Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals
Abstract
:1. Introduction
2. Strategy Research
3. Results
3.1. Brain Tumors
3.2. Breast Cancer
3.3. Thyroid Cancer
3.4. Adenoid Cystic Carcinoma
3.5. Hepatocellular Carcinoma
3.6. Colorectal, Gastric, and Pancreatic Cancer
3.7. Renal Cell and Urothelial Cancer
4. Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horoszewicz, J.S.; Kawinski, E.; Murphy, G.P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987, 7, 927–935. [Google Scholar] [PubMed]
- Will, L.; Sonni, I.; Kopka, K.; Kratochwil, C.; Giesel, F.L.; Haberkorn, U. Radiolabeled prostate-specific membrane antigen small-molecule inhibitors. Q. J. Nucl. Med. Mol. Imaging 2017, 61, 168–180. [Google Scholar] [CrossRef]
- de Galiza Barbosa, F.; Queiroz, M.A.; Nunes, R.F.; Costa, L.B.; Zaniboni, E.C.; Marin, J.F.G.; Cerri, G.G.; Buchpiguel, C.A. Nonprostatic diseases on PSMA PET imaging: A spectrum of benign and malignant findings. Cancer Imaging 2020, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, D.S.; Bacich, D.J.; Huang, S.S.; Heston, W.D.W. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and Endoradiotherapeutic strategies. J. Nucl. Med. 2018, 59, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Bertagna, F.; Albano, D.; Cerudelli, E.; Gazzilli, M.; Giubbini, R.; Treglia, G. Potential of Radiolabeled PSMA PET/CT or PET/MRI Diagnostic Procedures in Gliomas/Glioblastomas. Curr. Radiopharm. 2020, 13, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Laudicella, R.; Rueschoff, J.H.; Ferraro, D.A.; Brada, M.D.; Hausmann, D.; Mebert, I.; Maurer, A.; Hermanns, T.; Eberli, D.; Rupp, N.J.; et al. Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI. Eur. J. Nucl. Med. 2022, 49, 3917–3928. [Google Scholar] [CrossRef]
- Haffner, M.C.; Kronberger, I.E.; Ross, J.S.; Sheehan, C.E.; Zitt, M.; Mühlmann, G.; Öfner, D.; Zelger, B.; Ensinger, C.; Yang, X.J.; et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol. 2009, 40, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Bertagna, F.; Albano, D.; Cerudelli, E.; Gazzilli, M.; Tomasini, D.; Bonu, M.; Giubbini, R.; Treglia, G. Radiolabelled PSMA PET/CT in breast cancer. A systematic review. Nucl. Med. Rev. 2020, 23, 32–35. [Google Scholar] [CrossRef]
- Verburg, F.A.; Krohn, T.; Heinzel, A.; Mottaghy, F.M.; Behrendt, F.F. First evidence of PSMA expression in differentiated thyroid cancer using [68Ga]PSMA-HBED-CC PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1622–1623. [Google Scholar] [CrossRef] [PubMed]
- Bertagna, F.; Albano, D.; Giovanella, L.; Bonacina, M.; Durmo, R.; Giubbini, R.; Treglia, G. 68Ga-PSMA PET thyroid incidentalomas. Hormones 2019, 18, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Quartuccio, N.; Arnone, A.; Kokomani, A.; Allocca, M.; Nappi, A.G.; Santo, G.; Mantarro, C.; Laudicella, R. Brain PET/CT using prostate cancer radiopharmaceutical agents in the evaluation of gliomas. Clin. Transl. Imaging 2020, 8, 433–448. [Google Scholar] [CrossRef]
- Mhawech-Fauceglia, P.; Zhang, S.; Terracciano, L.; Sauter, G.; Chadhuri, A.; Herrmann, F.R.; Penetrante, R. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: An immunohistochemical study using multiple tumour tissue microarray technique. Histopathology 2007, 50, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; O’Keefe, D.S.; Bacich, D.J.; E Reuter, V.; Heston, W.D.; Gaudin, P.B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 1999, 5, 2674–2681. [Google Scholar] [PubMed]
