Prognostic Impact of a Routine Six-Month Exercise Stress Test after Complex Left Main Bifurcation Percutaneous Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Enrolled
2.2. Definitions
2.3. Interventional Protocol and Techniques
2.4. FFR and IVUS Protocol
2.5. Exercise Test Protocol
2.6. Follow Up
2.7. Statistical Analysis
3. Results
3.1. Population and Procedures
3.2. PCI Outcomes
3.3. Prognostic Impact of 6-Month Exercise Test
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mäkikallio, T.; Holm, N.R.; Lindsay, M.; Spence, M.S.; Erglis, A.; Menown, I.B.; Trovik, T.; Eskola, M.; Romppanen, H.; Kellerth, T.; et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): A prospective, randomised, open-label, non-inferiority trial. Lancet 2016, 388, 2743–2752. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Sabik, J.F.; Serruys, P.W.; Simonton, C.A.; Généreux, P.; Puskas, J.; Kandzari, D.E.; Morice, M.C.; Lembo, N.; Morris Brown, W.; et al. Everolimus-Eluting Stents or Bypass Surgery for Left Main Coronary Artery Disease. N. Engl. J. Med. 2016, 375, 2223–2235. [Google Scholar] [CrossRef] [PubMed]
- Head, S.J.; Milojevic, M.; Daemen, J.; Ahn, J.M.; Boersma, E.; Christiansen, E.H.; Domanski, M.J.; Farkouh, M.E.; Flather, M.; Fuster, V.; et al. Stroke Rates Following Surgical Versus Percutaneous Coronary Revascularization. J. Am. Coll. Cardiol. 2018, 72, 386–398. [Google Scholar] [CrossRef]
- Gaudino, M.; Hameed, I.; Farkouh, M.E.; Rahouma, M.; Naik, A.; Robinson, N.B.; Ruan, Y.; Demetres, M.; Biondi-Zoccai, G.; Angiolillo, D.J.; et al. Overall and Cause-Specific Mortality in Randomized Clinical Trials Comparing Percutaneous Interventions with Coronary Bypass Surgery: A Meta-analysis. JAMA Intern. Med. 2020, 180, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Banning, A.P.; Lassen, J.F.; Burzotta, F.; Lefèvre, T.; Darremont, O.; Hildick-Smith, D.; Louvard, Y.; Stankovic, G. Percutaneous coronary intervention for obstructive bifurcation lesions: The 14th consensus document from the European Bifurcation Club. EuroIntervention 2019, 15, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, J.H.; Roh, J.H.; Ahn, J.M.; Yoon, S.H.; Park, D.W.; Lee, J.Y.; Yun, S.C.; Kang, S.J.; Lee, S.W.; et al. Randomized Comparisons between Different Stenting Approaches for Bifurcation Coronary Lesions with or without Side Branch Stenosis. JACC Cardiovasc. Interv. 2015, 8, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Rigatelli, G.; Zuin, M.; Nikolov, P.; Mileva, N.; Vassilev, D. One- and 3-year outcomes of percutaneous bifurcation left main revascularization with modern drug-eluting stents: A systematic review and meta-analysis. Clin. Res. Cardiol. 2021, 110, 1–11. [Google Scholar] [CrossRef]
- Rigatelli, G.; Zuin, M.; Lee, A. Coronary artery double stenting techniques and their results in complex left main bifurcation disease. Future Cardiol. 2020, 16, 497–504. [Google Scholar] [CrossRef]
- Wolk, M.J.; Bailey, S.R.; Doherty, J.U.; Douglas, P.S.; Hendel, R.C.; Kramer, C.M.; Min, J.K.; Patel, M.R.; Rosenbaum, L.; Shaw, L.J.; et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2014, 63, 380–406. [Google Scholar]
