Long-Term Adherence in Overweight Patients with Obstructive Sleep Apnea and Hypertension—A Pilot Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Measurements
2.3.1. Body Measurements and Physical Examination
2.3.2. EQ-5D-5L, Epworth, HB-HBP, IPAQ-L, REAP-S, GAD-7 and PHQ-9 Questionnaires
2.3.3. Telephone-Based Interview
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Veasey, S.C.; Rosen, I.M. Obstructive Sleep Apnea in Adults. N. Engl. J. Med. 2019, 380, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Mônico-Neto, M.; Moreira Antunes, H.K.; dos Santos, R.V.T.; D’Almeida, V.; Alves Lino de Souza, A.; Azeredo Bittencourt, L.R.; Tufik, S. Physical activity as a moderator for obstructive sleep apnoea and cardiometabolic risk in the EPISONO study. Eur. Respir. J. 2018, 52, 1701972. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Ribeiro, D.; Cavallini, A.; Duarte, C.; Freitas, G. Comorbidities Associated with Obstructive Sleep Apnea: A Retrospective Study. Int. Arch. Otorhinolaryngol. 2016, 20, 145–150. [Google Scholar] [CrossRef]
- Karlsen, T.; Engstrøm, M.; Steinshamn, S.L. Exercise and obstructive sleep apnoea: A 24-week follow-up study. BMJ Open Sport Exerc. Med. 2022, 8, e001366. [Google Scholar] [CrossRef]
- Tuomilehto, H.; Seppä, J.; Uusitupa, M.; Tuomilehto, J.; Gylling, H.; Kuopio Sleep Apnea Group. Weight Reduction and Increased Physical Activity to Prevent the Progression of Obstructive Sleep Apnea: A 4-Year Observational Postintervention Follow-up of a Randomized Clinical Trial. JAMA Intern. Med. 2013, 173, 930. [Google Scholar] [CrossRef]
- Yang, M.-C.; Huang, Y.-C.; Lan, C.-C.; Wu, Y.-K.; Huang, K.-F. Beneficial Effects of Long-Term CPAP Treatment on Sleep Quality and Blood Pressure in Adherent Subjects With Obstructive Sleep Apnea. Respir. Care 2015, 60, 1810–1818. [Google Scholar] [CrossRef]
- Navarro-Soriano, C.; Martínez-García, M.-A.; Torres, G.; Barbé, F.; Caballero-Eraso, C.; Lloberes, P.; Diaz Cambriles, T.; Somoza, M.; Masa, J.F.; González, M.; et al. Effect of continuous positive airway pressure in patients with true refractory hypertension and sleep apnea: A post-hoc intention-to-treat analysis of the HIPARCO randomized clinical trial. J. Hypertens. 2019, 37, 1269–1275. [Google Scholar] [CrossRef]
- Pleava, R.; Mihaicuta, S.; Serban, C.L.; Ardelean, C.; Marincu, I.; Gaita, D.; Frent, S. Long-Term Effects of Continuous Positive Airway Pressure (CPAP) Therapy on Obesity and Cardiovascular Comorbidities in Patients with Obstructive Sleep Apnea and Resistant Hypertension—An Observational Study. J. Clin. Med. 2020, 9, 2802. [Google Scholar] [CrossRef]
- Pigakis, K.M.; Voulgaris, A.; Nena, E.; Kontopodi, A.; Steiropoulos, P. Changes in Exercise Capacity of Patients With Obstructive Sleep Apnea Following Treatment With Continuous Positive Airway Pressure. Cureus 2022, 14, e21729. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T. Exercise and Sleep-Disordered Breathing: An Association Independent of Body Habitus. Sleep 2004, 27, 480–484. [Google Scholar] [CrossRef]