- Niccoli Asabella, A.; Di Palo, A.; Altini, C.; Ferrari, C.; Rubini, G. Multimodality Imaging in Tumor Angiogenesis: Present Status and Perspectives. Int. J. Mol. Sci. 2017, 18, 1864. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, I.; Krönke, M.; König, M.; Gafita, A.; Maurer, T.; Horn, T.; Schiller, K.; Weber, W.; Eiber, M. Matched-pair comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J. Nucl. Med. 2020, 61, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Calais, J.; Ceci, F.; Cho, S.Y.; Fanti, S.; Giesel, F.L.; Goffin, K.; et al. PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1466–1486. [Google Scholar] [CrossRef] [PubMed]
- Bauckneht, M.; Ciccarese, C.; Laudicella, R.; Mosillo, C.; D’Amico, F.; Anghelone, A.; Strusi, A.; Beccia, V.; Bracarda, S.; Fornarini, G.; et al. Theranostics revolution in prostate cancer: Basics, clinical applications, open issues and future perspectives. Cancer Treat. Rev. 2024, 124, 102698. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Malhotra, G.; Goel, A.; Rakshit, S.; Chandak, A.; Chedda, R.; Banerjee, S.; Asopa, R.V. Differential Uptake of 68Ga-PSMA-HBED-CC (PSMA-11) in Low-Grade Versus High-Grade Gliomas in Treatment-Naive Patients. Clin. Nucl. Med. 2019, 44, e318–e322. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, G.; Ma, X.; Wang, S.; Zhao, X.; Zhang, W.; Yang, W.; Wang, J. PET/CT using 68Ga-PSMA-617 versus 18F-fluorodeoxyglucose to differentiate low- and high-grade gliomas. J. Neuroimaging 2021, 31, 733–742. [Google Scholar] [CrossRef]
- Verma, P.D.; Singh, B.K.D.; Sudhan, M.D.M.; Singh, R.K.M.; Bagul, S.D.M.; Chandak, A.R.M.; Soni, B.K.D.; Shelly, D.; Basu, S.D. 68Ga-PSMA-11 PET/CT Imaging in Brain Gliomas and Its Correlation with Clinicopathological Prognostic Parameters. Clin. Nucl. Med. 2023, 48, e559–e563. [Google Scholar] [CrossRef] [PubMed]
- Brighi, C.; Puttick, S.; Woods, A.; Keall, P.; Tooney, P.A.; Waddington, D.E.J.; Sproule, V.; Rose, S.; Fay, M. Comparison between [68Ga]Ga-PSMA-617 and [18F]FET PET as Imaging Biomarkers in Adult Recurrent Glioblastoma. Int. J. Mol. Sci. 2023, 24, 16208. [Google Scholar] [CrossRef] [PubMed]
- Medina-Ornelas, S.; García-Perez, F.; Estrada-Lobato, E.; Ochoa-Carrillo, F. 68Ga-PSMA PET/CT in the evaluation of locally advanced and metastatic breast cancer, a single center experience. Am. J. Nucl. Med. Mol. Imaging 2020, 10, 135–142. [Google Scholar] [PubMed]
- Arslan, E.; Ergül, N.; Beyhan, E.; Fenercioglu, E.; Sahin, R.; Cin, M.; Havare, S.B.; Trabulus, F.D.C.; Mermut, Ö.; Akbas, S.; et al. The roles of 68Ga-PSMA PET/CT and 18F-FDG PET/CT imaging in patients with triple-negative breast cancer and the association of tissue PSMA and claudin 1, 4, and 7 levels with PET findings. Nucl. Med. Commun. 2023, 44, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Andryszak, N.; Świniuch, D.; Wójcik, E.; Ramlau, R.; Ruchała, M.; Czepczyński, R. Head-to-Head Comparison of [18F]PSMA-1007 and [18F]FDG PET/CT in Patients with Triple-Negative Breast Cancer. Cancers 2024, 16, 667. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Malhotra, G.; Agrawal, R.; Sonavane, S.; Meshram, V.; Asopa, R.V. Evidence of Prostate-Specific Membrane Antigen Expression in Metastatic Differentiated Thyroid Cancer Using 68Ga-PSMA-HBED-CC PET/CT. Clin. Nucl. Med. 2018, 43, e265–e268. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Feng, Y.; Xu, L.; Li, W.; Guan, L.; Zuo, R.; Liu, S.; Pang, H.; Wang, Z. The value of Gallium-68 prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) PET/CT and 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT in the detection of thyroid cancer lesions: A prospective head-to-head comparison. Br. J. Radiol. 2023, 20230291. [Google Scholar] [CrossRef] [PubMed]
