Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. EEG Data Acquisition and Preprocessing
2.3. Functional Brain Network Construction
2.4. Feature Calculation of Functional Brain Networks
2.4.1. Clustering Coefficient
2.4.2. Characteristic Path Length
2.4.3. Small World
2.5. Notation Interpretation in the Equations
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Functional Connectivity Reorganization
4.2. Altered Brain Functional Network Structure between HGAD and LGAD
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oathes, D.J.; Ray, W.J.; Yamasaki, A.S.; Borkovec, T.D.; Castonguay, L.G.; Newman, M.G.; Nitschke, J. Worry, generalized anxiety disorder, and emotion: Evidence from the EEG gamma band. Biol. Psychol. 2008, 79, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chai, F.; Zhang, H.; Liu, X.; Xie, P.; Zheng, L.; Yang, L.; Li, L.; Fang, D. Cortical functional activity in patients with generalized anxiety disorder. BMC Psychiatry 2016, 16, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saramago, P.; Gega, L.; Marshall, D.; Nikolaidis, G.F.; Jankovic, D.; Melton, H.; Dawson, S.; Churchill, R.; Bojke, L. Digital Interventions for Generalized Anxiety Disorder (GAD): Systematic Review and Network Meta-Analysis. Front. Psychiatry 2021, 12, 726222. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Li, G.; Fang, J.; Zhong, H.; Wang, J.; Sun, Y.; Shen, X. Aberrated Multidimensional EEG Characteristics in Patients with Generalized Anxiety Disorder: A Machine-Learning Based Analysis Framework. Sensors 2022, 22, 5420. [Google Scholar] [CrossRef]
- Stoychev, K.; Dilkov, D.; Naghavi, E.; Kamburova, Z. Genetic Basis of Dual Diagnosis: A Review of Genome-Wide Association Studies (GWAS) Focusing on Patients with Mood or Anxiety Disorders and Co-Occurring Alcohol-Use Disorders. Diagnostics 2021, 11, 1055. [Google Scholar] [CrossRef]
- Eilert, N.; Enrique, A.; Wogan, R.; Mooney, O.; Timulak, L.; Richards, D. The effectiveness of Internet-delivered treatment for generalized anxiety disorder: An updated systematic review and meta-analysis. Depress. Anxiety 2021, 38, 196–219. [Google Scholar] [CrossRef] [PubMed]
- Song, P.H.; Tong, H.; Zhang, L.Y.; Lin, H.; Hu, N.N.; Zhao, X.; Hao, W.S.; Xu, P.; Wang, Y.P. Repetitive Transcranial Magnetic Stimulation Modulates Frontal and Temporal Time-Varying EEG Network in Generalized Anxiety Disorder: A Pilot Study. Front. Psychiatry 2022, 12, 779201. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Pavlov, S.V. Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation. Int. J. Psychophysiol. 2005, 55, 85–94. [Google Scholar] [CrossRef]
- Slater, J.; Joober, R.; Koborsy, B.L.; Mitchell, S.; Sahlas, E.; Palmer, C. Can electroencephalography (EEG) identify ADHD subtypes? A systematic review. Neurosci. Biobehav. Rev. 2022, 139, 104752. [Google Scholar] [CrossRef]
- Chang, Y.; Stevenson, C.; Chen, I.C.; Lin, D.S.; Ko, L.W. Neurological state changes indicative of ADHD in children learned via EEG-based LSTM networks. J. Neural. Eng. 2022, 19, 016021. [Google Scholar] [CrossRef]
- Porcaro, C.; Nemirovsky, I.E.; Riganello, F.; Mansour, Z.; Cerasa, A.; Tonin, P.; Stojanoski, B.; Soddu, A. Diagnostic Developments in Differentiating Unresponsive Wakefulness Syndrome and the Minimally Conscious State. Front. Neurol. 2021, 12, 778951. [Google Scholar] [CrossRef]
- Ancillon, L.; Elgendi, M.; Menon, C. Machine Learning for Anxiety Detection Using Biosignals: A Review. Diagnostics 2022, 12, 1794. [Google Scholar] [CrossRef]
- Ahmad, I.; Wang, X.; Zhu, M.; Wang, C.; Pi, Y.; Khan, J.A.; Khan, S.; Samuel, O.W.; Chen, S.; Li, G. EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. Comput. Intell. Neurosci. 2022, 2022, 6486570. [Google Scholar] [CrossRef]
- Gadot, R.; Korst, G.; Shofty, B.; Gavvala, J.R.; Sheth, S.A. Thalamic stereoelectroencephalography in epilepsy surgery: A scoping literature review. J. Neurosurg. 2022, 137, 1210–1225. [Google Scholar] [CrossRef]
