Does Timing of Radiation Therapy Impact Wound Healing in Patients Undergoing Metastatic Spine Surgery?
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patient Population
2.3. Exposure Variable
2.4. Outcome Variable
2.5. Surgical Treatment
2.6. Statistical Analysis
3. Results
3.1. Preoperative and Perioperative Data
3.2. Wound Complications
3.3. Radiation Timing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cameron Hatrick, N.; Lucas, J.D.; Timothy, A.R.; Smith, M.A. The surgical treatment of metastatic disease of the spine. Radiother. Oncol. 2000, 56, 335–339. [Google Scholar] [CrossRef]
- Bailar, J.C.; Gornik, H.L. Cancer Undefeated. N. Engl. J. Med. 1997, 336, 1569–1574. [Google Scholar] [CrossRef]
- Choi, D.; Crockard, A.; Bunger, C.; Harms, J.; Kawahara, N.; Mazel, C.; Melcher, R.; Tomita, K. Global Spine Tumor Study Group. Review of metastatic spine tumour classification and indications for surgery: The consensus statement of the Global Spine Tumour Study Group. Eur. Spine J. 2010, 19, 215–222. [Google Scholar] [CrossRef]
- Jacobs, W.B.; Perrin, R.G. Evaluation and treatment of spinal metastases: An overview. Neurosurg. Focus 2001, 11, e10. [Google Scholar] [CrossRef]
- Heary, R.F.; Bono, C.M. Metastatic spinal tumors. Neurosurg. Focus 2001, 11, e1. [Google Scholar] [CrossRef]
- Hirschfeld, A.; Beutler, W.; Seigle, J.; Manz, H. Spinal epidural compression secondary to osteoblastic metastatic vertebral expansion. Neurosurgery 1988, 23, 662–665. [Google Scholar] [CrossRef]
- Cahill, D.W.; Kumar, R. Palliative subtotal vertebrectomy with anterior and posterior reconstruction via a single posterior approach. J. Neurosurg. 1999, 90 (Suppl. S1), 42–47. [Google Scholar] [CrossRef]
- Sundaresan, N.; Scher, H.; DiGiacinto, G.V.; Yagoda, A.; Whitmore, W.; Choi, I.S. Surgical treatment of spinal cord compression in kidney cancer. J. Clin. Oncol. 1986, 4, 1851–1856. [Google Scholar] [CrossRef]
- Lee, R.S.; Batke, J.; Weir, L.; Dea, N.; Fisher, C.G. Timing of surgery and radiotherapy in the management of metastatic spine disease: Expert opinion. J. Spine Surg. 2018, 4, 368–373. [Google Scholar] [CrossRef]
- Itshayek, E.; Yamada, J.; Bilsky, M.; Schmidt, M.; Shaffrey, C.; Gerszten, P.; Polly, D.; Gokaslan, Z.; Varga, P.P.; Fisher, C.G. Timing of surgery and radiotherapy in the management of metastatic spine disease: A systematic review. Int. J. Oncol. 2010, 36, 533–544. [Google Scholar]
- Jarvers, J.-S.; Lange, M.; Schiemann, S.; Pfränger, J.; Heyde, C.-E.; Osterhoff, G. Risk factors for wound-related complications after surgical stabilization of spinal metastases with a special focus on the effect of postoperative radiation therapy. BMC Surg. 2021, 21, 423. [Google Scholar] [CrossRef]
- Redmond, K.J.; Lo, S.S.; Soltys, S.G.; Yamada, Y.; Barani, I.J.; Brown, P.D.; Chang, E.L.; Gerszten, P.C.; Chao, S.T.; Amdur, R.J.; et al. Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: Results of an international survey. J. Neurosurg. Spine 2017, 26, 299–306. [Google Scholar] [CrossRef]
- Bauer, H.C. Posterior decompression and stabilization for spinal metastases. Analysis of sixty-seven consecutive patients. J. Bone Jt. Surg. Am. 1997, 79, 514–522. [Google Scholar] [CrossRef]
- Rechtine, G.R.; Bono, P.L.; Cahill, D.; Bolesta, M.J.; Chrin, A.M. Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J. Orthop. Trauma 2001, 15, 566–569. [Google Scholar] [CrossRef]
- Omeis, I.A.; Dhir, M.; Sciubba, D.M.; Gottfried, O.N.; McGirt, M.J.; Attenello, F.J.; Wolinsky, J.-P.; Gokaslan, Z.L. Postoperative surgical site infections in patients undergoing spinal tumor surgery: Incidence and risk factors. Spine 2011, 36, 1410–1419. [Google Scholar] [CrossRef]
