KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Motor Imagery Dataset
3.2. Kernel-Based Cross-Spectral Distribution Fundamentals
3.3. Kernel Cross-Spectral Functional Connectivity Network
4. Experimental Set-Up
4.1. KCS-FCnet Implementation Details
- –
- Raw EEG Preprocessing: First, we load subject recordings using a custom databases loader module (https://github.com/UN-GCPDS/python-gcpds.databases (accessed on 27 January 2023)). Next, we downsample each signal from 512 Hz to 128 Hz using the Fourier method provided by the SciPy signal resample function (https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html (accessed on 27 January 2023)). Then each time series trial was filtered between [4, 40] Hz, using a fifth-order Butterworth bandpass filter. In addition, we clipped the records from 0.5 s to 2.5 s post cue onset, retaining only information from the motor imagery task. Preprocessing step resembles the one provided by authors in [22]. Note that since we are analyzing only the MI time segment, we assume the signal to be stationary. Our straightforward preprocessing aims to investigate five distinct brain rhythms within the 4 to 40 Hz range, including theta, alpha, and three beta waves. Theta waves (4–8 Hz), located in the hippocampus and various cortical structures, are believed to indicate an “online state” and are associated with sensorimotor and mnemonic functions, as stated by authors in [45]. In contrast, sensory stimulation and movements suppress alpha-band activity (8–13 Hz). It is modulated by attention, working memory, and mental tasks, potentially serving as a marker for higher motor control functions. Besides, tested preprocessing also comprises three types of beta waves: Low beta waves (12–15 Hz) or “beta one” waves, mainly associated with focused and introverted concentration. Second, mid-range beta waves (15–20 Hz), or “beta two” waves, are linked to increased energy, anxiety, and performance. Third, high beta waves (18–40 Hz), or “beta three” waves, are associated with significant stress, anxiety, paranoia, high energy, and high arousal.
- –
- KCS-FCnet Training: We split trials within each subject data using the standard 5-fold 80–20 scheme. That means shuffling the data and taking of it to train (training set), holding out the remaining to validate trained models (testing set), and repeating the process five times. For the sake of comparison, we calculate the accuracy, Cohen’s kappa, and the area under the ROC curve to compare performance between models [46,47]. It is worth noting that we rescale the kernel length according to the new sampling frequency as in [22]. The GridSearchCV class from SKlearn is used to find the best hyperparameter combination of our KCS-FCnet. The number of filters is searched within the set .
- –
- Group-Level Analysis: We build a scoring matrix that contains as many rows as subjects in the dataset, 50 for Giga, and six columns, including accuracy, Cohen’s kappa, and the area under the ROC curve scores, along with their respective standard deviation. To keep the intuition of the higher, the better, and constrain all columns to be between in the score matrix, we replace the standard deviation with its complement and normalize the Cohen’s kappa by adding to it the unit and dividing by two. Then, using the score matrix and the k-means clustering algorithm [47], with k set as three, we trained a model to cluster subjects’ results based on the baseline model EEGnet [22] in one of three groups: best, intermediate, and worst performing subjects. Next, we order each subject based on a projected vector obtained from the first component of the well-known Principal Component Analysis (PCA) algorithm applied to the score matrix. Next, with the trained k-means, the subjects analyzed by our KCS-FCnet were clustered using the score matrix. The aim is to compare and check how subjects change between EEGnet and KCS-FCnet-based groups.