- Rigatelli, G.; Zuin, M.; Vassilev, D.; Dinh, H.; Dell’Avvocata, F.; Van Tan, N.; Nghia, N.; Ronco, F.; Roncon, L. Feasibility, safety and long-term outcomes of complex left main bifurcation treatment using the nano-inverted-t stenting: A multicentre prospective registry. Int. J. Cardiovasc. Imaging 2021, 37, 1107–1119. [Google Scholar] [CrossRef]
- Ad, N.; Holmes, S.D.; Patel, J.; Pritchard, G.; Shuman, D.J.; Halpin, L. Comparison of EuroSCORE II, Original EuroSCORE, and the Society of Thoracic Surgeons Risk Score in Cardiac Surgery Patients. Ann. Thor. Surg. 2016, 102, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Sianos, G.; Morel, M.A.; Kappetein, A.P.; Morice, M.C.; Colombo, A.; Dawkins, K.; van den Brand, M.; Van Dyck, N.; Russell, M.E.; Mohr, F.W.; et al. The SYNTAX Score: An angiographic tool grading the complexity of coronary artery disease. Eurointervention 2005, 1, 219–227. [Google Scholar]
- Medina, A.; de Lezo, J.S.; Pan, M. A new classification of coronary bifurcation lesions. Rev. Esp. Cardiol. 2006, 59, 183. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [PubMed]
- Mehran, R.; Dangas, G.; Abizaid, A.S. Angiographic patterns of in-stent restenosis: Classification and implications for long-term outcome. Circulation 1999, 100, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.L.; Sheiban, I.; Xu, B.; Jepson, N.; Paiboon, C.; Zhang, J.J.; Ye, F.; Sansoto, T.; Kwan, T.W.; Lee, M.; et al. Impact of the complexity of bifurcation lesions treated with drug-eluting stents: The DEFINITION study (Definitions and impact of complex bifurcation lesIons on clinical outcomes after percutaNeous coronary IntervenTIOn using drug-eluting steNts). JACC Cardiovasc. Interv. 2014, 7, 1266–1276. [Google Scholar] [CrossRef]
- Rigatelli, G.; Zuin, M.; Ronco, F.; Caprioglio, F.; Cavazzini, D.; Giatti, S.; Braggion, G.; Perilli, S.; Nguyen, V.T. Usefulness of the Finet law to guide stent size selection in ostial left main stenting: Comparison with standard angiographic estimation. Cardiovasc. Revascularization Med. 2018, 19, 751–754. [Google Scholar] [CrossRef]
- Mead, W.F. Maximal exercise testing—Bruce protocol. J. Fam. Pract. 1979, 9, 479–490. [Google Scholar]
- Fihn, S.D.; Gardin, J.M.; Abrams, J.; Berra, K.; Blankenship, J.C.; Dallas, A.P.; Douglas, P.S.; Foody, J.M.; Gerber, T.C.; Hinderliter, A.L.; et al. American College of Cardiology Foundation/American Heart Association Task Force. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. Circulation 2012, 126, 354–471. [Google Scholar]
- Zuin, M.; Rampin, L.; Rinuncini, M.; Picariello, C.; Chondrogiannis, S.; Rubello, D.; Roncon, L. Role of myocardial perfusion scintigraphy in predicting global cardiovascular risk and differentiating between patients with moderate and high cardiovascular risk. Nucl. Med. Commun. 2016, 37, 805–811. [Google Scholar] [CrossRef]
- Prakash, M.; Myers, J.; Froelicher, V.F.; Marcus, R.; Do, D.; Kalisetti, D.; Atwood, J.E. Clinical and exercise test predictors of all-cause mortality: Results from >6000 male consecutive referred patients. Chest 2001, 120, 1003–1013. [Google Scholar] [CrossRef]