- Gao, X.; Lin, S.; Zhang, M.; Lyu, M.; Liu, Y.; Luo, X.; You, W.; Ke, C. Review: Use of Electrophysiological Techniques to Study Visual Functions of Aquatic Organisms. Front. Physiol. 2022, 13, 798382. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, F.; Vecchio, F.; Pappalettera, C.; Nucci, L.; Cotelli, M.; Judica, E.; Ferreri, F.; Rossini, P.M. Brain Connectivity and Graph Theory Analysis in Alzheimer’s and Parkinson’s Disease: The Contribution of Electrophysiological Techniques. Brain. Sci. 2022, 12, 402. [Google Scholar] [CrossRef]
- Willis, P.G.; Pavlova, O.A.; Chefer, S.I.; Vaupel, D.B.; Mukhin, A.G.; Horti, A.G. Synthesis and structure-activity relationship of a novel series of aminoalkylindoles with potential for imaging the neuronal cannabinoid receptor by positron emission tomography. J. Med. Chem. 2005, 48, 5813–5822. [Google Scholar] [CrossRef] [PubMed]
- Clegern, W.C.; Moore, M.E.; Schmidt, M.A.; Wisor, J. Simultaneous electroencephalography, real-time measurement of lactate concentration and optogenetic manipulation of neuronal activity in the rodent cerebral cortex. J. Vis. Exp. 2012, 70, e4328. [Google Scholar] [CrossRef] [Green Version]
- Anders, C.; Arnrich, B. Wearable electroencephalography and multi-modal mental state classification: A systematic literature review. Comput. Biol. Med. 2022, 150, 106088. [Google Scholar] [CrossRef]
- Sharma, S.; Nunes, M.; Alkhachroum, A. Adult Critical Care Electroencephalography Monitoring for Seizures: A Narrative Review. Front. Neurol. 2022, 13, 951286. [Google Scholar] [CrossRef]
- Livint Popa, L.; Chira, D.; Dabala, V.; Hapca, E.; Popescu, B.O.; Dina, C.; Chereches, R.; Strilciuc, S.; Muresanu, D.F. Quantitative EEG as a Biomarker in Evaluating Post-Stroke Depression. Diagnostics 2023, 13, 49. [Google Scholar] [CrossRef]
- Zhu, X.; Rong, W.; Zhao, L.; He, Z.; Yang, Q.; Sun, J.; Liu, G. EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features. Sensors 2022, 22, 5252. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, P.; Covino, A.; Cristaldi, L.; Frosolone, M.; Gargiulo, L.; Mancino, F.; Mantile, F.; Moccaldi, N. A Systematic Review on Feature Extraction in Electroencephalography-Based Diagnostics and Therapy in Attention Deficit Hyperactivity Disorder. Sensors 2022, 22, 4934. [Google Scholar] [CrossRef]
- Cao, J.; Huppert, T.J.; Grover, P.; Kainerstorfer, J.M. Enhanced spatiotemporal resolution imaging of neuronal activity using joint electroencephalography and diffuse optical tomography. Neurophotonics 2021, 8, 015002. [Google Scholar] [CrossRef] [PubMed]
- Stapel, B.; Nosel, P.; Heitland, I.; Mahmoudi, N.; Lanfermann, H.; Kahl, K.G.; Ding, X.Q. In vivo magnetic resonance spectrometry imaging demonstrates comparable adaptation of brain energy metabolism to metabolic stress induced by 72 h of fasting in depressed patients and healthy volunteers. J. Psychiatr. Res. 2021, 143, 422–428. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Lin, Z.; Gao, F. Prediction of Epilepsy Based on Tensor Decomposition and Functional Brain Network. Brain Sci. 2021, 11, 1066. [Google Scholar] [CrossRef]
- Meier, J.; Tewarie, P.; Van Mieghem, P. The Union of Shortest Path Trees of Functional Brain Networks. Brain Connect. 2015, 5, 575–581. [Google Scholar] [CrossRef]
- Huster, R.J.; Enriquez-Geppert, S.; Lavallee, C.F.; Falkenstein, M.; Herrmann, C.S. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int. J. Psychophysiol. 2013, 87, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chang, W.; Zhang, C. Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection. Expert Syst. Appl. 2016, 53, 117–128. [Google Scholar] [CrossRef]
