Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Scanners and Radiation Dose
2.3. Imaging Specification
2.4. Statistics
- -
- For the comparison of the CTDI between the scanners PCCT and EID, the Wilcoxon test was used.
- -
- For the comparison of the DLP between the scanners PCCT and EID, the Wilcoxon test was used.
- -
- For the comparison of the SNR between the scanners PCCT and EID, the paired t-test was used.
- -
- For the comparison of the CNR between the scanners PCCT and EID, the paired t-test was used.
3. Results
3.1. Radiation Dose: Computed Tomography Dose Index (CTDI)
3.2. Radiation Dose: Dose-Length Product (DLP)
3.3. Imaging Specification: Comparison of the SNR (Signal-to-Noise Ratio)
3.4. Imaging Specification Comparison of the CNR (Contrast-to-Noise Ratio)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renowden, S. Normal anatomy of the brain on CT and MRI with a few normal variants. Pract. Neurol. 2012, 12, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Gajawelli, N.; Deoni, S.; Shi, J.; Dirks, H.; Linguraru, M.G.; Nelson, M.D.; Wang, Y.; Lepore, N. Cranial thickness changes in early childhood. In Proceedings of the 13th International Symposium on Medical Information Processing and Analysis, San Andres Island, Colombia, 5–7 October 2017; Volume 10572. [Google Scholar] [CrossRef]
- Schäfer, M.L.; Koch, A.; Streitparth, F.; Wiener, E. Cross Sectional Imaging of Solitary Lesions of the Neurocranium. Rofo 2017, 189, 1135–1144. (In English) [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, F.M.; Bekker, S.V.; Qureshi, A.I. Neuroimaging of hemorrhage and vascular defects. Neurotherapeutics 2011, 8, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Rava, R.A.; Seymour, S.E.; LaQue, M.E.; Peterson, B.A.; Snyder, K.V.; Mokin, M.; Waqas, M.; Hoi, Y.; Davies, J.M.; Levy, E.I.; et al. Assessment of an Artificial Intelligence Algorithm for Detection of Intracranial Hemorrhage. World Neurosurg. 2021, 150, e209–e217. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Zhang, L.; Hu, Q.M.; Li, H.W.; Jia, F.C.; Wu, J.H. Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans. Int. J. Comput. Assist. Radiol. Surg. 2012, 7, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Soun, J.E.; Chow, D.S.; Nagamine, M.; Takhtawala, R.S.; Filippi, C.G.; Yu, W.; Chang, P.D. Artificial Intelligence and Acute Stroke Imaging. AJNR Am. J. Neuroradiol. 2021, 42, 2–11. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Mishra, S.; Mohanty, M.N.; Behera, R.K.; Dhar, S.K. Brain Tumor Detection using Deep Learning Approach. Neurol. India 2023, 71, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Novoa Ferro, M.; Santos Armentia, E.; Silva Priegue, N.; Jurado Basildo, C.; Sepúlveda Villegas, C.A.; Del Campo Estepar, S. Brain CT requests from emergency department: Reality. Radiologia 2022, 64, 422–432. [Google Scholar] [CrossRef]
- Yabuuchi, H.; Kamitani, T.; Sagiyama, K.; Yamasaki, Y.; Matsuura, Y.; Hino, T.; Tsutsui, S.; Kondo, M.; Shirasaka, T.; Honda, H. Clinical application of radiation dose reduction for head and neck CT. Eur. J. Radiol. 2018, 107, 209–215. [Google Scholar] [CrossRef]
- Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Sir Craft, A.W.; et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012, 380, 499–505. [Google Scholar] [CrossRef]
- Inoue, Y.; Itoh, H.; Miyatake, H.; Hata, H.; Sasa, R.; Shiibashi, N.; Mitsui, K. Automatic Exposure Control Attains Radiation Dose Modulation Matched with the Head Size in Pediatric Brain CT. Tomography 2022, 8, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, M.; Byrnes, G.; Cardis, E.; Bernier, M.O.; Blettner, M.; Dabin, J.; Engels, H.; Istad, T.S.; Johansen, C.; Kaijser, M.; et al. Brain cancer after radiation exposure from CT examinations of children and young adults: Results from the EPI-CT cohort study. Lancet Oncol. 2023, 24, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Sartoretti, T.; Wildberger, J.E.; Flohr, T.; Alkadhi, H. Photon-counting detector CT: Early clinical experience review. Br. J. Radiol. 2023, 96, 20220544. [Google Scholar] [CrossRef] [PubMed]
- Abel, F.; Schubert, T.; Winklhofer, S. Advanced Neuroimaging with Photon-Counting Detector CT. Investig. Radiol. 2023, 58, 472–481. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Rajendran, K.; Baffour, F.I.; Diehn, F.E.; Ferrero, A.; Glazebrook, K.N.; Horst, K.K.; Johnson, T.F.; Leng, S.; Mileto, A.; et al. Clinical applications of photon counting detector CT. Eur. Radiol. 2023, 33, 5309–5320. [Google Scholar] [CrossRef] [PubMed]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Stein, T.; Rau, A.; Russe, M.F.; Arnold, P.; Faby, S.; Ulzheimer, S.; Weis, M.; Froelich, M.F.; Overhoff, D.; Horger, M.; et al. Photon-Counting Computed Tomography—Basic Principles, Potenzial Benefits, and Initial Clinical Experience. Rofo 2023, 195, 691–698. (In English) [Google Scholar] [CrossRef] [PubMed]