- Do, D.; West, J.A.; Morise, A.; Atwood, E.; Froelicher, V. A consensus approach to diagnosing coronary artery disease based on clinical and exercise test data. Chest 1997, 111, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Kwok, Y.; Kim, C.; Grady, D.; Segal, M.; Redberg, R. Meta-analysis of exercise testing to detect coronary artery disease in women. Am. J. Cardiol. 1999, 83, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.J.; Mieres, J.H.; Hendel, R.H.; Boden, W.E.; Gulati, M.; Veledar, E.; Hachamovitch, R.; Arrighi, J.A.; Bairey Merz, C.N.; Gibbons, R.J.; et al. Comparative Effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: Results from the What Is the Optimal Method for Ischemia Evaluation in Women (WOMEN) trial. Circulation 2011, 124, 1239–1249. [Google Scholar] [PubMed]
- Gibbons, R.J.; Balady, G.J.; Bricker, J.T.; Chaitman, B.R.; Fletcher, G.F.; Froelicher, V.F.; Mark, D.B.; McCallister, B.D.; Mooss, A.N.; O’reilly, M.G.; et al. ACC/AHA 2002 guideline update for exercise testing: Summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J. Am. Coll. Cardiol. 2002, 40, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, M.J.; Schechter, D.; Lefkovits, J.; Goudreau, E.; Deligonul, U.; Mak, K.-H.; Duerr, R.; Del Core, M.; Garzon, P.; Huynh, T.; et al. Utility of routine functional testing after percutaneous transluminal coronary angioplasty: Results from the ROSETTA registry. J. Invasive Cardiol. 2004, 16, 318–322. [Google Scholar] [PubMed]
- Babapulle, M.N.; Diodati, J.G.; Blankenship, J.C.; Huynh, T.; Cugno, S.; Puri, R.; A Nguyen, P.; Eisenberg, M.J. Utility of routine exercise treadmill testing early after percutaneous coronary intervention. BMC Cardiovasc. Disord. 2007, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, M.J.; Wilson, B.; Lauzon, C.; Huynh, T.; Eisenhauer, M.; Mak, K.H.; Blankenship, J.C.; Doucet, M.; Pilote, L. Routine functional testing after percutaneous coronary intervention: Results of the aggressive diagnosis of restenosis in high-risk patients (ADORE II) trial. Acta Cardiol. 2007, 62, 143–150. [Google Scholar] [CrossRef]
- Cho, S.W.; Yang, J.H.; Park, T.K.; Lee, J.M.; Song, Y.B.; Hahn, J.Y.; Choi, J.H.; Gwon, H.C.; Lee, S.H.; Choi, S.H. Clinical Implications of Early Exercise Treadmill Testing after Percutaneous Coronary Intervention in the Drug-eluting Stent Era. J. Korean Med. Sci. 2020, 35, e229. [Google Scholar] [CrossRef]
- Rigatelli, G.; Zuin, M.; Vassilev, D.; Dinh, H.; Giatti, S.; Carraro, M.; Zanon, F.; Roncon, L.; Dung, H.T. Culotte versus the novel nano-crush technique for unprotected complex bifurcation left main stenting: Difference in procedural time, contrast volume and X-ray exposure and 3-years outcomes. Int. J. Cardiovasc. Imaging 2019, 35, 207–214. [Google Scholar] [CrossRef]
- Truesdell, A.G.; Alasnag, M.A.; Kaul, P.; Rab, S.T.; Riley, R.F.; Young, M.N.; Batchelor, W.B.; Maehara, A.; Welt, F.G.; Kirtane, A.J.; et al. Intravascular Imaging During Percutaneous Coronary Intervention: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 81, 590–605. [Google Scholar] [CrossRef] [PubMed]
- Mehmedbegović, I.; Jelić, D.; Mladenović, D.; Stanković, G. DES Selection for Left Main and Coronary Bifurcation Stenting. Rev. Cardiovasc. Med. 2023, 24, 266. [Google Scholar] [CrossRef]
- Showkathali, R.; Yalamanchi, R.P. Contemporary Left Main Percutaneous Coronary Intervention: A State-of-the-art Review. Interv. Cardiol. 2023, 18, e20. [Google Scholar] [CrossRef] [PubMed]
- Gershlick, A.H.; Kandzari, D.E.; Banning, A.; Taggart, D.P.; Morice, M.C.; Lembo, N.J.; Brown, W.M., 3rd; Banning, A.P.; Merkely, B.; Horkay, F.; et al. Outcomes After Left Main Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting According to Lesion Site: Results from the EXCEL Trial. JACC Cardiovasc. Interv. 2018, 11, 1224–1233. [Google Scholar] [CrossRef]