- Pitalua-Cortes, Q.; García-Perez, F.O.; Vargas-Ahumada, J.; Gonzalez-Rueda, S.; Gomez-Argumosa, E.; Ignacio-Alvarez, E.; Soldevilla-Gallardo, I.; Torres-Agredo, L. Head-to-Head Comparison of 68Ga-PSMA-11 and 131I in the Follow-Up of Well-Differentiated Metastatic Thyroid Cancer: A New Potential Theragnostic Agent. Front. Endocrinol. 2021, 12, 794759. [Google Scholar] [CrossRef]
- Lawhn-Heath, C.; Yom, S.S.; Liu, C.; Villanueva-Meyer, J.E.; Aslam, M.; Smith, R.; Narwal, M.; Juarez, R.; Behr, S.C.; Pampaloni, M.H.; et al. Gallium-68 prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) PET for imaging of thyroid cancer: A feasibility study. EJNMMI Res. 2020, 10, 128. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Shi, Y.R.; Xia, Z.; Xu, L.; Li, W.B.; Pang, H.; Wang, Z.J. The clinical signification and application value of [68Ga]Ga-PSMA imaging in thyroid malignancy. Endocrine 2023, 84, 598–606. [Google Scholar] [CrossRef]
- Shamim, S.A.; Kumar, N.; Arora, G.; Kumar, D.M.; Pathak, A.M.; Thakkar, A.; Sikka, K.; Singh, C.A.; Kakkar, A.; Bhalla, A.S. Comparison of 68Ga-PSMA-HBED-CC and 18F-FDG PET/CT in the Evaluation of Adenoid Cystic Carcinoma—A Prospective Study. Clin. Nucl. Med. 2023, 48, e509–e515. [Google Scholar] [CrossRef] [PubMed]
- Gündoğan, C.; Ergül, N.; Çakır, M.S.; Kılıçkesmez, Ö.; Gürsu, R.U.; Aksoy, T.; Çermik, T.F. 68Ga-PSMA PET/CT Versus 18F-FDG PET/CT for Imaging of Hepatocellular Carcinoma. Mol. Imaging Radionucl. Ther. 2021, 30, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu, S.; Has-Simsek, D.; Iliaz, R.; Sanli, Y.; Buyukkaya, F.; Akyuz, F.; Turkmen, C. Evidence of Prostate-Specific Membrane Antigen Expression in Hepatocellular Carcinoma Using 68Ga-PSMA PET/CT. Clin. Nucl. Med. 2019, 44, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Cuda, T.J.; Riddell, A.D.; Liu, C.; Whitehall, V.L.; Borowsky, J.; Wyld, D.K.; Burge, M.E.; Ahern, E.; Griffin, A.; Lyons, N.J.; et al. PET Imaging Quantifying 68Ga-PSMA-11 Uptake in Metastatic Colorectal Cancer. J. Nucl. Med. 2020, 61, 1576–1579. [Google Scholar] [CrossRef] [PubMed]
- Vuijk, F.A.; Kleiburg, F.; Noortman, W.A.; Heijmen, L.; Feshtali Shahbazi, S.; van Velden, F.H.P.; Baart, V.M.; Bhairosingh, S.S.; Windhorst, B.D.; Hawinkels, L.J.A.C.; et al. Prostate-Specific Membrane Antigen Targeted Pet/CT Imaging in Patients with Colon, Gastric and Pancreatic Cancer. Cancers 2022, 14, 6209. [Google Scholar] [CrossRef]
- Krishnaraju, V.S.; Kumar, R.; Mittal, B.R.; Sharma, V.; Singh, H.; Nada, R.; Bal, A.; Rohilla, M.; Singh, H.; Rana, S.S. Differentiating benign and malignant pancreatic masses: Ga-68 PSMA PET/CT as a new diagnostic avenue. Eur. Radiol. 2021, 31, 2199–2208. [Google Scholar] [CrossRef]