- Han, C.; Sun, X.; Yang, Y.; Che, Y.; Qin, Y. Brain Complex Network Characteristic Analysis of Fatigue during Simulated Driving Based on Electroencephalogram Signals. Entropy 2019, 21, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Sui, J.; Kiehl, K.A.; Pearlson, G.; Calhoun, V.D. State-related functional integration and functional segregation brain networks in schizophrenia. Schizophr. Res. 2013, 150, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Z.; Wang, H.; Cai, M.; Cao, Y.; Zou, L.; Wang, S. Rich club characteristics of dynamic brain functional networks in resting state. Multimed. Tools Appl. 2020, 79, 15075–15093. [Google Scholar] [CrossRef]
- Yuan, J.; Ji, S.; Luo, L.; Lv, J.; Liu, T. Control energy assessment of spatial interactions among macro-scale brain networks. Hum. Brain Mapp. 2022, 43, 2181–2203. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, S.; Zhang, J. Feature Extraction of the Brain’s Dynamic Complex Network Based on EEG and a Framework for Discrimination of Pediatric Epilepsy. Sensors 2022, 22, 2553. [Google Scholar] [CrossRef]
- Gleiser, P.M.; Spoormaker, V.I. Modelling hierarchical structure in functional brain networks. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2010, 368, 5633–5644. [Google Scholar] [CrossRef]
- Zhao, G.; Zhan, Y.; Zha, J.; Cao, Y.; Zhou, F.; He, L. Abnormal intrinsic brain functional network dynamics in patients with cervical spondylotic myelopathy. Cogn. Neurodynamics 2022. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Zhang, Z.; Hao, Y.; Li, X.; Hu, B. A thresholding method based on society modularity and role division for functional connectivity analysis. J. Neural. Eng. 2022, 19, 056030. [Google Scholar] [CrossRef] [PubMed]
- Small, M.; Cavanagh, D. Modelling Strong Control Measures for Epidemic Propagation With Networks-A COVID-19 Case Study. IEEE Access 2020, 8, 109719–109731. [Google Scholar] [CrossRef]
- He, B.; Astolfi, L.; Valdes-Sosa, P.A.; Marinazzo, D.; Palva, S.O.; Benar, C.-G.; Michel, C.M.; Koenig, T. Electrophysiological Brain Connectivity: Theory and Implementation. IEEE Trans. Biomed. Eng. 2019, 66, 2115–2137. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef]
- Iakovidou, N.D. Graph Theory at the Service of Electroencephalograms. Brain Connect. 2017, 7, 137–151. [Google Scholar] [CrossRef]
- Moezzi, B.; Pratti, L.M.; Hordacre, B.; Graetz, L.; Berryman, C.; Lavrencic, L.; Ridding, M.C.; Keage, H.A.; McDonnell, M.D.; Goldsworthy, M.R. Characterization of Young and Old Adult Brains: An EEG Functional Connectivity Analysis. Neuroscience 2019, 422, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Alon, N.; Yuster, R.; Zwick, U. Finding and counting given length cycles. Algorithmica 1997, 17, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Maslov, S.; Sneppen, K. Specificity and stability in topology of protein networks. Science 2002, 296, 910–913. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Garro, E.M.; Zhao, Y. EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning. Sensors 2022, 22, 7623. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Guo, R.J.; Shi, H.W. Altered Default Mode Network and Salience Network Functional Connectivity in Patients with Generalized Anxiety Disorders: An ICA-Based Resting-State fMRI Study. Evid. Based Complement. Altern. Med. 2020, 2020, 4048916. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, F.; Fan, L.; Gu, Y.; Ma, J.; Zhang, J.; Liao, M.; Zhai, T.; Zhang, Y.; Li, L.; et al. Disruption of functional and structural networks in first-episode, drug-naive adolescents with generalized anxiety disorder. J. Affect. Disord. 2021, 284, 229–237. [Google Scholar] [CrossRef]
- De la Pena-Arteaga, V.; Fernandez-Rodriguez, M.; Silva Moreira, P.; Abreu, T.; Portugal-Nunes, C.; Soriano-Mas, C.; Pico-Perez, M.; Sousa, N.; Ferreira, S.; Morgado, P. An fMRI study of cognitive regulation of reward processing in generalized anxiety disorder (GAD). Psychiatry Res. Neuroimaging 2022, 324, 111493. [Google Scholar] [CrossRef]