- Achim, A.; Leibundgut, G. FAME 3 fails to defame coronary artery bypass grafting: What went wrong in the percutaneous coronary intervention arm? Eur. J. Cardiothorac. Surg. 2022, 62, 1. [Google Scholar] [CrossRef]
- Kanoun Schnur, S.S.; Achim, A.; Toth, G.G. Clinical application of results of the ISCHEMIA trial. Trends Cardiovasc. Med. 2023, 33, 125–130. [Google Scholar] [CrossRef]
Crossover n = 171 | T or TAP n = 61 | Culotte n = 98 | NIT n = 172 | p | |
---|---|---|---|---|---|
Age (years) | 68.3 ± 9.1 | 69.1 ± 10.3 | 71.9 ± 11.7 | 70.3 ± 12.8 | 0.60 |
Male | 91 (53.1) | 34 (55.7) | 50 (51.0) | 101 (58.7) | 0.72 |
Obesity | 24 (14) | 11 (18.1) | 16 (16.3) | 27 (15.9) | 0.67 |
Arterial hypertension, n (%) | 95 (55.6) | 35 (57.4) | 59 (60.2) | 99 (57.6) | 0.72 |
Dyslipidaemia, n (%) | 70 (40.9) | 26 (42.6) | 46 (46.9) | 75 (43.6) | 0.25 |
Diabetes, n (%) | 48 (28.1) | 18 (29.5) | 32 (32.7) | 58 (33.7) | 0.52 |
Previous smokers, n (%) | 54 (31.6) | 22 (36.1) | 35 (35.7) | 57 (33.3) | 0.62 |
Active smokers, n (%) | 31 (18.1) | 10 (16.4) | 14 (14.3) | 27 (15.7) | 0.18 |
Valvular heart disease, n (%) | 37 (21.6) | 16 (26.2) | 23 (23.5) | 40 (23.2) | 0.72 |
LVEF (%) | 52.5 ± 10.7 | 54.1 ± 8.9 | 52.6 ± 10.1 | 53.1 ± 9.7 | 0.32 |
LA diameter (mm) | 30.1 ± 7.3 | 31.6 ± 6.9 | 29.2 ± 7.8 | 30.3 ± 7.4 | 0.78 |
CCS class | 2.7 ± 1.1 | 2.4 ± 0.8 | 2.5 ± 0.9 | 2.6 ± 0.9 | 0.59 |
TIA/stroke, n (%) | 46 (26.9) | 19 (31.1) | 32 (32.7) | 50 (29.1) | 0.61 |
eGFR <30 mL/min/1.73 m2 | 27 (15.8) | 11 (18) | 16 (16.3) | 42 (17.7) | 0.55 |
HF, n (%) | 60 (35.1) | 21 (34.4) | 30 (30.6) | 60 (34.8) | 0.68 |
COPD, n (%) | 50 (29.2) | 19 (31.1) | 32 (32.7) | 58 (33.7) | 0.72 |
PAD, n (%) | 42 (24.6) | 13 (21.3) | 18 (18.4) | 39 (22.6) | 0.25 |
EUROSCORE | 20.3 ± 9.4 | 20.2 ± 9.3 | 23.1 ± 10.5 | 24.5 ± 10.1 * | 0.02 |
Clinical presentation | |||||
Silent ischemia | 5 (2.9) | 2 (3.3) | 5 (5.1) | 7 (4.1) | 0.55 |
N-STEMI, n (%) | 78 (45.6) | 26 (42.6) | 40 (40.8) | 73 (42.4) | 0.68 |
Unstable angina, n (%) | 77 (45.0) | 27 (44.3) | 49 (50) | 75 (43.6) | 0.87 |
Recent STEMI (>24 h) | 21 (12.3) | 8 (13.1) | 11 (11.2) | 17 (9.8) * | 0.58 |
Crossover n = 171 | T or TAP n = 61 | Culotte n = 98 | NIT n = 172 | p | |
---|---|---|---|---|---|
Three-vessel disease | 101 (59.6) | 34 (55.7) | 67 (68.4) | 132 (76.8) | 0.01 |
LM lesion location | |||||
Ostial, n (%) | 28 (16.3) | 10 (16.4) | 17 (17.3) | 38 (22.0) | 0.01 |
Body shaft, n (%) | 34 (19.9) | 17 (27.8) ** | 37 (37.7) | 69 (40.1) * | 0.02 |
Distal LM, n (%) | 171 (100) | 61 (100) | 98 (100) | 172 (100.0) | 0.99 |
Medina 1,1,1 bifurcation, n (%) | 74 (43.2) | 30 (49.1) | 41 (41.8) | 83 (48.2) | 0.55 |
Medina 0,1,1 bifurcation, n (%) | 51 (29.8) | 18 (29.5) | 30 (30.6) | 45 (26.1) | 0.65 |
Trifurcation, n (%) | 46 (35.0) | 13 (21.3) | 27 (27.5) | 44 (25.5) * | 0.52 |
Calcification *, n (%) | |||||
Moderate, n (%) | 18 (10.5) | 11 (18.0) | 17 (17.3%) | 34 (19.7) * | 0.39 |
Severe, n (%) | 15 (8.7) | 9 (14.7) | 13 (13.2%) | 30 (17.4) * | 0.55 |
Chronic total occlusion | 37 (21.6) | 9 (14.7) | 13 (13.2) | 33 (19.8) | 0.65 |
LM, n | 1 | 0 | 0 | 1 | - |
LAD, n | 13 | 2 | 8 | 10 | - |
LCx, n | 19 | 3 | 0 | 13 | - |