4.2. Functional Connectivity Pruning and Visualization
4.3. Method Comparison
5. Results and Discussion
5.1. Subject Dependent and Group Analysis Results
5.2. Estimated Functional Connectivity Results
5.3. Method Comparison Results: Average MI Classification and Network Complexity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collazos-Huertas, D.; Caicedo-Acosta, J.; Castaño-Duque, G.A.; Acosta-Medina, C.D. Enhanced multiple instance representation using time-frequency atoms in motor imagery classification. Front. Neurosci. 2020, 14, 155. [Google Scholar] [CrossRef]
- Choi, I.; Kwon, G.H.; Lee, S.; Nam, C.S. Functional electrical stimulation controlled by motor imagery brain–computer interface for rehabilitation. Brain Sci. 2020, 10, 512. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Chugh, N. Signal processing techniques for motor imagery brain computer interface: A review. Array 2019, 1, 100003. [Google Scholar] [CrossRef]
- Bonnet, C.; Bayram, M.; El Bouzaïdi Tiali, S.; Lebon, F.; Harquel, S.; Palluel-Germain, R.; Perrone-Bertolotti, M. Kinesthetic motor-imagery training improves performance on lexical-semantic access. PLoS ONE 2022, 17, e0270352. [Google Scholar] [CrossRef]
- Marcos-Martínez, D.; Martínez-Cagigal, V.; Santamaría-Vázquez, E.; Pérez-Velasco, S.; Hornero, R. Neurofeedback Training Based on Motor Imagery Strategies Increases EEG Complexity in Elderly Population. Entropy 2021, 23, 1574. [Google Scholar] [CrossRef] [PubMed]
- Djamal, E.C.; Putra, R.D. Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks. Telkomnika (Telecommun. Comput. Electron. Control) 2020, 18, 2748–2756. [Google Scholar] [CrossRef]
- Luck, S. Applied Event-Related Potential Data Analaysis. 2022. Available online: https://socialsci.libretexts.org/Bookshelves/Psychology/Book%3A_Applied_Event-Related_Potential_Data_Analysis_(Luck) (accessed on 27 January 2023).
- Galvez-Pol, A.; Calvo-Merino, B.; Forster, B. Revealing the body in the brain: An ERP method to examine sensorimotor activity during visual perception of body-related information. Cortex 2020, 125, 332–344. [Google Scholar] [CrossRef]
- Tobón-Henao, M.; Álvarez-Meza, A.; Castellanos-Domínguez, G. Subject-dependent artifact removal for enhancing motor imagery classifier performance under poor skills. Sensors 2022, 22, 5771. [Google Scholar] [CrossRef]
- Grigorev, N.A.; Savosenkov, A.O.; Lukoyanov, M.V.; Udoratina, A.; Shusharina, N.N.; Kaplan, A.Y.; Hramov, A.E.; Kazantsev, V.B.; Gordleeva, S. A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1583–1592. [Google Scholar] [CrossRef]
- Singh, A.; Hussain, A.A.; Lal, S.; Guesgen, H.W. A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain–computer interface. Sensors 2021, 21, 2173. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chang, J.R.; Chen, L.F.; Chen, Y.S. Deep neural network with attention mechanism for classification of motor imagery EEG. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; IEEE: New York, NY, USA, 2019; pp. 1130–1133. [Google Scholar]
- Giannopoulos, A.E.; Zioga, I.; Papageorgiou, P.; Pervanidou, P.; Makris, G.; Chrousos, G.P.; Stachtea, X.; Capsalis, C.; Papageorgiou, C. Evaluating the modulation of the acoustic startle reflex in children and adolescents via vertical EOG and EEG: Sex, age, and behavioral effects. Front. Neurosci. 2022, 16, 798667. [Google Scholar] [CrossRef]
- Rithwik, P.; Benzy, V.; Vinod, A. High accuracy decoding of motor imagery directions from EEG-based brain computer interface using filter bank spatially regularised common spatial pattern method. Biomed. Signal Process. Control 2022, 72, 103241. [Google Scholar] [CrossRef]
- Widadi, R.; Zulherman, D.; Rama Febriyan Ari, S. Time domain features for eeg signal classification of four class motor imagery using artificial neural network. In Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics: ICEBEHI 2020, Surabaya, Indonesia, 8–9 October 2021; Springer: Cham, Switzerland, 2021; pp. 605–612. [Google Scholar]