- Righi, C.G.; Martinez, D.; Gonçalves, S.C.; Gus, M.; Moreira, L.B.; Fuchs, S.C.; Fuchs, F.D. Influence of high risk of obstructive sleep apnea on adherence to antihypertensive treatment in outpatients. J. Clin. Hypertens. 2017, 19, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Avlonitou, E.; Kapsimalis, F.; Varouchakis, G.; Vardavas, C.I.; Behrakis, P. Adherence to CPAP therapy improves quality of life and reduces symptoms among obstructive sleep apnea syndrome patients. Sleep Breath. Schlaf Atm. 2012, 16, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Batool-Anwar, S.; Goodwin, J.L.; Drescher, A.A.; Baldwin, C.M.; Simon, R.D.; Smith, T.W.; Quan, S.F. Impact of CPAP on Activity Patterns and Diet in Patients with Obstructive Sleep Apnea (OSA). J. Clin. Sleep Med. 2014, 10, 465–472. [Google Scholar] [CrossRef]
- Shechter, A. Effects of continuous positive airway pressure on energy balance regulation: A systematic review. Eur. Respir. J. 2016, 48, 1640–1657. [Google Scholar] [CrossRef]
- Jing, J.; Huang, T.; Cui, W.; Shen, H. Effect on quality of life of continuous positive airway pressure in patients with obstructive sleep apnea syndrome: A meta-analysis. Lung 2008, 186, 131–144. [Google Scholar] [CrossRef]
- Wang, G.; Goebel, J.R.; Li, C.; Hallman, H.G.; Gilford, T.M.; Li, W. Therapeutic effects of CPAP on cognitive impairments associated with OSA. J. Neurol. 2019, 267, 2823–2828. [Google Scholar] [CrossRef]
- Hobzova, M.; Prasko, J.; Vanek, J.; Ociskova, M.; Genzor, S.; Holubova, M.; Grambal, A.; Latalova, K. Depression and obstructive sleep apnea. Neuro Endocrinol. Lett. 2017, 38, 343–352. [Google Scholar]
- Rezaeitalab, F.; Moharrari, F.; Saberi, S.; Asadpour, H.; Rezaeetalab, F. The correlation of anxiety and depression with obstructive sleep apnea syndrome. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 205–210. [Google Scholar]
- D’Ambrosio, C.; Bowman, T.; Mohsenin, V. Quality of life in patients with obstructive sleep apnea: Effect of nasal continuous positive airway pressure—A prospective study. Chest 1999, 115, 123–129. [Google Scholar] [CrossRef]
- Chakravorty, I.; Cayton, R.M.; Szczepura, A. Health utilities in evaluating intervention in the sleep apnoea/hypopnoea syndrome. Eur. Respir. J. 2002, 20, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, E.; Schwarz, E.I.; Bratton, D.J.; Rossi, V.A.; Kohler, M. Effects of CPAP and Mandibular Advancement Devices on Health-Related Quality of Life in OSA: A Systematic Review and Meta-analysis. Chest 2017, 151, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Hobzova, M.; Sonka, K.; Pretl, M.; Vaclavik, J.; Kriegova, E.; Radvansky, M.; Zapletalova, J.; Plackova, M.; Kolek, V. Sleep Apnoea in Patients With Nocturnal Hypertension—A Multicenter Study in the Czech Republic. Physiol. Res. 2018, 67, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Xu, Y.; You, S.; Hackett, M.L.; Woodman, R.J.; Li, Q.; Woodward, M.; Loffler, K.A.; Rodgers, A.; Drager, L.F.; et al. Effects of continuous positive airway pressure on depression and anxiety symptoms in patients with obstructive sleep apnoea: Results from the sleep apnoea cardiovascular Endpoint randomised trial and meta-analysis. eClinicalMedicine 2019, 11, 89–96. [Google Scholar] [CrossRef]
- Okuno, K.; Sato, K.; Arisaka, T.; Hosohama, K.; Gotoh, M.; Taga, H.; Sasao, Y.; Hamada, S. The effect of oral appliances that advanced the mandible forward and limited mouth opening in patients with obstructive sleep apnea: A systematic review and meta-analysis of randomised controlled trials. J. Oral Rehabil. 2014, 41, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Dutt, N.; Chaudhry, K. Health Related Quality of Life in Adult Obstructive Sleep Apnea. J. Sleep Disord. Ther. 2016, 5, 1000234. [Google Scholar] [CrossRef]