RCA, n | 4 | 4 | 5 | 9 | - |
TIMI flow grade < 3 | |||||
Main vessel | 15 (8.7) | 6 (9.8) | 7 (7.1) | 12 (6.8) | 0.66 |
Side branch | 18 (10.5) | 5 (8.1) | 8 (8.1) | 16 (9.3) | 0.59 |
Syntax | 28.8 ± 8.1 | 29.1 ± 7.6 | 30.3 ± 7.0 | 31.6 ± 6.3 * | 0.02 |
Stent characteristics | |||||
Mean LM stent diameter (mm) | 4.3 ± 0.8 | 4.3 ± 0.7 | 4.4 ± 0.8 | 4.5 ± 0.9 | 0.60 |
Mean number of stent | 1.5 ± 0.5 | 2.2 ± 0.5 | 2.5 ± 0.5 | 2.8 ± 0.4 | 0.02 |
Global stent length (mm) | 26.8 ± 10 | 33.8 ± 10 | 46.1 ± 11 | 46.4 ± 10 | 0.02 |
Single Stent | Double-Stent Strategy | p | |
---|---|---|---|
Strategy | |||
n = 171 (%) | n = 331 (%) | ||
Negative | 154 (90) | 269 (81.2) | 0.01 |
Inconclusive | 10 (5.8) | 27 (8.1) | 0.34 |
aVr ST elevation > 1 mm | 1 (0.6) | 12 (3.6) | 0.04 |
V3-V6 ST depression > 1 mm | 4 (2.3) | 25 (7.5) | 0.01 |
DIII-aVf depression/elevation > 1 mm | 1 (0.6) | 3 (0.9) | 0.72 |
ECG only during the stress tests | 2 (1.2) | 19 (5.7) | 0.01 |
Symptom only during the stress tests | 2 (1.2) | 4 (1.2) | 0.99 |
ECG + Symptoms during the stress tests | 3 (1.8) | 16 (4.8) | 0.09 |
Six-Month Exercise Stress Test | |||
---|---|---|---|
Positive n = 42 (%) | Negative n = 460 (%) | p | |
Gender (females) | 12 (28.5) | 174 (37.8) | 0.23 |
Age ≥ 75 years | 10 (23.8) | 191 (41.5) | 0.02 |
Obesity | 5 (11.9) | 73 (15.9) | 0.49 |
Diabetes | 17 (40.5) | 139 (30.2) | 0.16 |
Dyslipidemia | 29 (69) | 188 (40.9) | <0.001 |
eGFR < 30 mL/min/1.73 m2 | 3 (7.1) | 93 (20.2) | 0.03 |
Triple-vessel disease | 38 (90.5) | 296 (64.3) | <0.001 |
Additional ostial LM lesion | 36 (85.7) | 57 (12.4) | <0.001 |
Additional body LM lesion | 39 (92.8) | 118 (25.6) | <0.001 |
Syntax > 25 | 40 (95.2) | 342 (74.3) | 0.003 |
Use of Rotablator | 8 (19) | 6 (1.3) | <0.001 |
Mean number of stent | 2.8 ± 0.5 | 2.0 ± 0.5 | <0.001 |
Global stent length (mm) | 33.7 ± 9 | 28.7 ± 11 | 0.04 |
TLF | 34 (80.9) | 17 (3.7) | <0.001 |
TLR | 18 (97.9) | 9 (1.9) | <0.001 |
ST | 5 (11.9) | 1 (0.2) | <0.001 |
CV Death | 11 (26.2) | 7 (1.5) | <0.001 |
Clinical restenosis | 33 (78.5) | 5 (1.1) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigatelli, G.; Zuin, M.; Marchese, G.; Hiso, E.; Rodinò, G.; Roncon, L.; Pasquetto, G. Prognostic Impact of a Routine Six-Month Exercise Stress Test after Complex Left Main Bifurcation Percutaneous Intervention. Diagnostics 2024, 14, 59. https://doi.org/10.3390/diagnostics14010059
Rigatelli G, Zuin M, Marchese G, Hiso E, Rodinò G, Roncon L, Pasquetto G. Prognostic Impact of a Routine Six-Month Exercise Stress Test after Complex Left Main Bifurcation Percutaneous Intervention. Diagnostics. 2024; 14(1):59. https://doi.org/10.3390/diagnostics14010059
Chicago/Turabian StyleRigatelli, Gianluca, Marco Zuin, Giuseppe Marchese, Ervis Hiso, Giulio Rodinò, Loris Roncon, and Giampaolo Pasquetto. 2024. "Prognostic Impact of a Routine Six-Month Exercise Stress Test after Complex Left Main Bifurcation Percutaneous Intervention" Diagnostics 14, no. 1: 59. https://doi.org/10.3390/diagnostics14010059
APA StyleRigatelli, G., Zuin, M., Marchese, G., Hiso, E., Rodinò, G., Roncon, L., & Pasquetto, G. (2024). Prognostic Impact of a Routine Six-Month Exercise Stress Test after Complex Left Main Bifurcation Percutaneous Intervention. Diagnostics, 14(1), 59. https://doi.org/10.3390/diagnostics14010059