CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA)
Abstract
:1. Introduction
- Shape: a well-defined (lacy-wheel or sea-fan shaped) CNV lesion, in contrast to one with long filamentous linear vessels.
- Branching: numerous tiny capillaries, in contrast to rare large mature vessels.
- The presence of anastomoses and loops.
- Morphology of the vessel termini: the presence of a peripheral arcade, in contrast to a “dead tree” appearance.
- Presence of a perilesional hypointense halo, defined as regions of choriocapillaris alteration, either due to flow impairment, steal, or localized atrophy.
2. Materials and Methods
2.1. Dataset
2.2. Segmentation Algorithm
2.2.1. Segmentation of CNV Area (SEG-CNV)
2.2.2. Segmentation of Peripheral Arcade (SEG-PA)
2.2.3. Segmentation of Dark Halo (SEG-DH)
2.3. Clasification Algorithm
3. Results
3.1. Metrics for Segmentation and Classification
3.1.1. Result for Segmentation
3.1.2. Result for Classification
3.2. Model Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gess, A.J.; Fung, A.E.; Rodriguez, J.G. Imaging in neovascular age-related macular degeneration. Semin. Ophthalmol. 2011, 26, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Ambati, B.K.; Yoo, S.H.; Ianchulev, S.; Adamis, A.P. Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies. Surv. Ophthalmol. 2003, 48, 257–293. [Google Scholar] [CrossRef] [PubMed]
- Sulzbacher, F.; Kiss, C.; Munk, M.; Deak, G.; Sacu, S.; Schmidt-Erfurth, U. Diagnostic evaluation of type 2 (classic) choroidal neovascularization: Optical coherence tomography, indocyanine green angiography, and fluorescein angiography. Am. J. Ophthalmol. 2011, 152, 799–806.e1. [Google Scholar] [CrossRef]
- Coscas, F.; Lupidi, M.; Boulet, J.F.; Sellam, A.; Cabral, D.; Serra, R.; Français, C.; Souied, E.H.; Coscas, G. Optical coherence tomography angiography in exudative age-related macular degeneration: A predictive model for treatment decisions. Br. J. Ophthalmol. 2019, 103, 1342–1356. [Google Scholar] [CrossRef]
- Gutfleisch, M.; Ester, O.; Aydin, S.; Quassowski, M.; Spital, G.; Lommatzsch, A.; Rothaus, K.; Dubis, A.M.; Pauleikhoff, D. Clinically applicable deep learning-based decision aids for treatment of neovascular AMD. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2217–2230. [Google Scholar] [CrossRef]
- Do, D.V. Detection of new-onset choroidal neovascularization. Curr. Opin. Ophthalmol. 2013, 24, 244–247. [Google Scholar] [CrossRef]
- Lalwani, G.A.; Rosenfeld, P.J.; Fung, A.E.; Dubovy, S.R.; Michels, S.; Feuer, W.; Davis, J.L.; Flynn, H.W.; Esquiabro, M. A Variable-dosing Regimen with Intravitreal Ranibizumab for Neovascular Age-related Macular Degeneration: Year 2 of the PrONTO Study. Am. J. Ophthalmol. 2009, 148, 43–58.e1. [Google Scholar] [CrossRef]
- Coscas, G.J.; Lupidi, M.; Coscas, F.; Cagini, C.; Souied, E.H. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: A new diagnostic challenge. Retina 2015, 35, 2219–2228. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Iafe, N.A.; Phasukkijwatana, N.; Sadda, S.R.; Sarraf, D. Biomarkers of Neovascular Activity in Age-related Macular Degeneration Using Optical Coherence Tomography Angiography. Retina 2018, 38, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.; Kim, H.J.; Shin, Y.K.; Kang, S.W. Predictors of neovascular activity during neovascular age-related macular degeneration treatment based on optical coherence tomography angiography. Sci. Rep. 2019, 9, 19240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faridi, A.; Jia, Y.; Gao, S.S.; Huang, D.; Bhavsar, K.V.; Wilson, D.J.; Sill, A.; Flaxel, C.J.; Hwang, T.S.; Lauer, A.K.; et al. Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization. Ophthalmol. Retin. 2017, 1, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Altinisik, M.; Kurt, E.; Kayikcioglu, O.; Yildirim, A. Quantitative Analysis of the Activity in Choroidal Neovascularizations after a Single Anti-VEGF Injection: OCT Versus OCT Angiography. Semin. Ophthalmol. 2021, 36, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gao, S.; Zhang, Y.; Zhang, M. Sensitivity and specificity of optical coherence tomography angiography in the diagnosis of active choroidal neovascularization: A systematic review and meta-analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 3529–3536. [Google Scholar] [CrossRef]
- De Carlo, T.E.; Bonini Filho, M.A.; Chin, A.T.; Adhi, M.; Ferrara, D.; Baumal, C.R.; Witkin, A.J.; Reichel, E.; Duker, J.S.; Waheed, N.K. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology 2015, 122, 1228–1238. [Google Scholar] [CrossRef]
- Sheck, L.H.N. Re: Lee et al.: Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration OCT Images (Ophthalmol Retina. 2017;1:322–327. Ophthalmol. Retin. 2018, 2, e3. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chang, Y.-L.; Li, X. Adaptive image region-growing. IEEE Trans. Image Process. 1994, 3, 868–872. [Google Scholar] [CrossRef]
- Berstad, T.J.D.; Riegler, M.; Espeland, H.; de Lange, T.; Smedsrud, P.H.; Pogorelov, K.; Stensland, H.K.; Halvorsen, P. Tradeoffs using binary and multiclass neural network classification for medical multidisease detection. In Proceedings of the 2018 IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, 10–12 December 2018; pp. 1–8. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Karri, S.P.K.; Chakraborty, D.; Chatterjee, J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed. Opt. Express 2017, 8, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Burlina, P.M.; Joshi, N.; Pekala, M.; Pacheco, K.D.; Freund, D.E.; Bressler, N.M. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017, 135, 1170–1176. [Google Scholar] [CrossRef]
- de Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 2015, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Kurmann, T.; Yu, S.; Márquez-Neila, P.; Ebneter, A.; Zinkernagel, M.; Munk, M.R.; Wolf, S.; Sznitman, R. Expert-level Automated Biomarker Identification in Optical Coherence Tomography Scans. Sci. Rep. 2019, 9, 13605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt-Erfurth, U.; Bogunovic, H.; Sadeghipour, A.; Schlegl, T.; Langs, G.; Gerendas, B.S.; Osborne, A.; Waldstein, S.M. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2018, 2, 24–30. [Google Scholar] [CrossRef]
- Liu, L.; Gao, S.S.; Bailey, S.T.; Huang, D.; Li, D.; Jia, Y. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomed. Opt. Express 2015, 6, 3564–3576. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Camino, A.; Bailey, S.T.; Liu, X.; Li, D.; Jia, Y. Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes. Biomed. Opt. Express 2018, 9, 3208–3219. [Google Scholar] [CrossRef]
- Taibouni, K.; Chenoune, Y.; Miere, A.; Colantuono, D.; Souied, E.; Petit, E. Automated quantification of choroidal neovascularization on Optical Coherence Tomography Angiography images. Comput. Biol. Med. 2019, 114, 103450. [Google Scholar] [CrossRef]