- Campos-Rodriguez, F.; Queipo-Corona, C.; Carmona-Bernal, C.; Jurado-Gamez, B.; Cordero-Guevara, J.; Reyes-Nuñez, N.; Troncoso-Acevedo, F.; Abad-Fernandez, A.; Teran-Santos, J.; Caballero-Rodriguez, J.; et al. Continuous Positive Airway Pressure Improves Quality of Life in Women with Obstructive Sleep Apnea. A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 1286–1294. [Google Scholar] [CrossRef]
- Aronne, L.J. Classification of Obesity and Assessment of Obesity-Related Health Risks. Obes. Res. 2002, 10, 105S–115S. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Sateia, M.J. International Classification of Sleep Disorders-Third Edition. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Johns, M.W. A New Method for Measuring Daytime Sleepiness: The Epworth Sleepiness Scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Rencz, F.; Gulácsi, L.; Drummond, M.; Golicki, D.; Prevolnik Rupel, V.; Simon, J.; Stolk, E.A.; Brodszky, V.; Baji, P.; Závada, J.; et al. EQ-5D in Central and Eastern Europe: 2000–2015. Qual. Life Res. 2016, 25, 2693–2710. [Google Scholar] [CrossRef] [PubMed]
- Zota, I.M.; Sascau, R.A.; Statescu, C.; Boisteanu, D.; Roca, M.; Leon Constantin, M.M.; Vasilcu, T.F.; Gavril, R.S.; Anghel, L.; Mitu, O.; et al. Quality of Life in Moderate-Severe OSA Patients from North-Eastern Romania. Rev. Cercet. Interv. Soc. 2020, 68, 250–260. [Google Scholar] [CrossRef]
- Mădălina Zota, I. Clinical and biological impact of CPAP therapy in patients with obstructive sleep apnea and cardio-metabolic comorbidities. Acta Med. Mediterr. 2020, 36, 1975–1979. [Google Scholar] [CrossRef]
- Zota, I.M.; Stătescu, C.; Sascău, R.A.; Roca, M.; Gavril, R.S.; Vasilcu, T.F.; Boișteanu, D.; Maștaleru, A.; Jitaru, A.; Leon Constantin, M.M.; et al. CPAP Effect on Cardiopulmonary Exercise Testing Performance in Patients with Moderate-Severe OSA and Cardiometabolic Comorbidities. Medicina 2020, 56, 80. [Google Scholar] [CrossRef] [PubMed]
- Zota, I.M.; Sascău, R.A.; Stătescu, C.; Tinică, G.; Leon Constantin, M.M.; Roca, M.; Boișteanu, D.; Anghel, L.; Mitu, O.; Mitu, F. Short-Term CPAP Improves Biventricular Function in Patients with Moderate-Severe OSA and Cardiometabolic Comorbidities. Diagnostics 2021, 11, 889. [Google Scholar] [CrossRef]
- Zota, I.M.; Stătescu, C.; Sascău, R.A.; Roca, M.; Anghel, L.; Mitu, O.; Ghiciuc, C.M.; Boisteanu, D.; Anghel, R.; Cozma, S.R.; et al. Arterial Stiffness Assessment Using the Arteriograph in Patients with Moderate-Severe OSA and Metabolic Syndrome-A Pilot Study. J. Clin. Med. 2021, 10, 4238. [Google Scholar] [CrossRef]
- Kim, M.T.; Hill, M.N.; Bone, L.R.; Levine, D.M. Development and testing of the Hill-Bone Compliance to High Blood Pressure Therapy Scale. Prog. Cardiovasc. Nurs. 2000, 15, 90–96. [Google Scholar] [CrossRef]
- IPAQ Group. International Physical Activity Questionnaire Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms 2015; IPAQ Group: Palo Alto, CA, USA, 2015. [Google Scholar]
- International Physical Activity Questionnaire Long Form. Available online: https://www.sralab.org/rehabilitation-measures/international-physical-activity-questionnaire-long-form (accessed on 20 February 2023).