- Aggarwal, P.; Singh, H.; Das, C.K.; Mavuduru, R.S.; Kakkar, N.; Lal, A.; Gorsi, U.; Kumar, R.; Mittal, B.R. Potential role of 68Ga-PSMA PET/CT in metastatic renal cell cancer: A prospective study. Eur. J. Radiol. 2024, 170, 111218. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Kwok, M.; Pearce, A.; Rhee, H.; Kyle, S.; Marsh, P.; Raveenthiran, S.; Wong, D.; McBean, R.; Westera, J.; et al. The role of dual tracer PSMA and FDG PET/CT in renal cell carcinoma (RCC) compared to conventional imaging: A multi-institutional case series with intra-individual comparison. Urol. Oncol. Semin. Orig. Investig. 2022, 40, 66.e1–66.e9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, G.; Yu, H.; Wu, Y.; Lin, M.; Gao, J.; Xu, B. Comparison of 18F-DCFPyL and 18F-FDG PET/computed tomography for the restaging of clear cell renal cell carcinoma: Preliminary results of 15 patients. Nucl. Med. Commun. 2020, 41, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Udovicich, C.; Callahan, J.; Bressel, M.; Ong, W.L.; Perera, M.; Tran, B.; Azad, A.; Haran, S.; Moon, D.; Chander, S.; et al. Impact of Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in the Management of Oligometastatic Renal Cell Carcinoma. Eur. Urol. Open Sci. 2022, 44, 60–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.H.; Lin, B.H.; Chen, S.M.; Qiu, Q.R.S.; Ruan, Z.T.; Chen, Z.J.; Wei, Y.; Zheng, Q.S.; Xue, X.Y.; Miao, W.B.; et al. Head-to-head comparisons of enhanced CT, 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT in identifying adverse pathology of clear-cell renal cell carcinoma: A prospective study. Int. Braz. J. Urol. 2023, 49, 716–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, L.; Wang, J.; Zang, J.; Chen, J.; Xiao, Y.; Fan, X.; Zhu, L.; Kung, H.F.; Zhu, Z. Head-to-head comparison of [68Ga]Ga-P16-093 and 2-[18F]FDG PET/CT in patients with clear cell renal cell carcinoma: A pilot study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.-H.; Chen, S.H.; Chen, S.-M.; Qiu, Q.-R.; Gao, R.-C.; Wei, Y.; Zheng, Q.-S.; Miao, W.-B.; Xu, N. Head-to-head comparisons of 68Ga-PSMA-11 and 18F-FDG PET/CT in evaluating patients with upper tract urothelial carcinoma: A prospective pilot study. Int. Urol. Nephrol. 2023, 55, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186, Correction in Nat. Rev. Clin. Oncol. 2022, 19, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.L.; Galldiks, N.; Ellingson, B.M.; Bent, M.J.v.D.; Chang, S.M.; Cicone, F.; de Groot, J.; Koh, E.-S.; Law, I.; Le Rhun, E.; et al. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): A report of the RANO group. Lancet Oncol. 2024, 25, e29–e41. [Google Scholar] [CrossRef]
- Santo, G.; Laudicella, R.; Linguanti, F.; Nappi, A.G.; Abenavoli, E.; Vergura, V.; Rubini, G.; Sciagrà, R.; Arnone, G.; Schillaci, O.; et al. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence also in Comparison with MRI. Diagnostics 2022, 12, 844. [Google Scholar] [CrossRef] [PubMed]
- Thenuwara, G.; Curtin, J.; Tian, F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. Sensors 2023, 23, 9842. [Google Scholar] [CrossRef] [PubMed]
- Law, I.; Albert, N.L.; Arbizu, J.; Boellaard, R.; Drzezga, A.; Galldiks, N.; la Fougere, C.; Langen, K.-J.; Lopci, E.; Lowe, V.; et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 540–557. [Google Scholar] [CrossRef]
- Moreau, A.; Khayi, F.; Maureille, A.; Bonneville-Levard, A.; Larrouquere, L.; Ducray, F.; Kryza, D. Discriminating Inflammatory Radiation-Related Changes From Early Recurrence in Patients with Glioblastomas: A Preliminary Analysis of 68Ga-PSMA-11 PET/CT Compared with 18F-FDOPA PET/CT. Clin. Nucl. Med. 2023, 48, 657–666. [Google Scholar] [CrossRef]
- Gennari, A.; André, F.; Barrios, C.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Robson, N.; Thekkinkattil, D.K. Current Role and Future Prospects of Positron Emission Tomography (PET)/Computed Tomography (CT) in the Management of Breast Cancer. Medicina 2024, 60, 321. [Google Scholar] [CrossRef] [PubMed]
