Pedicle Screw Pseudofracture on Computed Tomography Secondary to Metal Artifact Reduction
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, L.M.; Buckwalter, K.A. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin. Musculoskelet. Radiol. 2002, 6, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Katsura, M.; Sato, J.; Akahane, M.; Kunimatsu, A.; Abe, O. Current and Novel Techniques for Metal Artifact Reduction at CT: Practical Guide for Radiologists. Radiographics 2018, 38, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Kotsenas, A.L.; Michalak, G.J.; DeLone, D.R.; Diehn, F.E.; Grant, K.; Halaweish, A.F.; Krauss, A.; Raupach, R.; Schmidt, B.; McCollough, C.H.; et al. CT Metal Artifact Reduction in the Spine: Can an Iterative Reconstruction Technique Improve Visualization? AJNR 2015, 36, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhang, C.; Gao, Z.; Cai, W.; Yan, D.; Wei, Z. Evaluation of the quality of CT images acquired with smart metal artifact reduction software. Open Life Sci. 2018, 13, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, H.; Mueller, J.; Kofler, J.M.; Liu, X.; Primak, A.N.; Fletcher, J.G.; Guimaraes, L.S.; Macedo, T.; McCollough, C.H. Metal artifact reduction from reformatted projections for hip prostheses in multislice helical computed tomography: Techniques and initial clinical results. Investig. Radiol. 2009, 44, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Han, S.C.; Chung, Y.E.; Lee, Y.H.; Park, K.K.; Kim, M.J.; Kim, K.W. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: Assessment of image quality and clinical feasibility. AJR Am. J. Roentgenol. 2014, 203, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K.M.; Nowik, P.; Persliden, J.; Thunberg, P.; Norrman, E. Metal artefact reduction in CT imaging of hip prostheses—An evaluation of commercial techniques provided by four vendors. Br. J. Radiol. 2015, 88, 20140473. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Park, K.K.; Song, H.T.; Kim, S.; Suh, J.S. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur. Radiol. 2012, 22, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xue, H.; Yang, X.; Han, W.; Qi, B.; Fan, Y.; Qian, W.; Wu, Z.; Zhang, Y.; Jin, Z. Reduction of metal artifacts from alloy hip prostheses in computer tomography. J. Comput. Assist. Tomogr. 2014, 38, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Kerns, J.R.; Nute, J.L.; Liu, X.; Balter, P.A.; Stingo, F.C.; Followill, D.S.; Mirkovic, D.; Howell, R.M.; Kry, S.F. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys. Med. Biol. 2015, 60, 1047–1067. [Google Scholar] [CrossRef] [PubMed]
- Puvanasunthararajah, S.; Fontanarosa, D.; Wille, M.L.; Camps, S.M. The application of metal artifact reduction methods on computed tomography scans for radiotherapy applications: A literature review. J. Appl. Clin. Med. Phys. 2021, 22, 198–223. [Google Scholar] [CrossRef] [PubMed]
- Wayer, D.R.; Kim, N.Y.; Otto, B.J.; Grayev, A.M.; Kuner, A.D. Unintended Consequences: Review of New Artifacts Introduced by Iterative Reconstruction CT Metal Artifact Reduction in Spine Imaging. AJNR Am. J. Neuroradiol. 2019, 40, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, K.; Flatabø, S.; Aadnevik, D.; Dalehaug, I.; Vetti, N. Metal artifact reduction in CT, a phantom study: Subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants. Acta Radiol. 2018, 59, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Große Hokamp, N.; Neuhaus, V.; Abdullayev, N.; Laukamp, K.; Lennartz, S.; Mpotsaris, A.; Borggrefe, I. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms. Skelet. Radiol. 2018, 47, 195–201. [Google Scholar] [CrossRef] [PubMed]
Reasons | Details |
---|---|
Incorrect metal segmentation | The first step of MAR algorithms is to segment the high-density structures such as metal implants. This can be performed using a Hounsfield unit threshold. The segmentation is then used for subsequent projection–interpolation and iterative processes. |
Errors in projection data | Once the metal is segmented, the algorithm tries to identify the corrupted projection data corresponding to the segmented metal. The corrupted data can then be removed and interpolated with estimations of uncorrupted data. The process is then iterated multiple times. There can be errors in this process, mistaking metal or surrounding tissue as corrupted data. |
Artifacts beyond photon starvation | While MAR algorithms attempt to reduce the effects of photon starvation and beam hardening, other artifacts such as metal scattering and partial voluming exist and are not fully corrected by MAR. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Kumar, N.; Hallinan, J.T.P.D. Pedicle Screw Pseudofracture on Computed Tomography Secondary to Metal Artifact Reduction. Diagnostics 2024, 14, 108. https://doi.org/10.3390/diagnostics14010108
Ge S, Kumar N, Hallinan JTPD. Pedicle Screw Pseudofracture on Computed Tomography Secondary to Metal Artifact Reduction. Diagnostics. 2024; 14(1):108. https://doi.org/10.3390/diagnostics14010108
Chicago/Turabian StyleGe, Shuliang, Naresh Kumar, and James Thomas Patrick Decourcy Hallinan. 2024. "Pedicle Screw Pseudofracture on Computed Tomography Secondary to Metal Artifact Reduction" Diagnostics 14, no. 1: 108. https://doi.org/10.3390/diagnostics14010108
APA StyleGe, S., Kumar, N., & Hallinan, J. T. P. D. (2024). Pedicle Screw Pseudofracture on Computed Tomography Secondary to Metal Artifact Reduction. Diagnostics, 14(1), 108. https://doi.org/10.3390/diagnostics14010108