- Segal-Isaacson, C.J.; Wylie-Rosett, J.; Gans, K.M. Validation of a short dietary assessment questionnaire: The Rapid Eating and Activity Assessment for Participants short version (REAP-S). Diabetes Educ. 2004, 30, 774–781. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Engleman, H.M.; Wild, M.R. Improving CPAP use by patients with the sleep apnoea/hypopnoea syndrome (SAHS). Sleep Med. Rev. 2003, 7, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Altman, D.G.; Schulz, K.F.; Simera, I.; Wager, E. Guidelines for Reporting Health Research: A User’s Manual; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-71559-8. [Google Scholar]
- Sharp, S.J.; Poulaliou, M.; Thompson, S.G.; White, I.R.; Wood, A.M. A Review of Published Analyses of Case-Cohort Studies and Recommendations for Future Reporting. PLoS ONE 2014, 9, e101176. [Google Scholar] [CrossRef] [PubMed]
- Olariu, E.; Mohammed, W.; Oluboyede, Y.; Caplescu, R.; Niculescu-Aron, I.G.; Paveliu, M.S.; Vale, L. EQ-5D-5L: A value set for Romania. Eur. J. Health Econ. 2022, 24, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Zhonghua Liu Xing Bing Xue Za Zhi Zhonghua Liuxingbingxue Zazhi 2014, 35, 961–964. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Rotenberg, B.W.; Murariu, D.; Pang, K.P. Trends in CPAP adherence over twenty years of data collection: A flattened curve. J. Otolaryngol. Head Neck Surg. J. Oto-Rhino-Laryngol. Chir. Cervico-Faciale 2016, 45, 43. [Google Scholar] [CrossRef]
- Damjanovic, D.; Fluck, A.; Bremer, H.; Muller-Quernheim, J.; Idzko, M.; Sorichter, S. Compliance in sleep apnoea therapy: Influence of home care support and pressure mode. Eur. Respir. J. 2009, 33, 804–811. [Google Scholar] [CrossRef]
- Cocuzza, S. Long-term results of nasal surgery: Comparison of mini-invasive turbinoplasty. J. Biol. Regul. Homeost. Agents 2020, 34, 1203–1208. [Google Scholar] [CrossRef]
- Jean, R.E.; Duttuluri, M.; Gibson, C.D.; Mir, S.; Fuhrmann, K.; Eden, E.; Supariwala, A. Improvement in Physical Activity in Persons With Obstructive Sleep Apnea Treated With Continuous Positive Airway Pressure. J. Phys. Act. Health 2017, 14, 176–182. [Google Scholar] [CrossRef]
- McARDLE, N.; Devereux, G.; Heidarnejad, H.; Engleman, H.M.; Mackay, T.W.; Douglas, N.J. Long-term Use of CPAP Therapy for Sleep Apnea/Hypopnea Syndrome. Am. J. Respir. Crit. Care Med. 1999, 159, 1108–1114. [Google Scholar] [CrossRef]
- Hu, Y.; Su, Y.; Hu, S.; Ma, J.; Zhang, Z.; Fang, F.; Guan, J. Effects of telemedicine interventions in improving continuous positive airway pressure adherence in patients with obstructive sleep apnoea: A meta-analysis of randomised controlled trials. Sleep Breath. Schlaf Atm. 2021, 25, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Mineiro, M.A.; da Silva, P.M.; Alves, M.; Papoila, A.L.; Marques Gomes, M.J.; Cardoso, J. The role of sleepiness on arterial stiffness improvement after CPAP therapy in males with obstructive sleep apnea: A prospective cohort study. BMC Pulm. Med. 2017, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Aro, M.M.; Anttalainen, U.; Polo, O.; Saaresranta, T. Mood, sleepiness, and weight gain after three years on CPAP therapy for sleep apnoea. Eur. Clin. Respir. J. 2021, 8, 1888394. [Google Scholar] [CrossRef]