- Ramadhani, A.; Fauzi, H.; Wijayanto, I.; Rizal, A.; Shapiai, M.I. The implementation of EEG transfer learning method using integrated selection for motor imagery signal. In Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics: ICEBEHI 2020, Surabaya, Indonesia, 8–9 October 2021; Springer: Cham, Switzerland, 2021; pp. 457–466. [Google Scholar]
- Wei, X.; Dong, E.; Zhu, L. Multi-class MI-EEG Classification: Using FBCSP and Ensemble Learning Based on Majority Voting. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; IEEE: New York, NY, USA, 2021; pp. 872–876. [Google Scholar]
- Maksimenko, V.A.; Lüttjohann, A.; Makarov, V.V.; Goremyko, M.V.; Koronovskii, A.A.; Nedaivozov, V.; Runnova, A.E.; van Luijtelaar, G.; Hramov, A.E.; Boccaletti, S. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys. Rev. E 2017, 96, 012316. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Han, S.H.; Ling, S.H. Multi-classification for EEG Motor Imagery Signals using Auto-selected Filter Bank Regularized Common Spatial Pattern. In Proceedings of the 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT), Lincoln, NE, USA, 2–4 May 2022; pp. 1–6. [Google Scholar]
- Collazos-Huertas, D.F.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G. Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. Appl. Sci. 2022, 12, 1695. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musallam, Y.K.; AlFassam, N.I.; Muhammad, G.; Amin, S.U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M.A.; Algabri, M. Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomed. Signal Process. Control 2021, 69, 102826. [Google Scholar] [CrossRef]
- Liu, X.; Lv, L.; Shen, Y.; Xiong, P.; Yang, J.; Liu, J. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification. J. Neural Eng. 2021, 18, 026003. [Google Scholar] [CrossRef] [PubMed]
- Lomelin-Ibarra, V.A.; Gutierrez-Rodriguez, A.E.; Cantoral-Ceballos, J.A. Motor Imagery Analysis from Extensive EEG Data Representations Using Convolutional Neural Networks. Sensors 2022, 22, 6093. [Google Scholar] [CrossRef]
- Gao, C.; Liu, W.; Yang, X. Convolutional neural network and riemannian geometry hybrid approach for motor imagery classification. Neurocomputing 2022, 507, 180–190. [Google Scholar] [CrossRef]
- She, Q.; Zhou, Y.; Gan, H.; Ma, Y.; Luo, Z. Decoding EEG in motor imagery tasks with graph semi-supervised broad learning. Electronics 2019, 8, 1273. [Google Scholar] [CrossRef] [Green Version]
- Altaheri, H.; Muhammad, G.; Alsulaiman, M. Physics-Informed Attention Temporal Convolutional Network for EEG-Based Motor Imagery Classification. IEEE Trans. Ind. Inform. 2022, 19, 2249–2258. [Google Scholar] [CrossRef]
- Bang, J.S.; Lee, M.H.; Fazli, S.; Guan, C.; Lee, S.W. Spatio-spectral feature representation for motor imagery classification using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 3038–3049. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.S.; Lee, S.W. Interpretable Convolutional Neural Networks for Subject-Independent Motor Imagery Classification. In Proceedings of the 2022 10th International Winter Conference on Brain-Computer Interface (BCI), Gangwon-do, Republic of Korea, 21–23 February 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans. Biomed. Eng. 2011, 58, 1865–1873. [Google Scholar] [CrossRef]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 2004, 88, 365–411. [Google Scholar] [CrossRef] [Green Version]
- Chao, H.; Liu, Y. Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework. IEEE Access 2020, 8, 33002–33012. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.R.; Zhang, B.; Lei, M.Y.; Cui, W.G.; Guo, Y.Z. A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Miyapuram, K.P. BRAIN2DEPTH: Lightweight CNN Model for Classification of Cognitive States from EEG Recordings. arXiv 2021, arXiv:2106.06688. [Google Scholar]
- Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S.; Artoni, F. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. J. Neural Eng. 2020, 17, 046011. [Google Scholar] [CrossRef]
