NSCLC in the Era of Targeted and Immunotherapy: What Every Pulmonologist Must Know
Abstract
:1. Introduction
2. Indications for Targeted Therapy
2.1. EGFR-Mutant NSCLC
2.2. ALK-Rearranged NSCLC
3. Indications for Immunotherapy
4. Indications for Biomarker Testing
5. Disparities in Biomarker Testing
6. Tissue Specimen & Diagnostic Testing
6.1. Endobronchial Ultrasound
6.2. Endoscopic Ultrasound
6.3. CT-Guided Lung Biopsy
6.4. Guided Bronchoscopy
6.5. Surgical Approaches
6.6. Thoracentesis
6.7. Extra-Thoracic Disease Sampling
6.8. Liquid Biopsy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Cancer Institute. SEER Cancer Stat Facts: Lung and Bronchus Cancer Bethesda, MD. 2022. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 27 December 2022).
- Lung Cancer Research Foundation. Lung Cancer Facts 2022. 2022. Available online: https://www.lungcancerresearchfoundation.org/lung-cancer-facts/#:~:text=LUNG%20CANCER%20is%20the%20leading%20cause%20of%20cancer%20death%20worldwide.&text=AN%20ESTIMATED%20236%2C740%20PEOPLE%20will,in%202022%20in%20the%20U.S.&text=1%20IN%2016%20PEOPLE%20will,and%201%20in%2017%20women.&text=Approximately%20130%2C180%20AMERICAN%20LIVES%20are%20lost%20annually (accessed on 28 December 2022).
- American Cancer Society. Cancer Facts & Figures 2022; American Cancer Society: Atlanta, GA, USA, 2022. [Google Scholar]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non–Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. Non–Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 497–530. [Google Scholar] [CrossRef]
- Aggarwal, C.; Bubendorf, L.; Cooper, W.A.; Illei, P.; Nunes, P.B.; Ong, B.-H.; Tsao, M.-S.; Yatabe, Y.; Kerr, K.M. Molecular testing in stage I–III non-small cell lung cancer: Approaches and challenges. Lung Cancer 2021, 162, 42–53. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Non-Small Cell Lung Cancer (Version 6. 2022). 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 30 December 2022).
- Majeed, U.; Manochakian, R.; Zhao, Y.; Lou, Y. Targeted therapy in advanced non-small cell lung cancer: Current advances and future trends. J. Hematol. Oncol. 2021, 14, 108. [Google Scholar] [CrossRef]
- Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol. 2020, 61, 167–179. [Google Scholar] [CrossRef]
- Karachaliou, N.; Fernandez-Bruno, M.; Bracht, J.W.P.; Rosell, R. EGFR first- and second-generation TKIs—There is still place for them in EGFR-mutant NSCLC patients. Transl. Cancer Res. 2018, 8, S23–S47. [Google Scholar] [CrossRef] [PubMed]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef]
- Tan, A.C.; Tan, D.S.W. Targeted Therapies for Lung Cancer Patients with Oncogenic Driver Molecular Alterations. J. Clin. Oncol. 2022, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.-W.; Kato, T.; et al. Osimertinib in Resected EGFR-Mutated Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 1711–1723. [Google Scholar] [CrossRef]
- Aisner, D.L.; Riely, G.J. Non–Small Cell Lung Cancer: Recommendations for Biomarker Testing and Treatment. J. Natl. Compr. Cancer Netw. 2021, 19, 610–613. [Google Scholar] [CrossRef]
- Blackhall, F.; Cappuzzo, F. Crizotinib: From discovery to accelerated development to front-line treatment. Ann. Oncol. 2016, 27, iii35–iii41. [Google Scholar] [CrossRef]
- Solomon, B.J.; Mok, T.; Kim, D.-W.; Wu, Y.-L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef] [Green Version]
- Mok, T.; Camidge, D.R.; Gadgeel, S.M.; Rosell, R.; Dziadziuszko, R.; Kim, D.W.; Pérol, M.; Ou, S.-H.; Ahn, J.; Shaw, A.; et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann. Oncol. 2020, 31, 1056–1064. [Google Scholar] [CrossRef]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.W.; Ou, S.H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2015, 387, 1540–1550. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reck, M.; Rodríguez–Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef]