- Basak, H.; Anadolu, R.Y. Correlation between self-reported and questioned Epworth sleepiness scale results including polysomographic outcomes. Egypt. J. Otolaryngol. 2022, 38, 109. [Google Scholar] [CrossRef]
- Dudenbostel, T.; Calhoun, D.A. Resistant hypertension, obstructive sleep apnoea and aldosterone. J. Hum. Hypertens. 2012, 26, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Oscullo, G.; Torres, G.; Campos-Rodriguez, F.; Posadas, T.; Reina-González, A.; Sapiña-Beltrán, E.; Barbé, F.; Martinez-Garcia, M.A. Resistant/Refractory Hypertension and Sleep Apnoea: Current Knowledge and Future Challenges. J. Clin. Med. 2019, 8, 1872. [Google Scholar] [CrossRef]
- Shirahama, R.; Tanigawa, T.; Ida, Y.; Fukuhisa, K.; Tanaka, R.; Tomooka, K.; Lan, F.-Y.; Ikeda, A.; Wada, H.; Kales, S.N. Long-term effect of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea. Sci. Rep. 2021, 11, 19101. [Google Scholar] [CrossRef]
- Olszewska, E.; Vasilenok, N.; Polecka, A.; Stróżyński, A.; Olszewska, N.; Rogowski, M.; Fiedorczuk, P. Long-term outcomes of pharyngoplasty for Obstructive Sleep Apnea Syndrome. Otolaryngol. Pol. 2022, 76, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.R.L.; Roderjan, C.N.; Cavalcanti, A.H.; Cortez, A.F.; Muxfeldt, E.S.; Salles, G.F. Effects of continuous positive airway pressure treatment on aortic stiffness in patients with resistant hypertension and obstructive sleep apnea: A randomized controlled trial. J. Sleep Res. 2020, 29, e12990. [Google Scholar] [CrossRef]
- Galerneau, L.-M.; Bailly, S.; Borel, J.-C.; Jullian-Desayes, I.; Joyeux-Faure, M.; Benmerad, M.; Bonsignore, M.R.; Tamisier, R.; Pépin, J.-L. Long-term variations of arterial stiffness in patients with obesity and obstructive sleep apnea treated with continuous positive airway pressure. PLoS ONE 2020, 15, e0236667. [Google Scholar] [CrossRef] [PubMed]
- Deleanu, O.C.; Oprea, C.I.; Malaut, A.E.; Zaharie, A.M.; Micheu, M.M.; Patrascu, N.; Mihaltan, F.D. Long-term effects of CPAP on blood pressure in non-resistant hypertensive patients with obstructive sleep apnea: A 30 month prospective study. In Proceedings of the 4.2 Sleep and Control of Breathing; European Respiratory Society: Lausanne, Switzerland, 2016; p. PA2082. [Google Scholar]
- Ursavas, A.; Ilcol, Y.; Nalci, N.; Karadag, M.; Ege, E. Ghrelin, leptin, adiponectin, and resistin levels in sleep apnea syndrome: Role of obesity. Ann. Thorac. Med. 2010, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Shioda, K.; Morita, Y.; Kubota, C.; Ganeko, M.; Takeda, N. Exercise Effects on Sleep Physiology. Front. Neurol. 2012, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Çuhadaroğlu, Ç.; Utkusavaş, A.; Öztürk, L.; Salman, S.; Ece, T. Effects of Nasal CPAP Treatment on Insulin Resistance, Lipid Profile, and Plasma Leptin in Sleep Apnea. Lung 2009, 187, 75–81. [Google Scholar] [CrossRef]
- Drager, L.F.; Brunoni, A.R.; Jenner, R.; Lorenzi-Filho, G.; Benseñor, I.M.; Lotufo, P.A. Effects of CPAP on body weight in patients with obstructive sleep apnoea: A meta-analysis of randomised trials. Thorax 2015, 70, 258–264. [Google Scholar] [CrossRef]