- Le, D.; Son, T.; Yao, X. Machine learning in optical coherence tomography angiography. Exp. Biol. Med. 2021, 246, 2170–2183. [Google Scholar] [CrossRef]
- Wang, J.; Hormel, T.T.; Gao, L.; Zang, P.; Guo, Y.; Wang, X.; Bailey, S.T.; Jia, Y. Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning. Biomed. Opt. Express 2020, 11, 927–944. [Google Scholar] [CrossRef]
Variable | Values | Number (Percentage) |
---|---|---|
Sex | Female | 52 (40%) |
Male | 78 (60%) | |
Total | 130 (100%) | |
Age | <40 | 9 (6.92%) |
40–50 | 14 (10.77%) | |
50–60 | 25 (19.23%) | |
60–70 | 37 (28.46%) | |
70–80 | 45 (34.61%) | |
Total | 130 (100%) | |
Outer retina en-face Total = 130 | Presence (Percentage) | |
branch | 68/130 (52.30%) | |
shape | 49/130 (37.69%) | |
peripheral arcade | 100/130 (76.92%) | |
anastomosis and loops | 63/130 (48.46%) | |
Choriocapillaris en-face Total = 130 | Dark halo | 62/130 (47.69%) |
Input En-Face Image | Segmentation Block | Classification Block | Activity Criteria | ||
---|---|---|---|---|---|
Segmentation Method | Output Image | Method | |||
DL Model | Trained Layers | ||||
Outer retina | SEG-CNV | CNV ROI | TL on VGG16 | FC + Sigmoid | Branch |
Outer retina | SEG-CNV | CNV ROI | TL on VGG16 | 3Conv + FC + Sigmoid | Shape |
Outer retina | SEG-CNV | CNV ROI | TL on VGG16 | 1Conv + FC + Sigmoid | Anastomosis and Loops |
Outer retina | SEG -PA | Peripheral Arcade Mask | DL from scratch | All layers (4Conv + FC + Sigmoid) | Peripheral Arcade |
Choroidal | SEG-DH | Dark Halo Mask | TL on VGG16 | FC + Sigmoid | Dark Halo |
Features Metrics | Branch | Shape | Anastomosis and Loops | Peripheral Arcade | Dark Halo |
---|---|---|---|---|---|
F1-score | 0.83 | 0.86 | 0.79 | 0.82 | 0.83 |
Sensitivity | 0.86 | 0.86 | 0.83 | 0.86 | 0.81 |
Specificity | 0.70 | 0.81 | 0.76 | 0.78 | 0.83 |
Accuracy | 0.84 | 0.85 | 0.82 | 0.81 | 0.86 |
Features Metrics | Branch | Shape | Anastomosis and Loops | Peripheral Arcade | Dark Halo |
---|---|---|---|---|---|
F1-score | 0.79 | 0.79 | 0.65 | 0.78 | 0.68 |
Sensitivity | 0.75 | 0.70 | 0.60 | 0.71 | 0.59 |
Specificity | 0.72 | 0.79 | 0.78 | 0.77 | 0.67 |
Accuracy | 0.60 | 0.74 | 0.70 | 0.79 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vali, M.; Nazari, B.; Sadri, S.; Pour, E.K.; Riazi-Esfahani, H.; Faghihi, H.; Ebrahimiadib, N.; Azizkhani, M.; Innes, W.; Steel, D.H.; et al. CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA). Diagnostics 2023, 13, 1309. https://doi.org/10.3390/diagnostics13071309
Vali M, Nazari B, Sadri S, Pour EK, Riazi-Esfahani H, Faghihi H, Ebrahimiadib N, Azizkhani M, Innes W, Steel DH, et al. CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA). Diagnostics. 2023; 13(7):1309. https://doi.org/10.3390/diagnostics13071309
Chicago/Turabian StyleVali, Mahsa, Behzad Nazari, Saeed Sadri, Elias Khalili Pour, Hamid Riazi-Esfahani, Hooshang Faghihi, Nazanin Ebrahimiadib, Momeneh Azizkhani, Will Innes, David H. Steel, and et al. 2023. "CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA)" Diagnostics 13, no. 7: 1309. https://doi.org/10.3390/diagnostics13071309
APA StyleVali, M., Nazari, B., Sadri, S., Pour, E. K., Riazi-Esfahani, H., Faghihi, H., Ebrahimiadib, N., Azizkhani, M., Innes, W., Steel, D. H., Hurlbert, A., Read, J. C. A., & Kafieh, R. (2023). CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA). Diagnostics, 13(7), 1309. https://doi.org/10.3390/diagnostics13071309