and CO2 laser treatment. BioMed. Res. Int. 2021, 2021, 3304553. [Google Scholar] [CrossRef] [PubMed]
- Esteves-Oliveira, M.; El-Sayed, K.F.; Dörfer, C.; Schwendicke, F. Impact of combined CO2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss. Clin. Oral Investig. 2017, 21, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Palaia, G.; Del Vecchio, A.; Impellizzeri, A.; Tenore, G.; Visca, P.; Libotte, F.; Russo, C.; Romeo, U. Histological ex vivo evaluation of peri-incisional thermal effect created by a new-generation CO2 superpulsed laser. Sci. World J. 2014, 2014, 345685. [Google Scholar] [CrossRef] [Green Version]
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Laser-assisted prevention of enamel caries: A 10-year review of the literature. Lasers Med. Sci. 2020, 35, 13–30. [Google Scholar] [CrossRef]
- Zancopé, B.R.; Rodrigues, L.P.; Parisott, T.M.; Steiner-Oliveira, C.; Rodrigues, L.K.; Nobre-Dos-Santos, M. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study. Lasers Med. Sci. 2016, 31, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Rechmann, P.; Le, C.; Kinsel, R.; Kerbage, C.; Rechmann, B. In vitro CO2 9.3-μm short-pulsed laser caries prevention—Effects of a newly developed laser irradiation pattern. Lasers Med. Sci. 2020, 35, 979–989. [Google Scholar] [CrossRef]
- Yilmaz, N.; Baltaci, E.; Baygin, O.; Tüzüner, T.; Ozkaya, S.; Canakci, A. Effect of the usage of Er, Cr: YSGG laser with and without different remineralization agents on the enamel erosion of primary teeth. Lasers Med. Sci. 2020, 35, 1607–1620. [Google Scholar] [CrossRef] [PubMed]
- Adel, S.M.; Marzouk, E.S.; El-Harouni, N. Combined effect of Er, Cr: YSGG laser and casein phosphopeptide amorphous calcium phosphate on the prevention of enamel demineralization: An in-vitro study. Angle Orthod. 2020, 90, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baena, J.R.; Lendl, B. Raman spectroscopy in chemical bioanalysis. Curr. Opin. Chem. Biol 2004, 8, 534–539. [Google Scholar] [CrossRef]
- Kuramochi, E.; Iizuka, J.; Mukai, Y. Influences of bicarbonate on processes of enamel subsurface remineralization and demineralization: Assessment using micro-Raman spectroscopy and transverse microradiography. Eur. J. Oral Sci. 2016, 124, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Reed, R.; Gorski, J.P.; Wang, Y.; Walker, M.P. The distribution of carbonate in enamel and its correlation with structure and mechanical properties. J. Mater. Sci. 2012, 47, 8035–8043. [Google Scholar] [CrossRef]
- Al-Shareefi, S.; Addie, A.; Al-Taee, L. Biochemical and Mechanical Analysis of Occlusal and Proximal Carious Lesions. Diagnostics 2022, 12, 2944. [Google Scholar] [CrossRef] [PubMed]
- Luk, K.; Zhao, I.S.; Yu, O.Y.; Zhang, J.; Gutknecht, N.; Chu, C.H. Effects of 10,600 nm carbon dioxide laser on remineralizing caries: A literature review. Photobiomodul. Photomed. Laser Surg. 2020, 38, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D.B.; Glena, R.; Shariati, M.; Shields, C. Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J. Dent. Res. 1990, 69, 620–625. [Google Scholar] [CrossRef]
- Amaechi, B.T. Protocols to study dental caries in vitro: pH cycling models. In Odontogenesis; Humana Press: New York, NY, USA, 2019; pp. 379–392. [Google Scholar] [CrossRef]
- Ko, A.C.T.; Choo-Smith, L.P.; Hewko, M.; Sowa, M.G. Detection of early dental caries using polarized Raman spectroscopy. Opt. Express 2006, 14, 203–215. [Google Scholar] [PubMed]
- Tsuda, H.; Arends, J. Raman spectroscopy in dental research: A short review of recent studies. Adv. Dent. Res. 1997, 11, 539–547. [Google Scholar] [CrossRef]
- Awonusi, A.; Morris, M.D.; Tecklenburg, M.M. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif. Tissue Int. 2007, 81, 46–52. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Rehman, G.U.; Basavarajappa, S.; Al Khuraif, A.A.; Durgesh, B.H.; Khan, A.S.; Rehman, I.U. Applications of Raman spectroscopy in dentistry: Analysis of tooth structure. Appl. Spectrosc. Rev. 2015, 50, 332–350. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Deng, Y.; Sun, J.N.; Tao, D.; Chen, H.; Hu, Q.; Liu, R.; Liu, W.; Feng, X.; et al. Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. J. Dent. 2014, 42, S30–S38. [Google Scholar] [CrossRef] [PubMed]