- Balma, M.; Liberini, V.; Racca, M.; Laudicella, R.; Bauckneht, M.; Buschiazzo, A.; Nicolotti, D.G.; Peano, S.; Bianchi, A.; Albano, G.; et al. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front. Med. 2022, 9, 881551. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.M.; Beesley, L.J.; Bellile, E.L.; Worden, F.P.; Avram, A.M. Prognostic Value of FDG-PET/CT Metabolic Parameters in Metastatic Radioiodine-Refractory Differentiated Thyroid Cancer. Clin. Nucl. Med. 2018, 43, 641–647. [Google Scholar] [CrossRef]
- Özdemir, E.; Yildirim Poyraz, N.; Polat, S.B.; Turkolmez, S.; Ersoy, R.; Cakir, B. Diagnostic Value of 18F-FDG PET/CT in Patients with TENIS Syndrome: Correlation with Thyroglobulin Levels. Ann. Nucl. Med. 2014, 28, 241–247. [Google Scholar] [CrossRef]
- Ozkan, E.; Aras, G.; Kucuk, N.O. Correlation of 18F-FDG PET/CT Findings with Histopathological Results in Differentiated Thyroid Cancer Patients Who Have Increased Thyroglobulin or Antithyroglobulin Antibody Levels and Negative 131I Whole-Body Scan Results. Clin. Nucl. Med. 2013, 38, 326–331. [Google Scholar] [CrossRef]
- Bychkov, A.; Vutrapongwatana, U.; Tepmongkol, S.; Keelawat, S. PSMA Expression by Microvasculature of Thyroid Tumors—Potential Implications for PSMA Theranostics. Sci. Rep. 2017, 7, 5202. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, S.; Son, S.H.; Kim, C.; Lee, C.; Jeong, J.H.; Jeong, S.Y.; Ahn, B.; Lee, J. Clinical impact of 18F-FDG positron emission tomography/CT on adenoid cystic carcinoma of the head and neck. Head Neck 2016, 39, 447–455. [Google Scholar] [CrossRef]
- van Boxtel, W.; Lütje, S.; van Engen-van Grunsven, I.C.; Verhaegh, G.W.; Schalken, J.A.; Jonker, M.A.; Nagarajah, J.; Gotthardt, M.; van Herpen, C.M. 68Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: A phase 2 imaging study. Theranostics 2020, 10, 2273–2283. [Google Scholar] [CrossRef]
- Raees, A.; Kamran, M.; Özkan, H.; Jafri, W. Updates on the Diagnosis and Management of Hepatocellular Carcinoma. Euroasian J. Hepatogastroenterol. 2021, 11, 32–40. [Google Scholar] [CrossRef]
- Yao, Y.; Civelek, A.C.; Li, X.-F. The application of 18F-FDG PET/CT imaging for human hepatocellular carcinoma: A narrative review. Quant. Imaging Med. Surg. 2023, 13, 6268–6279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghidaglia, J.; Golse, N.; Pascale, A.; Sebagh, M.; Besson, F.L. 18F-FDG/18F-Choline Dual-Tracer PET Behavior and Tumor Differentiation in HepatoCellular Carcinoma. A Systematic Review. Front. Med. 2022, 9, 924824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Rosa, M.; Pace, U.; Rega, D.; Costabile, V.; Duraturo, F.; Izzo, P.; Delrio, P. Genetics, diagnosis and management of colorectal cancer (Review). Oncol. Rep. 2015, 34, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’reilly, E.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Elkassem, A.A.; Allen, B.C.; Sharbidre, K.G.; Rais-Bahrami, S.; Smith, A.D. Update on the Role of Imaging in Clinical Staging and Restaging of Renal Cell Carcinoma Based on the AJCC 8th Edition, From the AJR Special Series on Cancer Staging. Am. J. Roentgenol. 2021, 217, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Pozzessere, C.; Bassanelli, M.; Ceribelli, A.; Rasul, S.; Li, S.; Prior, J.O.; Cicone, F. Renal Cell Carcinoma: The Oncologist Asks, Can PSMA PET/CT Answer? Curr. Urol. Rep. 2019, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; van den Bergh, R.C.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Bauckneht, M.; Miceli, A.; Signori, A.; Albano, D.; Capitanio, S.; Piva, R.; Laudicella, R.; Franchini, A.; D’amico, F.; Riondato, M.; et al. Combined forced diuresis and late acquisition on [68Ga]Ga-PSMA-11 PET/CT for biochemical recurrent prostate cancer: A clinical practice-oriented study. Eur. Radiol. 2023, 33, 3343–3353. [Google Scholar] [CrossRef]
