Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. External Test Set
2.3. Neural Network Architecture and Training Strategy
2.4. AI Model Deployment & Diagnosis
3. Results
3.1. Verify on AI Model
3.2. AI-Aided Diagnosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology 2020, 296, E15–E25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facilities and Services, National Centre for Infectious Diseases (NCID). Available online: https://www.ncid.sg/Facilities-Services/Pages/default.aspx (accessed on 21 October 2022).
- UPDATES ON COVID-19 (CORONAVIRUS DISEASE 2019) LOCAL SITUATION, Ministry of Health. Available online: https://www.moh.gov.sg/COVID-19/statistics (accessed on 26 February 2023).
- Kooraki, S.; Hosseiny, M.; Myers, L.; Gholamrezanezhad, A. Coronavirus (COVID-19) outbreak: What the department of radiology should know. J. Am. Coll. Radiol. 2020, 17, 447–451. [Google Scholar] [CrossRef]
- Zhang, R.; Tie, X.; Qi, Z.; Bevins, N.B.; Zhang, C.; Griner, D.; Song, T.K.; Nadig, J.D.; Schiebler, M.L.; Garrett, J.W.; et al. Diagnosis of COVID-19 Pneumonia Using Chest Radiography: Value of Artificial Intelligence. Radiology 2020, 24, 202944. [Google Scholar]
- Pereira, R.M.; Bertolini, D.; Teixeira, L.O.; Silla, C.N., Jr.; Costa, Y.M. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Comput. Methods Programs Biomed. 2020, 8, 105532. [Google Scholar] [CrossRef]
- Rahimzadeh, M.; Attar, A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform. Med. Unlocked 2020, 26, 100360. [Google Scholar] [CrossRef]
- Khan, I.U.; Aslam, N.; Anwar, T.; Alsaif, H.S.; Chrouf, S.M.B.; Alzahrani, N.A.; Alamoudi, F.A.; Kamaleldin, M.M.A.; Awary, K.B. Using a deep learning model to explore the impact of clinical data on COVID-19 diagnosis using chest X-ray. Sensors 2022, 22, 669. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020, 26, 200642. [Google Scholar] [CrossRef] [Green Version]
- Stephanie, S.; Shum, T.; Clevel, H.; Challa, S.R.; Herring, A.; Jacobson, F.L.; Hatabu, H.; Byrne, S.C.; Shashi, K.; Araki, T.; et al. Determinants of Chest X-Ray Sensitivity for COVID-19: A Multi-Institutional Study in the United States. Radiol. Cardiothorac. Imaging 2020, 2, e200337. [Google Scholar] [CrossRef]
- Rubin, G.D.; Ryerson, C.J.; Haramati, L.B.; Sverzellati, N.; Kanne, J.P.; Raoof, S.; Schluger, N.W.; Volpi, A.; Yim, J.J.; Martin, I.B.; et al. The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner Society. Radiology 2020, 296, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Hayden, G.E.; Wrenn, K.W. Chest radiograph vs. computed tomography scan in the evaluation for pneumonia. J. Emerg. Med. 2009, 36, 266–270. [Google Scholar] [CrossRef]
- Li, Y.; Xia, L. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management. Am. J. Roentgenol. 2020, 214, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Gaur, L.; Bhatia, U.; Jhanjhi, N.Z.; Muhammad, G.; Masud, M. Medical image-based detection of COVID-19 using deep convolution neural networks. Multimed. Syst. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Wong, H.Y.; Lam, H.Y.; Fong, A.H.; Leung, S.T.; Chin, T.W.; Lo, C.S.; Lui, M.M.; Lee, J.C.; Chiu, K.W.; Chung, T.; et al. Frequency and distribution of chest radiographic findings in COVID-19 positive patients. Radiology 2020, 27, 201160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Wang, Z.; Xu, X.; Wang, Y.; Fu, H.; Li, S.; Zhen, L.; Lei, X.; Cui, Y.; Ting, J.S.; et al. Contrastive domain adaptation with consistency match for automated pneumonia diagnosis. Med. Image Anal. 2023, 83, 102664. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Zhang, L.; Zhou, J.T.; Liu, Y.; Goh, R.S.; Zhen, L. Adversarial multimodal fusion with attention mechanism for skin lesion classification using clinical and dermoscopic images. Med. Image Anal. 2022, 81, 102535. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xu, X.; Wang, Y.; Lei, X.; Teo, S.K.; Sim, J.Z.; Ting, Y.; Zhen, L.; Zhou, J.T.; Liu, Y.; et al. Deep supervised domain adaptation for pneumonia diagnosis from chest x-ray images. IEEE J. Biomed. Health Inform. 2021, 26, 1080–1090. [Google Scholar] [CrossRef]
- El-Rashidy, N.; Abdelrazik, S.; Abuhmed, T.; Amer, E.; Ali, F.; Hu, J.W.; El-Sappagh, S. Comprehensive survey of using machine learning in the COVID-19 pandemic. Diagnostics 2021, 11, 1155. [Google Scholar] [CrossRef]
- Hertel, R.; Benlamri, R. Deep learning techniques for COVID-19 diagnosis and prognosis based on radiological imaging. ACM Comput. Surv. 2023, 55, 1–39. [Google Scholar] [CrossRef]
- Sim, J.Z.; Ting, Y.H.; Tang, Y.; Feng, Y.; Lei, X.; Wang, X.; Chen, W.X.; Huang, S.; Wong, S.T.; Lu, Z.; et al. Diagnostic performance of a deep learning model deployed at a national COVID-19 screening facility for detection of pneumonia on frontal chest radiographs. Healthcare 2022, 10, 175. [Google Scholar] [CrossRef]
- Azad, A.K.; Ahmed, I.; Ahmed, M.U. In Search of an Efficient and Reliable Deep Learning Model for Identification of COVID-19 Infection from Chest X-ray Images. Diagnostics 2023, 13, 574. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef] [PubMed]
- Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Li, Y.; Shen, C.; Xia, Y. Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv 2020, arXiv:2003.12338. [Google Scholar]
- Kitamura, G.; Deible, C. Retraining an open-source pneumothorax detecting machine learning algorithm for improved performance to medical images. Clin. Imaging 2020, 61, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1, No. 2. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Ahuja, S.; Panigrahi, B.K.; Dey, N.; Rajinikanth, V.; Gandhi, T.K. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl. Intell. 2021, 51, 571–585. [Google Scholar] [CrossRef]
- Panwar, H.; Gupta, P.K.; Siddiqui, M.K.; Morales-Menendez, R.; Singh, V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos Solitons Fractals 2020, 138, 109944. [Google Scholar] [CrossRef]
- Vaid, S.; Kalantar, R.; Bhandari, M. Deep learning COVID-19 detection bias: Accuracy through artificial intelligence. Int. Orthop. 2020, 44, 1539–1542. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Mpesiana, T.A. COVID-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Kang, H.; Xia, L.; Yan, F.; Wan, Z.; Shi, F.; Yuan, H.; Jiang, H.; Wu, D.; Sui, H.; Zhang, C.; et al. Diagnosis of coronavirus disease 2019 (COVID-19) with structured latent multi-view representation learning. IEEE Trans. Med. Imaging 2020, 39, 2606–2614. [Google Scholar] [CrossRef]