- Chaft, J.E.; Shyr, Y.; Sepesi, B.; Forde, P.M. Preoperative and Postoperative Systemic Therapy for Operable Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 546–555. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Parikh, P.; Von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Serwatowski, C.M.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III Study Comparing Cisplatin Plus Gemcitabine with Cisplatin Plus Pemetrexed in Chemotherapy-Naive Patients With Advanced-Stage Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel–Carboplatin Alone or with Bevacizumab for Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef] [Green Version]
- Bruno, D.S.; Hess, L.M.; Li, X.; Su, E.W.; Patel, M. Disparities in Biomarker Testing and Clinical Trial Enrollment Among Patients with Lung, Breast, or Colorectal Cancers in the United States. JCO Precis. Oncol. 2022, 6, e2100427. [Google Scholar] [CrossRef]
- Vial, M.R.; Khan, K.A.; O’Connell, O.; Peng, S.A.; Gomez, D.R.; Chang, J.Y.; Rice, D.C.; Mehran, R.; Jimenez, C.J.; Grosu, H.B.; et al. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in the Nodal Staging of Stereotactic Ablative Body Radiotherapy Patients. Ann. Thorac. Surg. 2016, 103, 1600–1605. [Google Scholar] [CrossRef] [Green Version]
- Avasarala, S.K.; Aravena, C.; Almeida, F.A. Convex probe endobronchial ultrasound: Historical, contemporary, and cutting-edge applications. J. Thorac. Dis. 2020, 12, 1085–1099. [Google Scholar] [CrossRef]
- Marshall, T.; Kalanjeri, S.; Almeida, F.A. Lung cancer staging, the established role of bronchoscopy. Curr. Opin. Pulm. Med. 2021, 28, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.A.; Salam, S.; Mehta, A.C.; Yuhico, L.; Sarda, Y.; Choi, H.; Cicenia, J.C.; Gildea, T.; Machuzak, M.; Mazzone, P.; et al. Sampling Utility of the Convex Probe Endobronchial Ultrasound Visible Intrapulmonary Lesion. J. Bronchol. Interv. Pulmonol. 2018, 25, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Roy-Chowdhuri, S.; Dacic, S.; Ghofrani, M.; Illei, P.B.; Layfield, L.J.; Lee, C.; Michael, C.W.; Miller, R.A.; Mitchell, J.W.; Nikolic, B.; et al. Collection and Handling of Thoracic Small Biopsy and Cytology Specimens for Ancillary Studies: Guideline From the College of American Pathologists in Collaboration With the American College of Chest Physicians, Association for Molecular Pathology, American Society of Cytopathology, American Thoracic Society, Pulmonary Pathology Society, Papanicolaou Society of Cytopathology, Society of Interventional Radiology, and Society of Thoracic Radiology. Arch. Pathol. Lab. Med. 2020, 144, 933–958. [Google Scholar] [CrossRef]
- Stoy, S.P.; Segal, J.P.; Mueller, J.; Furtado, L.V.; Vokes, E.E.; Patel, J.D.; Murgu, S. Feasibility of Endobronchial Ultrasound-guided Transbronchial Needle Aspiration Cytology Specimens for Next Generation Sequencing in Non–small-cell Lung Cancer. Clin. Lung Cancer 2018, 19, 230–238.e2. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.P.; Zhou, Y.; Jakubowski, M.A.; Wang, Z.; Brainard, J.A.; Klein, R.D.; Farver, C.F.; Almeida, F.A.; Cheng, Y.-W. Next-generation sequencing of liquid-based cytology non-small cell lung cancer samples. Cancer Cytopathol. 2017, 125, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Rooper, L.M.; Nikolskaia, O.; Carter, J.; Ning, Y.; Lin, M.-T.; Maleki, Z. A single EBUS-TBNA procedure can support a large panel of immunohistochemical stains, specific diagnostic subtyping, and multiple gene analyses in the majority of non–small cell lung cancer cases. Hum. Pathol. 2016, 51, 139–145. [Google Scholar] [CrossRef]