- Azad, T.D.; Varshneya, K.; Herrick, D.B.; Pendharkar, A.V.; Ho, A.L.; Stienen, M.; Zygourakis, C.; Bagshaw, H.P.; Veeravagu, A.; Ratliff, J.K.; et al. Timing of Adjuvant Radiation Therapy and Risk of Wound-Related Complications Among Patients With Spinal Metastatic Disease. Glob. Spine J. 2021, 11, 44–49. [Google Scholar] [CrossRef]
- Quan, G.M.Y.; Vital, J.-M.; Aurouer, N.; Obeid, I.; Palussière, J.; Diallo, A.; Pointillart, V. Surgery improves pain, function and quality of life in patients with spinal metastases: A prospective study on 118 patients. Eur. Spine J. 2011, 20, 1970–1978. [Google Scholar] [CrossRef]
- Vargas, E.; Mummaneni, P.V.; Rivera, J.; Huang, J.; Berven, S.H.; Braunstein, S.E.; Chou, D. Wound complications in metastatic spine tumor patients with and without preoperative radiation. J. Neurosurg. Spine 2023, 38, 265–270. [Google Scholar] [CrossRef]
- Ghogawala, Z.; Mansfield, F.L.; Borges, L.F. Spinal radiation before surgical decompression adversely affects outcomes of surgery for symptomatic metastatic spinal cord compression. Spine 2001, 26, 818–824. [Google Scholar] [CrossRef]
- Niederstätter, I.M.; Schiefer, J.L.; Fuchs, P.C. Surgical Strategies to Promote Cutaneous Healing. Med. Sci. 2021, 9, 45. [Google Scholar] [CrossRef]
- Laufer, I.; Iorgulescu, J.B.; Chapman, T.; Lis, E.; Shi, W.; Zhang, Z.; Cox, B.W.; Yamada, Y.; Bilsky, M.H. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: Outcome analysis in 186 patients. J. Neurosurg. Spine 2013, 18, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Haubner, F.; Ohmann, E.; Pohl, F.; Strutz, J.; Gassner, H.G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. Lond. Engl. 2012, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Kowalchuk, R.O.; Cousins, D.; Spencer, K.M.; Richardson, K.M.; Larner, J.M.; Showalter, T.N.; McAllister, W.H.; Sheehan, J.P.; Kersh, C.R.; Dutta, S.W. Local control of 1-5 fraction radiotherapy regimens for spinal metastases: An analysis of the impacts of biologically effective dose and primary histology. Rep. Pract. Oncol. Radiother. 2021, 26, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Peyraga, G.; Ducassou, A.; Arnaud, F.-X.; Lizée, T.; Pouédras, J.; Moyal, É. [Radiotherapy and spinal toxicity: News and perspectives]. Cancer Radiother. 2021, 25, 55–61. [Google Scholar] [CrossRef]
- Keam, J.; Bilsky, M.H.; Laufer, I.; Shi, W.; Zhang, Z.; Tam, M.; Zatcky, J.; Lovelock, D.M.; Yamada, Y. No association between excessive wound complications and preoperative high-dose, hypofractionated, image-guided radiation therapy for spine metastasis. J. Neurosurg. Spine 2014, 20, 411–420. [Google Scholar] [CrossRef]
- Talari, K.; Goyal, M. Retrospective studies—Utility and caveats. J. R. Coll. Physicians Edinb. 2020, 50, 398–402. [Google Scholar] [CrossRef]
Preop RT Only N = 29 | Postop RT Only N = 91 | No RT N = 178 | p-Value | |
---|---|---|---|---|
Age mean ± SD | 54.3 ± 15.6 | 61.7 ± 10.0 | 61.5 ± 12.2 | 0.009 |
BMI mean ± SD | 26.8 ± 6.6 | 27.5 ± 6.7 | 27.2 ± 7.2 | 0.912 |
Gender, male n (%) | 17 (58.6%) | 54 (59.3%) | 112 (62.9%) | 0.806 |
Race, white n (%) | 22 (75.9%) | 82 (90.1%) | 156 (87.6%) | <0.001 |
Other organ metastases, n (%) | 20 (69.0%) | 51 (56.0%) | 84 (47.2%) | 0.061 |
Primary organ, n (%) | 0.348 | |||
Breast | 2 (6.9%) | 12 (13.2%) | 15 (8.4%) | |
Lung | 4 (13.8%) | 22 (24.2%) | 47 (26.4%) | |
Renal | 4 (13.8%) | 14 (15.4%) | 17 (9.6%) | |
Others | 19 (65.5%) | 43 (47.3%) | 99 (55.6%) | |