- Kratochwil, C.; Fendler, W.P.; Eiber, M.; Hofman, M.S.; Emmett, L.; Calais, J.; Osborne, J.R.; Iravani, A.; Koo, P.; Lindenberg, L.; et al. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2830–2845. [Google Scholar] [CrossRef]
- Ferraro, D.A.; Hötker, A.M.; Becker, A.S.; Mebert, I.; Laudicella, R.; Baltensperger, A.; Rupp, N.J.; Rueschoff, J.H.; Müller, J.; Mortezavi, A.; et al. 68Ga-PSMA-11 PET/MRI versus multiparametric MRI in men referred for prostate biopsy: Primary tumour localization and interreader agreement. Eur. J. Hybrid Imaging 2022, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, D.A.; Laudicella, R.; Zeimpekis, K.; Mebert, I.; Müller, J.; Maurer, A.; Grünig, H.; Donati, O.; Sapienza, M.T.; Rueschoff, J.H.; et al. Hot needles can confirm accurate lesion sampling intraoperatively using [18F]PSMA-1007 PET/CT-guided biopsy in patients with suspected prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Alongi, P.; Laudicella, R.; Lanzafame, H.; Farolfi, A.; Mapelli, P.; Picchio, M.; Burger, I.A.; Iagaru, A.; Minutoli, F.; Evangelista, L. PSMA and Choline PET for the Assessment of Response to Therapy and Survival Outcomes in Prostate Cancer Patients: A Systematic Review from the Literature. Cancers 2022, 14, 1770. [Google Scholar] [CrossRef] [PubMed]
- Laudicella, R.; Bauckneht, M.; Burger, I.A. Is There a Role of Interim PSMA PET in Chemotherapy of Prostate Cancer? Semin. Nucl. Med. 2024, 54, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gafita, A.; Djaileb, L.; Rauscher, I.; Fendler, W.P.; Hadaschik, B.; Rowe, S.P.; Herrmann, K.; Calais, J.; Rettig, M.; Eiber, M.; et al. Response Evaluation Criteria in PSMA PET/CT (RECIP 1.0) in Metastatic Castration-resistant Prostate Cancer. Radiology 2023, 308, e222148. [Google Scholar] [CrossRef] [PubMed]
- Adnan, A.; Basu, S. PSMA Receptor-Based PET-CT: The Basics and Current Status in Clinical and Research Applications. Diagnostics 2023, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Dall’Armellina, S.; Pizzuto, D.A.; Perotti, G.; Zagaria, L.; Lanni, V.; Treglia, G.; Racca, M.; Annunziata, S. PSMA Radioligand Uptake as a Biomarker of Neoangiogenesis in Solid Tumours: Diagnostic or Theragnostic Factor? Cancers 2022, 14, 4039. [Google Scholar] [CrossRef] [PubMed]
- Van de Wiele, C.; Sathekge, M.; de Spiegeleer, B.; De Jonghe, P.J.; Debruyne, P.R.; Borms, M.; Beels, L.; Maes, A. PSMA expression on neovasculature of solid tumors. Histol. Histopathol. 2020, 35, 919–927. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; Ng, S.; et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804. [Google Scholar] [CrossRef]
Authors | Tumor Type | N° | PSMA-Ligand | Comparison | Detection Rate (PSMA vs. Comparison) | Main Findings |
---|---|---|---|---|---|---|
Verma et al. [19] | Glioma | 10 | [68Ga]Ga-PSMA-11 | [18F]FDG | 100% vs. 70% | [68Ga]Ga-PSMA-11 was able to better detect LGGs compared to [18F]FDG |