- Labarca, G.; Folch, E.; Jantz, M.; Mehta, H.J.; Majid, A.; Fernandez-Bussy, S. Adequacy of Samples Obtained by Endobronchial Ultrasound with Transbronchial Needle Aspiration for Molecular Analysis in Patients with Non–Small Cell Lung Cancer. Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2018, 15, 1205–1216. [Google Scholar] [CrossRef]
- Trisolini, R.; Cancellieri, A.; Tinelli, C.; de Biase, D.; Valentini, I.; Casadei, G.; Paioli, D.; Ferrari, F.; Gordini, G.; Patelli, M.; et al. Randomized Trial of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration with and Without Rapid On-site Evaluation for Lung Cancer Genotyping. Chest 2015, 148, 1430–1437. [Google Scholar] [CrossRef]
- Koomen, B.M.; Vreuls, W.; de Boer, M.; de Ruiter, E.J.; Hoelters, J.; Vink, A.; Willems, S.M. False-negative programmed death-ligand 1 immunostaining in ethanol-fixed endobronchial ultrasound-guided transbronchial needle aspiration specimens of non-small-cell lung cancer patients. Histopathology 2021, 79, 480–490. [Google Scholar] [CrossRef]
- Nakamura, K.; Matsumoto, K.; Inoue, C.; Matsusue, E.; Fujii, S. Computed Tomography-guided Lung Biopsy: A Review of Techniques for Reducing the Incidence of Complications. Interv. Radiol. 2021, 6, 83–92. [Google Scholar] [CrossRef]
- Anzidei, M.; Porfiri, A.; Andrani, F.; Di Martino, M.; Saba, L.; Catalano, C.; Bezzi, M. Imaging-guided chest biopsies: Techniques and clinical results. Insights into Imaging 2017, 8, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangha, B.S.; Hague, C.J.; Jessup, J.; O’Connor, R.; Mayo, J.R. Transthoracic Computed Tomography–Guided Lung Nodule Biopsy: Comparison of Core Needle and Fine Needle Aspiration Techniques. Can. Assoc. Radiol. J. 2016, 67, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Wang, Y.; Li, L.; Zhou, Y.; Luo, W.; Li, W. CT-guided transthoracic core needle biopsy for small pulmonary lesions: Diagnostic performance and adequacy for molecular testing. J. Thorac. Dis. 2017, 9, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, F.; Smith, M.A.; Lane, M.C.; Pantanowitz, L.; Dacic, S.; Ohori, N.P. Adequacy of Core Needle Biopsy Specimens and Fine-Needle Aspirates for Molecular Testing of Lung Adenocarcinomas. Am. J. Clin. Pathol. 2015, 143, 193–200. [Google Scholar] [CrossRef]
- Kunimasa, K.; Matsumoto, S.; Nishino, K.; Honma, K.; Maeda, N.; Kuhara, H.; Tamiya, M.; Inoue, T.; Kawamura, T.; Kimura, T.; et al. Comparison of sampling methods for next generation sequencing for patients with lung cancer. Cancer Med. 2022, 11, 2744–2754. [Google Scholar] [CrossRef]
- Chen, M.; Xu, Y.; Zhao, J.; Li, J.; Liu, X.; Zhong, W.; Wang, M. Feasibility and reliability of evaluate PD-L1 expression determination using small biopsy specimens in non-small cell lung cancer. Thorac. Cancer 2021, 12, 2339–2344. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Trick, W.; Mba, B.I.; Mohananey, D.; Sethi, J.; Musani, A.I. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Respirology 2017, 22, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, E.E.; Pritchett, M.A.; Nead, M.A.; Bowling, M.R.; Murgu, S.D.; Krimsky, W.S.; Murillo, B.A.; LeMense, G.P.; Minnich, D.J.; Bansal, S.; et al. Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study. J. Thorac. Oncol. 2018, 14, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Wagh, A.; Ho, E.; Murgu, S.; Hogarth, D.K. Improving diagnostic yield of navigational bronchoscopy for peripheral pulmonary lesions: A review of advancing technology. J. Thorac. Dis. 2020, 12, 7683–7690. [Google Scholar] [CrossRef]