- Dong, M.; Xia, L.; Lu, M.; Li, C.; Xu, K.; Zhang, L. A failed top-down control from the prefrontal cortex to the amygdala in generalized anxiety disorder: Evidence from resting-state fMRI with Granger causality analysis. Neurosci. Lett. 2019, 707, 134314. [Google Scholar] [CrossRef]
- Liu, W.J.; Yin, D.Z.; Cheng, W.H.; Fan, M.X.; You, M.N.; Men, W.W.; Zang, L.L.; Shi, D.H.; Zhang, F. Abnormal functional connectivity of the amygdala-based network in resting-state FMRI in adolescents with generalized anxiety disorder. Med. Sci. Monit. 2015, 21, 459–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochcovitch, M.D.; da Rocha Freire, R.C.; Garcia, R.F.; Nardi, A.E. A systematic review of fMRI studies in generalized anxiety disorder: Evaluating its neural and cognitive basis. J. Affect. Disord. 2014, 167, 336–342. [Google Scholar] [CrossRef]
- Wang, W.; Qian, S.; Liu, K.; Li, B.; Sun, G. Resting-state functional magnetic resonance imaging in neural mechanism of generalized anxiety disorder. Chin. J. Med. Imaging Technol. 2016, 32, 358–362. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, J.; Li, H.; Tian, J.; Fang, J.; Xu, Y.; Jiao, W.; Li, G. Reorganization of Brain Functional Network during Task Switching before and after Mental Fatigue. Sensors 2022, 22, 8036. [Google Scholar] [CrossRef]
- Dell’Acqua, C.; Ghiasi, S.; Benvenuti, S.M.; Greco, A.; Gentili, C.; Valenza, G. Increased resting-state functional connectivity within theta and alpha frequency bands in dysphoria: Towards a novel measure of depression risk. medRxiv 2020. [Google Scholar] [CrossRef]
- Gurja, J.P.; Muthukrishnan, S.P.; Tripathi, M.; Sharma, R. Reduced Resting-State Cortical Alpha Connectivity Reflects Distinct Functional Brain Dysconnectivity in Alzheimer’s Disease and Mild Cognitive Impairment. Brain Connect. 2022, 12, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Khoo, S.; Ng, S.C.; Chi, A. Brain Functional Network and Amino Acid Metabolism Association in Females with Subclinical Depression. Int. J. Environ. Res. Public Health 2022, 19, 3321. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Dai, J.; Wang, T.; Li, H.; Ma, C.; Xi, X. Altered Functional Connectivity and Complexity in Major Depressive Disorder after Musical Stimulation. Brain Sci. 2022, 12, 1680. [Google Scholar] [CrossRef]
- Kim, D.J.; Bolbecker, A.R.; Howell, J.; Rass, O.; Sporns, O.; Hetrick, W.P.; Breier, A.; O’Donnell, B.F. Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis. Neuroimage Clin. 2013, 2, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, C.; Suo, X.; Lan, H.; Pan, N.; Wang, S.; Kemp, G.J.; Gong, Q. Global Alterations of Whole Brain Structural Connectome in Parkinson’s Disease: A Meta-analysis. Neuropsychol. Rev. 2022. [Google Scholar] [CrossRef]
- Li, G.; Luo, Y.; Zhang, Z.; Xu, Y.; Jiao, W.; Jiang, Y.; Huang, S.; Wang, C. Effects of Mental Fatigue on Small-World Brain Functional Network Organization. Neural. Plast 2019, 2019, 1716074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | LGAD | HGAD | p-Value |
---|---|---|---|
Number | 30 | 21 | - |
Age (year) | 27–58 (44.90 ± 10.28) | 28–58 (46.77 ± 8.99) | 0.0504 |
HAMA | 18–25 20.93 ± 2.73 | 29–49 35.76 ± 7.20 | 1.62 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Fang, J.; Sun, Y.; Xu, W.; Li, G. Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder. Diagnostics 2023, 13, 1292. https://doi.org/10.3390/diagnostics13071292
Qi X, Fang J, Sun Y, Xu W, Li G. Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder. Diagnostics. 2023; 13(7):1292. https://doi.org/10.3390/diagnostics13071292
Chicago/Turabian StyleQi, Xuchen, Jiaqi Fang, Yu Sun, Wanxiu Xu, and Gang Li. 2023. "Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder" Diagnostics 13, no. 7: 1292. https://doi.org/10.3390/diagnostics13071292
APA StyleQi, X., Fang, J., Sun, Y., Xu, W., & Li, G. (2023). Altered Functional Brain Network Structure between Patients with High and Low Generalized Anxiety Disorder. Diagnostics, 13(7), 1292. https://doi.org/10.3390/diagnostics13071292