Liu et al. [20] | Glioma | 30 | [68Ga]Ga-PSMA-617 | [18F]FDG | 93% vs. 86% | [68Ga]Ga-PSMA-617 SUVmax and SUVmean were the most effective for differentiating HGGs from LGGs ([68Ga]Ga-PSMA-617 AUC of 0.96 and 0.94; [18F]FDG AUC of 0.79 and 0.74, respectively) |
Verma et al. [21] | Glioma | 15 | [68Ga]Ga-PSMA-11 | [18F]FDG | 87% vs. 80% | Correlation between [68Ga]Ga-PSMA-11 and [18F]FDG SUVmax with glioma grade, Ki-67 index, and IDH mutation status |
Brighi et al. [22] | Glioma | 10 | [68Ga]Ga-PSMA-617 | [18F]FET | / | [68Ga]Ga-PSMA-617 BTV covers the CE tumor volume and extends to adjacent regions of non-enhancing tumor resulting in a BTV approximately four times larger than the CE tumor volume (p = 0.0039) |
Medina-Ornelas et al. [23] | Breast Cancer | 21 | [68Ga]Ga-PSMA-11 | [18F]FDG | 70% vs. 100% | The overall sensitivities and specificities were, respectively, 99.2% and 93.6% for [18F]FDG vs. 84% and 91.8% for [68Ga]Ga-PSMA-11 |
Arslan et al. [24] | Breast Cancer | 42 | [68Ga]Ga-PSMA-11 | [18F]FDG | 81% vs. 98% (primary) | The overall sensitivity was 97.6% for [18F]FDG PET/CT vs. 92.7% for [68Ga]Ga-PSMA-11 |
Andryszak et al. [25] | Breast Cancer | 10 | [18F]PSMA-1007 | [18F]FDG | / | The study showed a comparable uptake of [18F]PSMA-1007 and [18F]FDG in primary and metastatic lesions |
Verma et al. [26] | Thyroid Cancer | 10 | [68Ga]Ga-PSMA-11 | [18F]FDG | 93.75% vs. 81.85% | All patients with iodine-avid metastatic disease showed substantial PSMA uptake 70% of lesions that showed PSMA expression was localized to the bones |
Shi et al. [27] | Thyroid Cancer | 40 | [68Ga]Ga-PSMA-11 | [18F]FDG | DTC 60% vs. 90% RAIR-DTC 59.4% vs. 96.9% | [68Ga]Ga-PSMA-11 showed a lower detection rate than [18F]FDG PET/CT There was a difference in PSMA expression levels between DTC and RAIR-DTC, but the difference was not reflected on [68Ga]Ga-PSMA-11 PET/CT |
Pitalua-Cortes et al. [28] | Thyroid Cancer | 10 | [68Ga]Ga-PSMA-11 | 131I WBS + SPECT/CT | 100% vs. 86% | [68Ga]Ga-PSMA-11 was superior in identifying metastatic lesions compared to 131I SPECT/CT |
Lawhn-Heath et al. [29] | Thyroid Cancer | 11 | [68Ga]Ga-PSMA-11 | [18F]FDG | 65.1% vs. 95.3% | Thyroid cancer subtypes did not predict PSMA uptake, and radiotracer uptake differed between patients and lesions |
Feng et al. [30] | Thyroid Cancer | 42 | [68Ga]Ga-PSMA-11 | [18F]FDG | / | [68Ga]Ga-PSMA-11 uptake correlated with higher [18F]FDG SUVmax and Tg levels |
Shamim et al. [31] | Adenoid Cystic Carcinoma | 17 | [68Ga]Ga-PSMA-11 | [18F]FDG | 94% vs. 93% (primary) | Cerebellar, meningeal metastasis, and bone lesions were detected only on [68Ga]Ga-PSMA-11 but were not visualized on [18F]FDG |
Gündoğan et al. [32] | Hepatocellular Carcinoma | 11 | [68Ga]Ga-PSMA-11 | [18F]FDG | / | [68Ga]Ga-PSMA-11 is superior to [18F]FDG PET/CT in the staging of HCC |
Kuyumcu et al. [33] | Hepatocellular Carcinoma | 19 | [68Ga]Ga-PSMA-11 | [18F]FDG | 84% vs. 79% | PSMA expression in advanced HCC can be demonstrated by [68Ga]Ga-PSMA-11 PET but is not superior to [18F]FDG |
Cuda et al. [34] | Colorectal Carcinoma | 10 | [68Ga]Ga-PSMA-11 | [18F]FDG | / | The study suggested a low PSMA avidity due to consistently low PSMA expression in CRC tumors |
Vuijk et al. [35] | Gastrointestinal Tumors * | 11 | [18F]DCFPyL | [18F]FDG | 60% vs. 100% | [18F]FDG PET/CT was superior in detecting colon, gastric, and pancreatic cancers |
Krishnaraju et al. [36] | Pancreas | 40 | [68Ga]Ga-PSMA-11 | [18F]FDG | 94% vs. 88% (tumor) | The overall sensitivity of both [68Ga]Ga-PSMA-11 and [18F]FDG PET/CT was high (94.7% vs. 89.5%), while the specificity was higher for [68Ga]Ga-PSMA-11 compared with [18F]FDG (90% vs. 57.1%) PET/CT for the detection of primary pancreatic neoplasm |