- Eberhardt, R.; Anantham, D.; Ernst, A.; Feller-Kopman, D.; Herth, F. Multimodality Bronchoscopic Diagnosis of Peripheral Lung Lesions. Am. J. Respir. Crit. Care Med. 2007, 176, 36–41. [Google Scholar] [CrossRef]
- Ozgul, G.; Cetinkaya, E.; Ozgul, M.A.; Abul, Y.; Gencoglu, A.; Kamiloglu, E.; Gul, S. Efficacy and safety of electromagnetic navigation bronchoscopy with or without radial endobronchial ultrasound for peripheral lung lesions. Endosc. Ultrasound 2016, 5, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.C.; Pastis, N.J.; Mahajan, A.K.; Khandhar, S.J.; Simoff, M.J.; Machuzak, M.S.; Cicenia, J.; Gildea, T.R.; Silvestri, G.A. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2020, 159, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Kalchiem-Dekel, O.; Connolly, J.G.; Lin, I.-H.; Husta, B.C.; Adusumilli, P.S.; Beattie, J.A.; Buonocore, D.J.; Dycoco, J.; Fuentes, P.; Jones, D.R.; et al. Shape-Sensing Robotic-Assisted Bronchoscopy in the Diagnosis of Pulmonary Parenchymal Lesions. Chest 2022, 161, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Low, S.-W.; Lentz, R.J.; Chen, H.; Katsis, J.; Aboudara, M.C.; Whatley, S.; Paez, R.; Rickman, O.B.; Maldonado, F. Shape-Sensing Robotic-Assisted Bronchoscopy vs Digital Tomosynthesis-Corrected Electromagnetic Navigation Bronchoscopy: A Comparative Cohort Study of Diagnostic Performance. Chest 2022. [Google Scholar] [CrossRef]
- Lee-Mateus, A.Y.; Reisenauer, J.; Garcia-Saucedo, J.C.; Abia-Trujillo, D.; Buckarma, E.H.; Edell, E.S.; Grage, R.A.; Bowman, A.W.; Labarca, G.; Johnson, M.M.; et al. Robotic-assisted bronchoscopy versus CT -guided transthoracic biopsy for diagnosis of pulmonary nodules. Respirology 2023, 28, 66–73. [Google Scholar] [CrossRef]
- Seijo, L.M. Electromagnetic navigation bronchoscopy: Clinical utility in the diagnosis of lung cancer. Lung Cancer Targets Ther. 2016, 7, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Chaddha, U.; Kovacs, S.P.; Manley, C.; Hogarth, D.K.; Cumbo-Nacheli, G.; Bhavani, S.V.; Kumar, R.; Shende, M.; Egan, J.P.; Murgu, S. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: Results from the initial multicenter experience. BMC Pulm. Med. 2019, 19, 243. [Google Scholar] [CrossRef] [Green Version]
- Ha, D.; Choi, H.; Almeida, F.A.; Arrossi, A.; Brainard, J.; Cicenia, J.; Farver, C.; Gildea, T.; Machuzak, M.S.; Mazzone, P. Histologic and Molecular Characterization of Lung Cancer with Tissue Obtained by Electromagnetic Navigation Bronchoscopy. J. Bronchol. Interv. Pulmonol. 2013, 20, 10–15. [Google Scholar] [CrossRef]
- Oh, J.H.; Choi, C.-M.; Kim, S.; Jang, S.J.; Oh, S.Y.; Kim, M.Y.; Hwang, H.; Ji, W. Diagnostic Performance of Electromagnetic Navigation Bronchoscopy-Guided Biopsy for Lung Nodules in the Era of Molecular Testing. Diagnostics 2021, 11, 1432. [Google Scholar] [CrossRef]
- Kim, I.; Eom, J.S.; Kim, A.R.; Lee, C.H.; Lee, G.; Jo, E.J.; Kim, M.-H.; Mok, J.H.; Lee, K.; Kim, K.U.; et al. Molecular analysis of small tissue samples obtained via transbronchial lung biopsy using radial probe endobronchial ultrasound. PLoS ONE 2019, 14, e0212672. [Google Scholar] [CrossRef] [Green Version]
- Furuya, N.; Matsumoto, S.; Kakinuma, K.; Morikawa, K.; Inoue, T.; Saji, H.; Goto, K.; Mineshita, M. Suitability of transbronchial brushing cytology specimens for next-generation sequencing in peripheral lung cancer. Cancer Sci. 2021, 112, 380–387. [Google Scholar] [CrossRef]