- Han, R.; Huang, L.; Jiang, H.; Dong, J.; Peng, H.; Zhang, D. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia. AJR Am. J. Roentgenol. 2020, 215, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.P.; Parkar, A.P.; Prosch, H.; Silva, M.; Sverzellati, N.; Gleeson, F.; Brady, A.; European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI). COVID-19 patients and the Radiology department—Advice from the European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI). Eur. Radiol. 2020, 30, 4903–4909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, A.; Rodrigues, J.C.; Hare, S.; Edey, A.; Devaraj, A.; Jacob, J.; Johnstone, A.; McStay, R.; Denton, E.; Robinson, G. A British Society of Thoracic Imaging statement: Considerations in designing local imaging diagnostic algorithms for the COVID-19 pandemic. Clin. Radiol. 2020, 75, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Skulstad, H.; Cosyns, B.; Popescu, B.A.; Galderisi, M.; Salvo, G.D.; Donal, E.; Petersen, S.; Gimelli, A.; Haugaa, K.H.; Muraru, D.; et al. COVID-19 pandemic and cardiac imaging: EACVI recommendations on precautions, indications, prioritization, and protection for patients and healthcare personnel. Eur. Heart J.-Cardiovasc. Imaging 2020, 21, 592–598. [Google Scholar] [CrossRef]
- Bai, H.X.; Wang, R.; Xiong, Z.; Hsieh, B.; Chang, K.; Halsey, K.; Tran, T.M.L.; Choi, J.W.; Wang, D.-C.; Shi, L.-B.; et al. AI augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other etiology on chest CT. Radiology 2020, 296, 201491. [Google Scholar] [CrossRef]
- Sun, B.; Feng, J.; Saenko, K. Return of frustratingly easy domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. No. 1. [Google Scholar]
- Kamnitsas, K.; Baumgartner, C.; Ledig, C.; Newcombe, V.; Simpson, J.; Kane, A.; Menon, D.; Nori, A.; Criminisi, A.; Rueckert, D.; et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In Proceedings of the 25th International Conference on Information Processing in Medical Imaging, IPMI 2017, Boone, NC, USA, 25–30 June 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 597–609. [Google Scholar]
- Varsavsky, T.; Orbes-Arteaga, M.; Sudre, C.H.; Graham, M.S.; Nachev, P.; Cardoso, M.J. Test-time unsupervised domain adaptation. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, Lima, Peru, 4–8 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 428–436. [Google Scholar]
- Wang, X.; Liang, G.; Zhang, Y.; Blanton, H.; Bessinger, Z.; Jacobs, N. Inconsistent performance of deep learning models on mammogram classification. J. Am. Coll. Radiol. 2020, 17, 796–803. [Google Scholar] [CrossRef] [Green Version]
COVID-19 Pneumonia | Non-COVID-19 Pneumonia | Non-Pneumonia | Total | |
---|---|---|---|---|
Training set | 425 | 399 | 2712 | 3536 |
Validation set | 61 | 57 | 387 | 505 |
Test set | 121 | 114 | 775 | 1010 |
External test set | 72 | 49 | 379 | 500 |
Test Set | External Test Set | |||
---|---|---|---|---|
AUC | 95% CI | AUC | 95% CI | |
Ahuja’s [30] | 0.8982 | 0.8968–0.8993 | 0.7680 | 0.7651–0.7704 |
nCOVnet [31] | 0.8876 | 0.8854–0.8897 | 0.6837 | 0.6012–0.6859 |
Vaid’s [32] | 0.9021 | 0.8996–0.9038 | 0.7402 | 0.7379–0.7425 |
Apostolopoulos’s [33] | 0.9279 | 0.9229–0.9294 | 0.8162 | 0.8145–0.8185 |
CV19-Net [6] | 0.9395 | 0.9361–0.9407 | 0.7987 | 0.7952–0.8032 |
Ours | 0.9520 * | 0.9479–0.9585 | 0.8588 * | 0.8570–0.8623 |
Test Set | External Test Set | ||||||
---|---|---|---|---|---|---|---|
AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | ||
Ahuja’s [30] | COVID-19 pneumonia | 0.9185 | 0.8966 | 0.7768 | 0.7309 | 0.7361 | 0.5491 |
Non-COVID-19 pneumonia | 0.8886 | 0.8421 | 0.8136 | 0.7762 | 0.7755 | 0.6408 | |
Non-pneumonia | 0.8964 | 0.8429 | 0.8000 | 0.7740 | 0.7784 | 0.6116 | |
nCOVnet [31] | COVID-19 pneumonia | 0.8897 | 0.8793 | 0.7312 | 0.6437 | 0.7083 | 0.5117 |
Non-COVID-19 pneumonia | 0.8817 | 0.8639 | 0.7739 | 0.7251 | 0.7347 | 0.5322 | |
Non-pneumonia | 0.8882 | 0.8596 | 0.7864 | 0.6860 | 0.7230 | 0.5124 | |