Aggarwal et al. [37] | Renal Cell Carcinoma | 37 | [68Ga]Ga-PSMA-11 | [18F]FDG | 312 vs. 202 | [68Ga]Ga-PSMA-11 PET/CT showed significantly higher SUVmax than [18F]FDG |
Tariq et al. [38] | Renal Cell Carcinoma | 11 | [68Ga]Ga-PSMA-11 or [18F]PSMA-1007 | [18F]FDG | 60% vs. 80% (primary) 100% vs. 82% (metastases) | [68Ga]Ga-PSMA-11 and [18F]FDG PET/CT were mostly concordant for assessment of primary and metastatic RCC. PET imaging led to a change in patients’management. |
Liu et al. [39] | Renal Cell Carcinoma | 15 | [18F]DCFPyL | [18F]FDG | 100% vs. 61% (soft tissue and bone mets) | [18F]DCFPyL was statistically better (p = 0.002) at detecting bone lesions SUVmax and TBR were significantly higher than that of [18F]FDG for soft tissue lesions and bone lesions (p = 0.001) |
Udovicich et al. [40] | Renal Cell Carcinoma | 40 | [68Ga]Ga-PSMA-11 or [18F]DCFPyL | [18F]FDG | 88% vs. 75% | PSMA PET/CT detected additional metastases compared to CT in 25% of patients and registered a significantly higher SUVmax than [18F]FDG |
Chen et al. [41] | Renal Cell Carcinoma | 62 | [68Ga]Ga-PSMA-11 | [18F]FDG | / | The SUVmax of [68Ga]Ga-PSMA-11 PET/CT was more effective than [18F]FDG PET/CT in identifying tumor necrosis and adverse pathology |
Wang et al. [42] | Renal Cell Carcinoma | 42 | [68Ga]Ga-P16-093 | [18F]FDG | 86% vs. 59% (primary) 95% vs. 64% (metastic) | [68Ga]Ga-P16-093 PET/CT demonstrated a significantly higher detection rate and higher tumor uptake either in primary and metastatic RCC |
Lin et al. [43] | Urothelial Carcinoma | 25 | [68Ga]Ga-PSMA-11 | [68Ga]Ga-LNC1007; [18F]FDG | LNC1007 vs. FDG: 13/17 vs. 4/17, p = 0.005; LNC1007 vs. PSMA: 9/11 vs. 6/11, p = 0.361 | In the [68Ga]Ga-LNC1007 and [68Ga]Ga-PSMA-11 PET/CT group, the detection rates were 77.8% by patient-based analysis and 81.8% by lesion-based analysis for LNC1007 and 66.7% by patient-based analysis and 54.5% by lesion-based analysis for PSMA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miceli, A.; Liberini, V.; Pepe, G.; Dondi, F.; Vento, A.; Jonghi Lavarini, L.; Celesti, G.; Gazzilli, M.; Serani, F.; Guglielmo, P.; et al. Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals. Diagnostics 2024, 14, 1002. https://doi.org/10.3390/diagnostics14101002
Miceli A, Liberini V, Pepe G, Dondi F, Vento A, Jonghi Lavarini L, Celesti G, Gazzilli M, Serani F, Guglielmo P, et al. Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals. Diagnostics. 2024; 14(10):1002. https://doi.org/10.3390/diagnostics14101002
Chicago/Turabian StyleMiceli, Alberto, Virginia Liberini, Giovanna Pepe, Francesco Dondi, Antonio Vento, Lorenzo Jonghi Lavarini, Greta Celesti, Maria Gazzilli, Francesca Serani, Priscilla Guglielmo, and et al. 2024. "Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals" Diagnostics 14, no. 10: 1002. https://doi.org/10.3390/diagnostics14101002
APA StyleMiceli, A., Liberini, V., Pepe, G., Dondi, F., Vento, A., Jonghi Lavarini, L., Celesti, G., Gazzilli, M., Serani, F., Guglielmo, P., Buschiazzo, A., Filice, R., Alongi, P., Laudicella, R., & Santo, G. (2024). Prostate-Specific Membrane Antigen Positron Emission Tomography Oncological Applications beyond Prostate Cancer in Comparison to Other Radiopharmaceuticals. Diagnostics, 14(10), 1002. https://doi.org/10.3390/diagnostics14101002