- Shechter, A.; O’Keeffe, M.; Roberts, A.L.; Zammit, G.K.; RoyChoudhury, A.; St-Onge, M.-P. Alterations in sleep architecture in response to experimental sleep curtailment are associated with signs of positive energy balance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R883–R889. [Google Scholar] [CrossRef]
- Basoglu, O.K.; Zou, D.; Tasbakan, M.S.; Hedner, J.; Ryan, S.; Verbraecken, J.; Escourrou, P.; Antalainen, U.; Kvamme, J.A.; Bonsignore, M.R.; et al. Change in weight and central obesity by positive airway pressure treatment in obstructive sleep apnea patients: Longitudinal data from the ESADA cohort. J. Sleep Res. 2018, 27, e12705. [Google Scholar] [CrossRef]
- Van Offenwert, E.; Vrijsen, B.; Belge, C.; Troosters, T.; Buyse, B.; Testelmans, D. Physical activity and exercise in obstructive sleep apnea. Acta Clin. Belg. 2019, 74, 92–101. [Google Scholar] [CrossRef]
- Çalışkan, H.; Ertürk, N.; Çalık Kütükçü, E.; Arıkan, H.; Vardar Yağlı, N.; Sağlam, M.; Fırat, H.; Ardıç, S.; İnal İnce, D.; Ege, M.Y. The Relationship Between the Physical Activity Level and Fatigue Perception, Quality of Life and Psychological Status in Patients with Obstructive Sleep Apnea Syndrome. J. Turk. Sleep Med. 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Van Dyck, D.; Cardon, G.; Deforche, B.; De Bourdeaudhuij, I. IPAQ interview version: Convergent validity with accelerometers and comparison of physical activity and sedentary time levels with the self-administered version. J. Sport Med. Phys. Fit. 2015, 55, 776–786. [Google Scholar]
- Stavrou, V.; Bardaka, F.; Karetsi, E.; Daniil, Z.; Gourgoulianis, K.I. Brief Review: Ergospirometry in Patients with Obstructive Sleep Apnea Syndrome. J. Clin. Med. 2018, 7, 191. [Google Scholar] [CrossRef] [PubMed]
- Tapan, Ö.O.; Sevinç, C.; İtil, B.O.; Öztura, İ.; Kayatekin, B.M.; Demiral, Y. Effect of Nasal Continuous Positive Airway Pressure Therapy on the Functional Respiratory Parameters and Cardiopulmonary Exercise Test in Obstructive Sleep Apnea Syndrome. Turk. Thorac. J. 2016, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Billings, C.G.; Aung, T.; Renshaw, S.A.; Bianchi, S.M. Incremental shuttle walk test in the assessment of patients with obstructive sleep apnea-hypopnea syndrome. J. Sleep Res. 2013, 22, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Chasens, E.R.; Korytkowski, M.; Sereika, S.M.; Burke, L.E.; Drumheller, O.J.; Strollo, P.J. Improving Activity in Adults With Diabetes and Coexisting Obstructive Sleep Apnea. West. J. Nurs. Res. 2014, 36, 294–311. [Google Scholar] [CrossRef] [PubMed]
- West, S.D.; Kohler, M.; Nicoll, D.J.; Stradling, J.R. The effect of continuous positive airway pressure treatment on physical activity in patients with obstructive sleep apnoea: A randomised controlled trial. Sleep Med. 2009, 10, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, C.; Manali, E.; Ginieri-Coccossis, M.; Vougas, K.; Cholidou, K.; Markozannes, E.; Bakakos, P.; Liappas, I.; Alchanatis, M. Depression, physical activity, energy consumption, and quality of life in OSA patients before and after CPAP treatment. Sleep Breath. Schlaf Atm. 2013, 17, 1159–1168. [Google Scholar] [CrossRef]