- Özdenizci, O.; Wang, Y.; Koike-Akino, T.; Erdoğmuş, D. Adversarial deep learning in EEG biometrics. IEEE Signal Process. Lett. 2019, 26, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain–computer interface. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; IEEE: New York, NY, USA, 2008; pp. 2390–2397. [Google Scholar]
- Cho, H.; Ahn, M.; Ahn, S.; Kwon, M.; Jun, S.C. EEG datasets for motor imagery brain–computer interface. GigaScience 2017, 6, gix034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, L. The generalization of the Wiener-Khinchin theorem. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Seattle, WA, USA, 15 May 1998; IEEE: New York, NY, USA, 1998; Volume 3, pp. 1577–1580. [Google Scholar]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: New York, NY, USA, 2003. [Google Scholar]
- Álvarez-Meza, A.M.; Cárdenas-Pena, D.; Castellanos-Dominguez, G. Unsupervised kernel function building using maximization of information potential variability. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Puerto Vallarta, Mexico, 15 May–1 July 2014; Springer: Cham, Switzerland, 2014; pp. 335–342. [Google Scholar]
- Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into deep learning. arXiv 2021, arXiv:2106.11342. [Google Scholar]
- Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Chapter 3—Technical Aspects of Brain Rhythms and Speech Parameters. In Introduction to EEG- and Speech-Based Emotion Recognition; Abhang, P.A., Gawali, B.W., Mehrotra, S.C., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 51–79. [Google Scholar] [CrossRef]
- Warrens, M.J. Five ways to look at Cohen’s kappa. J. Psychol. Psychother. 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z.; Fan, H. Random matrix theory for analysing the brain functional network in lower limb motor imagery. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: New York, NY, USA, 2020; pp. 506–509. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 11. [Google Scholar]
- Bromiley, P.; Thacker, N.; Bouhova-Thacker, E. Shannon entropy, Renyi entropy, and information. Stat. Inf Ser. 2004, 9, 2–8. [Google Scholar]
- Álvarez-Meza, A.M.; Lee, J.A.; Verleysen, M.; Castellanos-Dominguez, G. Kernel-based dimensionality reduction using Renyi’s α-entropy measures of similarity. Neurocomputing 2017, 222, 36–46. [Google Scholar] [CrossRef]
- Collazos-Huertas, D.F.; Velasquez-Martinez, L.F.; Perez-Nastar, H.D.; Alvarez-Meza, A.M.; Castellanos-Dominguez, G. Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires. Sensors 2021, 21, 5105. [Google Scholar] [CrossRef]
- Tibrewal, N.; Leeuwis, N.; Alimardani, M. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users. PLoS ONE 2022, 17, e0268880. [Google Scholar] [CrossRef]
Layer | Output Dimension | Params. |
---|---|---|
Input | · | |
Conv2D | max norm = 2.0, kernel size = (1, ) Stride size = (1, 1), Bias = False | |
BatchNormalization | · | |
ELU activation | ||
FCblock | · | |
AveragePooling2D | · | |
BatchNormalization | · | |
ELU activation | ||
Flatten | · | |
Dropout | Dropout rate = 0.5 | |
Dense | max norm = 0.5 | |
Softmax |
Approach | Group | Accuracy | KCS-FCnet Gain |
---|---|---|---|
EEGnet | G I | · | |
G II | · | ||
G III | · | ||
KCS-FCnet | G I | 0.9 | |
G II | 5.6 | ||
G III | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Murillo, D.G.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification. Diagnostics 2023, 13, 1122. https://doi.org/10.3390/diagnostics13061122
García-Murillo DG, Álvarez-Meza AM, Castellanos-Dominguez CG. KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification. Diagnostics. 2023; 13(6):1122. https://doi.org/10.3390/diagnostics13061122
Chicago/Turabian StyleGarcía-Murillo, Daniel Guillermo, Andrés Marino Álvarez-Meza, and Cesar German Castellanos-Dominguez. 2023. "KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification" Diagnostics 13, no. 6: 1122. https://doi.org/10.3390/diagnostics13061122
APA StyleGarcía-Murillo, D. G., Álvarez-Meza, A. M., & Castellanos-Dominguez, C. G. (2023). KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification. Diagnostics, 13(6), 1122. https://doi.org/10.3390/diagnostics13061122