- Esquivel, A.; Ferrero, A.; Mileto, A.; Baffour, F.; Horst, K.; Rajiah, P.S.; Inoue, A.; Leng, S.; McCollough, C.; Fletcher, J.G. Photon-Counting Detector CT: Key Points Radiologists Should Know. Korean J. Radiol. 2022, 23, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Klempka, A.; Ackermann, E.; Clausen, S.; Groden, C. Photon Counting Computed Tomography for Accurate Cribriform Plate (Lamina Cribrosa) Imaging in Adult Patients. Tomography 2024, 10, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Rincon, S.; Gupta, R.; Ptak, T. Imaging of head trauma. Handb. Clin. Neurol. 2016, 135, 447–477. [Google Scholar] [CrossRef]
- Michael, A.E.; Boriesosdick, J.; Schoenbeck, D.; Woeltjen, M.M.; Saeed, S.; Kroeger, J.R.; Horstmeier, S.; Lennartz, S.; Borggrefe, J.; Niehoff, J.H. Image-Quality Assessment of Polyenergetic and Virtual Monoenergetic Reconstructions of Unenhanced CT Scans of the Head: Initial Experiences with the First Photon-Counting CT Approved for Clinical Use. Diagnostics 2022, 12, 265. [Google Scholar] [CrossRef] [PubMed]
- Tarkiainen, J.; Nadhum, M.; Heikkilä, A.; Rinta-Kiikka, I.; Joutsen, A. Radiation dose of the eye lens in ct examinations of the brain in clinical practice-the effect of radiographer training to optimise gantry tilt and scan length. Radiat. Prot. Dosim. 2023, 199, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Gervaise, A.; Osemont, B.; Lecocq, S.; Noel, A.; Micard, E.; Felblinger, J. Blum ACT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector, C.T. Eur. Radiol. 2012, 22, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Postma, A.A.; Das, M.; Stadler, A.A.; Wildberger, J.E. Dual-Energy CT: What the Neuroradiologist Should Know. Curr. Radiol. Rep. 2015, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Rau, A.; Straehle, J.; Stein, T.; Diallo, T.; Rau, S.; Faby, S.; Nikolaou, K.; Schoenberg, S.O.; Overhoff, D.; Beck, J.; et al. Photon-Counting Computed Tomography (PC-CT) of the spine: Impact on diagnostic confidence and radiation dose. Eur. Radiol. 2023, 33, 5578–5586. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Baffour, F.; Powell, G.; Glazebrook, K.; Thorne, J.; Larson, N.; Leng, S.; McCollough, C.; Fletcher, J. Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT. Skeletal Radiol. 2023, 52, 23–29. [Google Scholar] [CrossRef]
- Schaffter, T.; Buist, D.S.M.; Lee, C.I.; Nikulin, Y.; Ribli, D.; Guan, Y.; Lotter, W.; Jie, Z.; Du, H.; Wang, S.; et al. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw. Open 2020, 3, e200265, Erratum in JAMA Netw. Open 2020, 3, e204429. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, H.; Zareh Shahamati, S.; Karkhaneh Yousefi, A.; Safarpour Lima, B. Potentially inappropriate brain CT-scan requesting in the emergency department: A retrospective study in patients with neurologic complaints. Acta Biomed. 2021, 92, e2021302. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, T.A.; Hoang, J.K.; Yoshizumi, T.T.; Toncheva, G.; Lowry, C.; Ravin, C. Radiation dose for routine clinical adult brain CT: Variability on different scanners at one institution. AJR Am. J. Roentgenol. 2010, 195, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.M.; Shah, M.T.B.M.; Chong, S.L.; Ong, Y.G.; Ang, P.H.; Zakaria, N.D.B.; Lee, K.P.; Pek, J.H. Differences in radiation dose for computed tomography of the brain among pediatric patients at the emergency departments: An observational study. BMC Emerg. Med. 2021, 21, 106. [Google Scholar] [CrossRef]
- Strauss, K.J.; Somasundaram, E.; Sengupta, D.; Marin, J.R.; Brady, S.L. Radiation Dose for Pediatric CT: Comparison of Pediatric versus Adult Imaging Facilities. Radiology 2019, 291, 158–167. [Google Scholar] [CrossRef]
- Smoll, N.R.; Brady, Z.; Scurrah, K.J.; Lee, C.; Berrington de González, A.; Mathews, J.D. Computed tomography scan radiation and brain cancer incidence. Neuro Oncol. 2023, 25, 1368–1376. [Google Scholar] [CrossRef]
- Pourmorteza, A.; Symons, R.; Reich, D.S.; Bagheri, M.; Cork, T.E.; Kappler, S.; Ulzheimer, S.; Bluemke, D.A. Photon-Counting CT of the Brain: In Vivo Human Results and Image-Quality Assessment. AJNR Am. J. Neuroradiol. 2017, 38, 2257–2263. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klempka, A.; Schröder, A.; Neumayer, P.; Groden, C.; Clausen, S.; Hetjens, S. Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients. Diagnostics 2024, 14, 1019. https://doi.org/10.3390/diagnostics14101019
Klempka A, Schröder A, Neumayer P, Groden C, Clausen S, Hetjens S. Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients. Diagnostics. 2024; 14(10):1019. https://doi.org/10.3390/diagnostics14101019
Chicago/Turabian StyleKlempka, Anna, Alexander Schröder, Philipp Neumayer, Christoph Groden, Sven Clausen, and Svetlana Hetjens. 2024. "Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients" Diagnostics 14, no. 10: 1019. https://doi.org/10.3390/diagnostics14101019
APA StyleKlempka, A., Schröder, A., Neumayer, P., Groden, C., Clausen, S., & Hetjens, S. (2024). Cranial Computer Tomography with Photon Counting and Energy-Integrated Detectors: Objective Comparison in the Same Patients. Diagnostics, 14(10), 1019. https://doi.org/10.3390/diagnostics14101019