- Di Mauro, P.; Cocuzza, S.; Maniaci, A.; Ferlito, S.; Rasà, D.; Anzivino, R.; Vicini, C.; Iannella, G.; La Mantia, I. The Effect of Adenotonsillectomy on Children’s Behavior and Cognitive Performance with Obstructive Sleep Apnea Syndrome: State of the Art. Children 2021, 8, 921. [Google Scholar] [CrossRef]
- Wong, J.L.; Martinez, F.; Aguila, A.P.; Pal, A.; Aysola, R.S.; Henderson, L.A.; Macey, P.M. Stress in obstructive sleep apnea. Sci. Rep. 2021, 11, 12631. [Google Scholar] [CrossRef]
- Jacobs, Ú.; De Castro, M.S.; Fuchs, F.D.; Ferreira, M.B.C. The influence of cognition, anxiety and psychiatric disorders over treatment adherence in uncontrolled hypertensive patients. PLoS ONE 2011, 6, e22925. [Google Scholar] [CrossRef]
- Shapiro, G.K.; Shapiro, C.M. Factors that influence CPAP adherence: An overview. Sleep Breath. 2010, 14, 323–335. [Google Scholar] [CrossRef] [PubMed]
PAP Nonadherent (n = 29) | PAP Adherent (n = 19) | p Value | |
---|---|---|---|
Age (years) | 61.14 ± 8.95 | 62.47 ± 9.34 | 0.776 |
AHI (events/hour) | 39.47 ± 19.71 | 42.69 ± 19.34 | 0.562 |
Weight (kg) | 103.14 ± 17.29 | 99.79 ± 19.73 | 0.411 |
BMI (kg/m2) | 35.47 ± 5.78 | 34.20 ± 4.81 | 0.417 |
HR (bpm) | 72.48 ± 10.21 | 75 ± 10.55 | 0.41 |
SBP (mmHg) | 133.93 ± 18.96 | 142.05 ± 19.95 | 0.16 |
DBP (mmHg) | 84.52 ± 13.79 | 91.68 ± 9.57 | 0.05 |
EQ-5D-5L index | 0.86 (0.77–0.95) | 0.94 (0.82–1) | 0.362 |
EQ-5D-5L-VAS | 60 (50–77.5) | 75 (55–87) | 0.115 |
ESS (points) | 8 (4–13) | 8 (4.5–10) | 0.546 |
PAP-Nonadherent Baseline | PAP-Nonadherent Follow-Up | p % | PAP-Adherent Baseline | PAP-Adherent Follow-Up | p # | |
---|---|---|---|---|---|---|
Weight (kg) | 103.14 ± 17.29 | 104.14 ± 19.08 | 0.38 | 99.79 ± 19.73 | 94.79 ± 17.84 | 0.01 |
BMI (kg/m2) | 35.41 ± 5.78 | 35.88 ± 5.93 | 0.29 | 34.20 ± 4.81 | 32.43 ± 4.56 | 0.005 |
HR (bpm) | 72.48 ± 10.21 | 76.83 ± 11.61 | 0.04 | 75 ± 10.55 | 70.05 ± 12.06 | 0.20 |
SBP (mmHg) | 133.93 ± 18.96 | 136.79 ± 9.92 | 0.49 | 142.05 ± 19.95 | 135.37 ± 13.19 | 0.18 |
DBP (mmHg) | 84.52 ± 13.79 | 81.86 ± 11.51 | 0.37 | 91.68 ± 9.57 | 78.95 ± 9.41 | <0.001 |
EQ-5D-5L item 1 (points) | 1 (1–2) | 2 (1–3) | 0.17 | 1 (1–1) | 1 (1–1) | 0.33 |
EQ-5D-5L item 2 (points) | 1 (1–2) | 1 (1–1) | 0.14 | 1 (1–1) | 1 (1–1) | 0.18 |
EQ-5D-5L item 3 (points) | 1 (1–2) | 1 (1–2) | 0.49 | 1 (1–1) | 1 (1–1) | 0.10 |
EQ-5D-5L item 4 (points) | 3 (1–3) | 2 (1–3) | 0.36 | 2 (1–3) | 1 (1–2) | 0.13 |
EQ-5D-5L item 5 (points) | 2 (1–3) | 1 (1–2.5) | 0.54 | 1 (1–2) | 1 (1–1) | 0.006 |
EQ-5D-5L index | 0.86 (0.77–0.95) | 0.90 (0.79–0.96) | 0.98 | 0.94 (0.82–1) | 0.96 (0.92–1) | 0.03 |
EQ-5D-5L VAS | 60 (50–77.5) | 60 (50–75) | 0.39 | 75 (55–87) | 80 (75–90) | 0.06 |
ESS (points) | 8 (4–13) | 3 (0.5–5) | <0.001 | 8 (4.5–10) | 0 (0–1) | <0.001 |
All Patients (n = 48) | PAP Nonadherent (n = 29) | PAP Adherent (n = 19) | p Value (Adherent vs. Nonadherent) | |
---|---|---|---|---|
GAD-7 total (points) | 1 (0–4.5) | 3 (1–5.25) | 0 (0–1) | 0.003 |
Item 1 (points) | 0 (0–0.1) | 1 (0–1) | 0 (0–0) | 0.004 |
Item 2 (points) | 0 (0–0.5) | 1 (0–1) | 0 (0–0) | 0.22 |
Item 3 (points) | 0 (0–1) | 1 (0–1) | 0 (0–0) | 0.004 |
Item 4 (points) | 0 (0–1) | 1 (0–1) | 0 (0–0) | 0.01 |
Item 5 (points) | 0 (0–0) | 1 (0–1) | 0 (0–0) | 0.06 |