- Robin, M.; Mhanna, L.; Chaltiel, L.; Plat, G.; Héluain, V.; Basset, C.; Meilleroux, J.; Filleron, T.; Mazières, J.; Hermant, C.; et al. Feasibility of comprehensive genotyping specimens from radial endobronchial ultrasonography and electromagnetic navigation bronchoscopy. ERJ Open Res. 2021, 7, 00942–2020. [Google Scholar] [CrossRef] [PubMed]
- Oberg, C.L.; Lau, R.P.; Folch, E.E.; He, T.; Ronaghi, R.; Susanto, I.; Channick, C.; Tome, R.G.; Oh, S. Novel Robotic-Assisted Cryobiopsy for Peripheral Pulmonary Lesions. Lung 2022, 200, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, A.; Manuel, L.; Fong, L.S.; Bassin, L. In patients with lung cancer is combined endobronchial ultrasound and endoscopic ultrasound superior to conventional mediastinoscopy in staging the mediastinum? Ann. Med. Surg. 2021, 71, 102953. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.T.; Gandara, D.R.; Goodwin, N.C.; Calhoun, R.F.; Lara, P.N., Jr.; Mack, P.C.; David, E.A. Outcomes and efficacy of thoracic surgery biopsy for tumor molecular profiling in patients with advanced lung cancer. J. Thorac. Cardiovasc. Surg. 2014, 148, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Rivera, M.P.; Mehta, A.C.; Wahidi, M.M. Establishing the Diagnosis of Lung Cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e142S–e165S. [Google Scholar] [CrossRef] [PubMed]
- Dorry, M.; Davidson, K.; Dash, R.; Jug, R.; Clarke, J.M.; Nixon, A.B.; Mahmood, K. Pleural effusions associated with squamous cell lung carcinoma have a low diagnostic yield and a poor prognosis. Transl. Lung Cancer Res. 2021, 10, 2500–2508. [Google Scholar] [CrossRef]
- Grigoriadou, G.I.; Esagian, S.M.; Ryu, H.S.; Nikas, I.P. Molecular Profiling of Malignant Pleural Effusions with Next Generation Sequencing (NGS): Evidence that Supports Its Role in Cancer Management. J. Pers. Med. 2020, 10, 206. [Google Scholar] [CrossRef]
- VanderLaan, P.A.; Yamaguchi, N.; Folch, E.; Boucher, D.H.; Kent, M.S.; Gangadharan, S.P.; Majid, A.; Goldstein, M.A.; Huberman, M.S.; Kocher, O.N.; et al. Success and failure rates of tumor genotyping techniques in routine pathological samples with non-small-cell lung cancer. Lung Cancer 2014, 84, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Toffart, A.-C.; Asfari, S.; Mc Leer, A.; Reymond, E.; Jankowski, A.; Moro-Sibilot, D.; Stephanov, O.; Ghelfi, J.; Lantuejoul, S.; Ferretti, G.R. Percutaneous CT-guided biopsy of lytic bone lesions in patients clinically suspected of lung cancer: Diagnostic performances for pathological diagnosis and molecular testing. Lung Cancer 2020, 140, 93–98. [Google Scholar] [CrossRef]
- McDermott, E.; Kilcoyne, A.; O’Shea, A.; Cahalane, A.M.; McDermott, S. The role of percutaneous CT-guided biopsy of an adrenal lesion in patients with known or suspected lung cancer. Abdom. Imaging 2021, 46, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Smolle, E.; Taucher, V.; Lindenmann, J.; Pichler, M.; Smolle-Juettner, F.-M. Liquid biopsy in non-small cell lung cancer—Current status and future outlook—A narrative review. Transl. Lung Cancer Res. 2021, 10, 2237–2251. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-R.; Schultheis, A.M.; Yu, H.; Mandelker, D.; Ladanyi, M.; Büttner, R. Precision medicine in non-small cell lung cancer: Current applications and future directions. Semin. Cancer Biol. 2022, 84, 184–198. [Google Scholar] [CrossRef]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.W.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.K.; Oh, M.S. Detection of Minimal Residual Disease Using ctDNA in Lung Cancer: Current Evidence and Future Directions. J. Thorac. Oncol. 2019, 14, 16–24. [Google Scholar] [CrossRef] [Green Version]
Biomarker | Approximate Frequency iN Nsclc | First-Line Targeted Therapy | Subsequent-Line Targeted Therapy |