Vaid’s [32] | COVID-19 pneumonia | 0.9088 | 0.8448 | 0.8064 | 0.7154 | 0.7500 | 0.6005 |
Non-COVID-19 pneumonia | 0.9024 | 0.8421 | 0.8500 | 0.7387 | 0.6735 | 0.5854 | |
Non-pneumonia | 0.9010 | 0.8613 | 0.8087 | 0.7451 | 0.7704 | 0.5785 | |
Apostolopoulos’s [33] | COVID-19 pneumonia | 0.9284 | 0.8793 | 0.8497 | 0.7856 | 0.7917 | 0.6519 |
Non-COVID-19 pneumonia | 0.9234 | 0.8772 | 0.8182 | 0.7938 | 0.7347 | 0.7251 | |
Non-pneumonia | 0.9285 | 0.8586 | 0.8174 | 0.8250 | 0.7863 | 0.7438 | |
CV19-Net [6] | COVID-19 pneumonia | 0.9327 | 0.8966 | 0.8360 | 0.7787 | 0.8194 | 0.5958 |
Non-COVID-19 pneumonia | 0.9565 | 0.8947 | 0.8091 | 0.7882 | 0.7959 | 0.5987 | |
Non-pneumonia | 0.9380 | 0.9241 | 0.8261 | 0.8038 | 0.8470 | 0.6033 | |
Ours | COVID-19 pneumonia | 0.9490 | 0.9310 | 0.8519 | 0.8196 | 0.8333 | 0.7243 |
Non-COVID-19 pneumonia | 0.9541 | 0.9123 | 0.8500 | 0.8348 | 0.8776 | 0.7073 | |
Non-pneumonia | 0.9522 | 0.9338 | 0.8261 | 0.8694 | 0.8918 | 0.6446 |
Expertise Level | JR1 (∼6 Months) | JR2 (∼1 Year) | JR3 (>2 Year) | |||
---|---|---|---|---|---|---|
w/o AI | +AI | w/o AI | +AI | w/o AI | +AI | |
AUC | 0.7813 | 0.8482 * | 0.8214 | 0.8511 * | 0.8657 | 0.8609 |
95% CI | 0.7785–0.7827 | 0.8452–0.8511 | 0.8197–0.8232 | 0.8493–0.8526 | 0.8633–0.8676 | 0.8585–0.8624 |
Cohen’s kappa score 1 | 0.5574 | 0.4651 | 0.7400 |
JRs | JRs+AI | ||||||
---|---|---|---|---|---|---|---|
AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | ||
JR1 ∼ 6 months | COVID-19 pneumonia | 0.6524 | 0.3889 | 0.9159 | 0.7424 | 0.6250 | 0.8598 |
Non-COVID-19 pneumonia | 0.7026 | 0.6735 | 0.7317 | 0.6848 | 0.4694 | 0.9002 | |
Non-pneumonia | 0.8121 | 0.7150 | 0.9091 | 0.8878 | 0.8417 | 0.9339 | |
JR2 ∼ 1 year | COVID-19 pneumonia | 0.7079 | 0.5000 | 0.9159 | 0.7239 | 0.5833 | 0.8645 |
Non-COVID-19 pneumonia | 0.6868 | 0.5510 | 0.8226 | 0.6604 | 0.4694 | 0.8514 | |
Non- pneumonia | 0.8581 | 0.8153 | 0.9008 | 0.8981 | 0.8127 | 0.9835 | |
JR3 > 2 years | COVID-19 pneumonia | 0.7681 | 0.6250 | 0.9112 | 0.7542 | 0.5972 | 0.9112 |
Non-COVID-19 pneumonia | 0.7518 | 0.6122 | 0.8914 | 0.7693 | 0.5918 | 0.9468 | |
Non- pneumonia | 0.8968 | 0.8681 | 0.9256 | 0.8902 | 0.9208 | 0.8595 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Sim Zheng Ting, J.; Xu, X.; Bee Kun, C.; Ong Tien En, E.; Irawan Tan Wee Jun, H.; Ting, Y.; Lei, X.; Chen, W.-X.; Wang, Y.; et al. Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs. Diagnostics 2023, 13, 1397. https://doi.org/10.3390/diagnostics13081397
Feng Y, Sim Zheng Ting J, Xu X, Bee Kun C, Ong Tien En E, Irawan Tan Wee Jun H, Ting Y, Lei X, Chen W-X, Wang Y, et al. Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs. Diagnostics. 2023; 13(8):1397. https://doi.org/10.3390/diagnostics13081397
Chicago/Turabian StyleFeng, Yangqin, Jordan Sim Zheng Ting, Xinxing Xu, Chew Bee Kun, Edward Ong Tien En, Hendra Irawan Tan Wee Jun, Yonghan Ting, Xiaofeng Lei, Wen-Xiang Chen, Yan Wang, and et al. 2023. "Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs" Diagnostics 13, no. 8: 1397. https://doi.org/10.3390/diagnostics13081397
APA StyleFeng, Y., Sim Zheng Ting, J., Xu, X., Bee Kun, C., Ong Tien En, E., Irawan Tan Wee Jun, H., Ting, Y., Lei, X., Chen, W. -X., Wang, Y., Li, S., Cui, Y., Wang, Z., Zhen, L., Liu, Y., Siow Mong Goh, R., & Tan, C. H. (2023). Deep Neural Network Augments Performance of Junior Residents in Diagnosing COVID-19 Pneumonia on Chest Radiographs. Diagnostics, 13(8), 1397. https://doi.org/10.3390/diagnostics13081397