Item 6 (points) | 0 (0–1) | 0.5 (0–1) | 0 (0–0) | 0.005 |
Item 7 (points) | 0 (0–1) | 0 (0–1.25) | 0 (0–0) | 0.08 |
PHQ-9 total (points) | 3 (0.5–5) | 4 (2–6.25) | 1 (0–3) | 0.005 |
Item 1 (points) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.16 |
Item 2 (points) | 0 (0–1) | 0.5 (0–1) | 0 (0–0) | 0.05 |
Item 3 (points) | 1 (0–2) | 1 (0.75–2.25) | 0 (0–1) | 0.001 |
Item 4 (points) | 1 (0–1) | 1 (0–2) | 0 (0–1) | 0.001 |
Item 5 (points) | 0 (0–0) | 0 (0–1) | 0 (0–0) | 0.009 |
Item 6 (points) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.16 |
Item 7 (points) | 0 (0–0.5) | 0 (0–0.25) | 0 (0–0) | 0.87 |
Item 8 (points) | 0 (0–0) | 0 (0–0.25) | 0 (0–1) | 0.39 |
Item 9 (points) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 1 |
REAP-S (points) | 30 (28–32) | 30 (29–32.75) | 29 (27–32) | 0.84 |
HB-HBP total (points) | 52 (50–53) | 51 (49–53) | 53 (51.75–54) | 0.004 |
HB-HBP reduced sodium (points) | 11 (10–11.5) | 10 (9–11) | 11 (11–12) | 0.003 |
HB-HBP appointment (points) | 6 (6–6.5) | 6 (5–7) | 6 (6–6.25) | 0.28 |
HB-HBP medication (points) | 36 (34.5–36) | 35 (34–36) | 36 (35–36) | 0.11 |
IPAQ-L–Total MET | 2542.5 (816.75–4494.13) | 3102 (893.5–4729.5) | 2002.5 (816–3693) | 0.56 |
IPAQ-L–MET work | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.47 |
IPAQ-L–MET transport | 453.75 (74.25–1188.00) | 462 (82.5–1188) | 445.5 (0–1155) | 0.71 |
IPAQ-L–MET domestic | 720 (180–1957.5) | 1140 (195–2475) | 720 (180–1170) | 0.25 |
IPAQ-L–MET leisure | 239 (0–823.5) | 292 (16.5–816) | 120 (0–834) | 0.38 |
IPAQ-L–MET walking | 841.5 (222.75–1658.25) | 792 (247.5–1600.5) | 1039.5 (198–1881) | 0.68 |
IPAQ-L–MET moderate | 975 (375–2970) | 1770 (275–3195) | 720 (540–1860) | 0.34 |
IPAQ-L–MET vigorous | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zota, I.M.; Roca, M.; Leon, M.M.; Cozma, C.D.; Anghel, L.; Statescu, C.; Sascau, R.; Hancianu, M.; Mircea, C.; Ciocoiu, M.; et al. Long-Term Adherence in Overweight Patients with Obstructive Sleep Apnea and Hypertension—A Pilot Prospective Cohort Study. Diagnostics 2023, 13, 1447. https://doi.org/10.3390/diagnostics13081447
Zota IM, Roca M, Leon MM, Cozma CD, Anghel L, Statescu C, Sascau R, Hancianu M, Mircea C, Ciocoiu M, et al. Long-Term Adherence in Overweight Patients with Obstructive Sleep Apnea and Hypertension—A Pilot Prospective Cohort Study. Diagnostics. 2023; 13(8):1447. https://doi.org/10.3390/diagnostics13081447
Chicago/Turabian StyleZota, Ioana Madalina, Mihai Roca, Maria Magdalena Leon, Corina Dima Cozma, Larisa Anghel, Cristian Statescu, Radu Sascau, Monica Hancianu, Cornelia Mircea, Manuela Ciocoiu, and et al. 2023. "Long-Term Adherence in Overweight Patients with Obstructive Sleep Apnea and Hypertension—A Pilot Prospective Cohort Study" Diagnostics 13, no. 8: 1447. https://doi.org/10.3390/diagnostics13081447
APA StyleZota, I. M., Roca, M., Leon, M. M., Cozma, C. D., Anghel, L., Statescu, C., Sascau, R., Hancianu, M., Mircea, C., Ciocoiu, M., Cumpat, C. M., & Mitu, F. (2023). Long-Term Adherence in Overweight Patients with Obstructive Sleep Apnea and Hypertension—A Pilot Prospective Cohort Study. Diagnostics, 13(8), 1447. https://doi.org/10.3390/diagnostics13081447