---|---|---|---|
EGFRExon 19 Deletion, Exon 12 L858R Mutation | EGFR: 10–20% 85% of all EGFR mutations | Osimertinib * Erlotinib Afatinib Gefitinib Dacomitinib Erlotinib + Ramucirumab Erlotinib + Bevacizumab (nonsquamous) | Osimertinib - In the setting of a T790M+ mutation, if not previously given |
ALKRearrangement | 3–7% | Alectinib * Brigatinib * Lorlatinib * Ceritinib Crizotinib | Lorlatinib * - If not previously given or in the setting of an ALK G1202R+ mutation Alectinib - Only following disease progression on Crizotinib Brigatinib- Only following disease progression on Crizotinib Ceritinib - Only following disease progression on Crizotinib |
METExon 14 Skipping Mutation | 3–4% | Capmatinib * Tepotinib * Crizotinib | Capmatinib * - Given following first-line chemotherapy Tepotinib * - Given following first-line chemotherapy Crizotinib - Given following first line chemotherapy |
EGFRS768I, L861Q, G719X | EGFR: 10–20% 6% of all EGFR mutations | Afatinb * Osimertinib * Erlotinib Dacomitinib Gefitinib Erlotinib + Ramucirumb Erlotinib + Bevacizumab (nonsquamous) | Osimertinib - In the setting of a T790M+ mutation, if not previously given |
ROS1Rearrangement | 1–2% | Entrectinib * Crizotinib * Ceritinib | Lorlatinib - For systemic progression, if not previously given Entrectinib - For CNS progression, if previously treated with Crizotinib or Ceritinib |
RETRearrangement | 1–2% | Selpercatinib * Pralsetinib * Cabozantinib | Selpercatinib * - Given following first-line chemotherapy Pralsetinib * - Given following first-line chemotherapy Cabozantinib - Given following first-line chemotherapy |
BRAFV600E Mutation | 1–2% | Dabrafenib/Trametinib * Dabrafenib Vemurafenib | Dabrafenib/Trametinib - Given following first-line chemotherapy |
NTRK1/2/3Gene Fusion | <1% | Larotrectinib Entrectinib | Larotrectinib - Given following first-line chemotherapy Entrectinib - Given following first-line chemotherapy |
KRASG12C Mutation | 13% | N/A | Sotorasib - Given after at least first-line chemotherapy without prior KRAS G12C targeted therapy Adagrasib - Given after at least first-line chemotherapy without prior KRAS G12C targeted therapy |
ERBB2/HER2Mutation | 2–4% | N/A | Fam-trastuzumab deruxtecan-nxki * - Given after at least first-line chemotherapy and if not previously received Ado-trastuzumab emtansine - Given after at least first-line chemotherapy and if not previously received |
EGFRExon 20 Insertion | EGFR: 10–20% 4–10% of all EGFR mutations | N/A | Amivantamab-vmjw - Given after at least first-line chemotherapy and if not previously received Mobocertinib - Given after at least first-line chemotherapy and if not previously received |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, C.L.; Zhang, A.L.; Bruno, D.S.; Almeida, F.A. NSCLC in the Era of Targeted and Immunotherapy: What Every Pulmonologist Must Know. Diagnostics 2023, 13, 1117. https://doi.org/10.3390/diagnostics13061117
Mitchell CL, Zhang AL, Bruno DS, Almeida FA. NSCLC in the Era of Targeted and Immunotherapy: What Every Pulmonologist Must Know. Diagnostics. 2023; 13(6):1117. https://doi.org/10.3390/diagnostics13061117
Chicago/Turabian StyleMitchell, Carley L., Annie L. Zhang, Debora S. Bruno, and Francisco A. Almeida. 2023. "NSCLC in the Era of Targeted and Immunotherapy: What Every Pulmonologist Must Know" Diagnostics 13, no. 6: 1117. https://doi.org/10.3390/diagnostics13061117
APA StyleMitchell, C. L., Zhang, A. L., Bruno, D. S., & Almeida, F. A. (2023). NSCLC in the Era of Targeted and Immunotherapy: What Every Pulmonologist Must Know. Diagnostics, 13(6), 1117. https://doi.org/10.3390/diagnostics13061117