- Al-Janabi, S.Z.; Al-Dahan, Z.A. The Effects of Nano-Hydroxyapatite and Casein Phosphopeptide-Amorphous Calcium Phosphate in Preventing Loss of Minerals from Teeth after Exposure to an Acidic Beverage: An in Vitro Study. J. Baghdad Coll. Dent. 2015, 325, 1–6. [Google Scholar]
- Esfahani, K.S.; Mazaheri, R.; Pishevar, L. Effects of treatment with various remineralizing agents on the microhardness of demineralized enamel surface. J. Dent. Res. Dent. Clin. Dent. Prospects 2015, 9, 239. [Google Scholar] [CrossRef]
- Liu, Q.; Matinlinna, J.P.; Chen, Z.; Ning, C.; Ni, G.; Pan, H.; Darvell, B.W. Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceram. Int. 2015, 41, 6149–6157. [Google Scholar] [CrossRef]
- Rodríguez-Vilchis, L.E.; Contreras-Bulnes, R.; Olea-Mejìa, O.F.; Sánchez-Flores, I.; Centeno-Pedraza, C. Morphological and structural changes on human dental enamel after Er: YAG laser irradiation: AFM, SEM, and EDS evaluation. Photomed. Laser Surg. 2011, 29, 493–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.Y.; Jordan, T.H.; Dederich, D.N.; Wefel, J.S. Effects of low-energy CO2 laser irradiation and the organic matrix on inhibition of enamel demineralization. J. Dent. Res. 2000, 79, 1725–1730. [Google Scholar] [CrossRef]
- Liu, Y.; Hsu, C.Y.S. Laser-induced compositional changes on enamel: A FT-Raman study. J. Dent. 2007, 35, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Garma, N.M.; Jasim, E.S. The effect of Er: YAG laser on enamel resistance to caries during orthodontic treatment: An in vitro study. J. Baghdad Coll. Dent. 2015, 27, 182–188. [Google Scholar] [CrossRef]
- Chen, C.C.; Huang, S.T. The Effects of Lasers and Fluoride on the Acid Resistance of Decalcified Human Enamel. Photomed. Laser Surg. 2009, 27, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Saber-Samandari, S.; Gross, K.A. Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomater. 2009, 5, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.J.; Wopenka, B.; Silva, M.J.; Pasteris, J.D. Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif. Tissue Int. 2001, 68, 156–162. [Google Scholar]
- Crombie, F.A.; Manton, D.J.; Palamara, J.E.; Zalizniak, I.; Cochrane, N.J.; Reynolds, E.C. Characterisation of developmentally hypomineralised human enamel. J. Dent. 2013, 41, 611–618. [Google Scholar] [CrossRef] [PubMed]
Raman Peaks | Groups (n = 10) | Peaks Intensities (Mean ± SD) before pH-Cycling | Peaks Intensities (Mean ± SD) after pH-Cycling |
---|---|---|---|
Phosphate peaks | |||
ν1-PO4 (960 cm−1) | Control | 1594.99 ± 15.3 | 779.22 ± 17.4 ^ |
Regenerate | 2811.21± 11.0 * | 1072.51± 16.9 *^ | |
CO2 Laser | 1891.62 ± 16.6 * | 940.69 ± 18.0 *^ | |
ν2-PO4 (433 cm−1) | Control | 260.38 ± 14.9 | 187.68 ± 11.4 ^ |
Regenerate | 396.54 ± 11.2 * | 354.22 ± 10.6 *^ | |
CO2 Laser | 334.91 ± 11.3 * | 247.31 ± 14.4 *^ | |
ν3-PO4 (1029 cm−1) | Control | 64.56 ± 11.3 | 182.0 ± 11.0 ^ |
Regenerate | 132.16 ± 11.1 * | 344.24 ± 15.9 *^ | |
CO2 Laser | 40.03 ± 8.1 * | 71.94 ± 7.5 *^ | |
ν4-PO4 (579 cm−1) | Control | 246.21 ± 12.9 | 158.43 ± 8.3 ^ |
Regenerate | 422.06 ± 14.9 * | 355.47 ± 15.8 *^ | |
CO2 Laser | 352.64 ± 14.5 * | 217.31 ± 11.4 *^ | |
Carbonate peakCO3 (1070 cm−1) | Control | 70.66 ± 8.3 | 242.79 ± 19.7 ^ |
Regenerate | 91.83 ± 6.1 * | 355.53 ± 27.2 *^ | |
CO2 Laser | 36.66 ± 6.7 * | 67.76 ± 14.1 *^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shubbar, M.; Addie, A.; Al-Taee, L. The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge. Diagnostics 2023, 13, 1087. https://doi.org/10.3390/diagnostics13061087
Shubbar M, Addie A, Al-Taee L. The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge. Diagnostics. 2023; 13(6):1087. https://doi.org/10.3390/diagnostics13061087
Chicago/Turabian StyleShubbar, Mustafa, Ali Addie, and Lamis Al-Taee. 2023. "The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge" Diagnostics 13, no. 6: 1087. https://doi.org/10.3390/diagnostics13061087
APA StyleShubbar, M., Addie, A., & Al-Taee, L. (2023). The Effect of a Bioactive Oral System and CO2 Laser on Enamel Susceptibility to Acid Challenge. Diagnostics, 13(6), 1087. https://doi.org/10.3390/diagnostics13061087