Time to last follow-up, mean ± SD | 342.8 ± 239.3 | 436.4 ± 482.4 | 551.9 ± 720.0 | 0.337 |
Motor deficit, n (%) | 13 (44.8%) | 44 (48.4%) | 89 (50.0%) | 0.848 |
Preop KPS, mean ± SD | 68.1 ± 15.4 | 64.6 ± 16.07 | 64.4 ± 17.7 | 0.559 |
Tumor locations, n (%) | 0.178 | |||
Cervical | 3 (10.3%) | 12 (13.2%) | 26 (14.6%) | |
Cervicothoracic | 3 (10.3%) | 1 (1.1%) | 6 (3.4%) | |
Thoracolumbar | 17 (10.3%) | 61 (67.0%) | 99 (55.6%) | |
lumbar | 6 (20.7%) | 17 (18.7%) | 47 (26.4%) | |
Tumor size, mean ± SD | 2.1 ± 1.7 | 1.8 ± 1.6 | 1.6 ± 1.2 | 0.190 |
Preop RT Only N = 29 | Postop RT Only N = 91 | No RT N = 178 | p-Value | |
---|---|---|---|---|
Instrumented, n (%) | 27 (93.1%) | 90 (98.9%) | 173 (97.2%) | 0.199 |
Decompressed, n (%) | 26 (89.7%) | 86 (94.5%) | 170 (95.5%) | 0.337 |
Total decompressed levels, mean ± SD | 2.4 ± 1.5 | 2.8 ± 1.4 | 2.5 ± 1.36 | 0.253 |
Total instrumented levels, mean ± SD | 5.5 ± 2.3 | 5.4 ± 2.1 | 5.5 ± 2.3 | 0.912 |
Transpedicular decompression, n (%) | 13 (44.8%) | 58 (63.7%) | 86 (48.3%) | 0.038 |
Costotransversectomy, n (%) | 2 (6.9%) | 16 (17.6%) | 20 (11.2%) | 0.205 |
Corpectomy/vertebrectomy, n (%) | 11 (37.9%) | 54 (59.3%) | 96 (53.9%) | 0.131 |
Operative time, mean ± SD | 315.8 ± 119.9 | 297.5 ± 91.0 | 312.7 ± 126.6 | 0.560 |
EBL (mL), mean ± SD | 809.1 ± 794.0 | 869.3 ± 1044.5 | 900.2 ± 864.6 | 0.874 |
LOS (days), mean ± SD | 5.9 ± 4.5 | 7.0 ± 6.4 | 7.0 ± 5.8 | 0.638 |
Postop disposition, n (%) | 0.624 | |||
Floor | 17 (58.6%) | 51 (56.0%) | 91 (51.1%) | |
ICU | 12 (41.4%) | 40 (44.0%) | 87 (48.9%) | |
Discharge home, n (%) | 22 (75.9%) | 48 (52.7%) | 99 (55.6%) | 0.361 |
Wound-related complications, n (%) | 2 (6.9%) | 4 (4.4%) | 11 (6.2%) | 0.802 |
Wound reoperation, n (%) | 1 (3.4%) | 4 (4.4%) | 9 (5.1%) | 0.918 |
Time to wound complications, mean ± SD | 43.5 ± 6.3 | 19.7 ± 3.8 | 44.0 ± 42.7 | 0.519 |
Preop RT only N = 29 | No RT N = 178 | p-value | |
Wound-related complications, n (%) | 2 (6.9%) | 11 (6.2%) | >0.999 |
Wound reoperation, n (%) | 1 (3.4%) | 9 (5.1%) | >0.999 |
Time to wound complications, mean ± SD | 43.5 ± 6.3 | 44.0 ± 42.7 | 0.985 |
Preop RT only N = 29 | Postop RT only (6W) N = 91 | p-value | |
Wound-related complications, n (%) | 2 (6.9%) | 4 (4.4%) | 0.631 |
Wound reoperation, n (%) | 1 (3.4%) | 4 (4.4%) | >0.999 |
Time to wound complications, mean ± SD | 43.5 ± 6.3 | 19.7 ± 3.8 | 0.004 |
Postop RT only (6W) N = 91 | No RT N = 178 | p-value | |
Wound-related complications, n (%) | 4 (4.4%) | 11 (6.2%) | 0.780 |
Wound reoperation, n (%) | 4 (4.4%) | 9 (5.1%) | >0.999 |
Time to wound complications, mean ± SD | 19.7 ± 3.8 | 44.0 ± 42.7 | 0.286 |
Postop SBRT (6W) N = 18 | Postop EBRT (6W) N = 73 | p-value | |
Wound-related complications, n (%) | 1 (5.6%) | 3 (4.1%) | >0.999 |
Wound reoperation, n (%) | 1 (5.6%) | 3 (4.1%) | >0.999 |
Time to wound complications, mean ± SD | 21.0 | 19.3 ± 4.6 | 0.784 |
Univariate | Multivariable | ||||
---|---|---|---|---|---|
Independent Variable | Outcome | β/OR (95%CI) | p-Value | β/OR (95%CI) | p-Value |
Preop RT only vs. no RT | Wound-related complications | 1.12 (0.23–5.35) | 0.883 | 1.26 (0.24–6.65) | 0.779 |
Wound reoperation | 0.67 (0.08–5.50) | 0.710 | 0.81 (0.09–7.37) | 0.858 | |
Time to wound complications | −0.59 (−69.5, 69.3) | 0.985 | 6.94 (−91.59, 105.5) | 0.872 | |
Preop RT only vs. postop RT (6W) | Wound-related complications | 1.61 (0.28–9.28) | 0.594 | 2.58 (0.33–19.63) | 0.360 |
Wound reoperation | 0.77 (0.08–7.24) | 0.824 | 1.12 (0.09–13.94) | 0.926 | |
Time to wound complications | 23.7 (12.65–34.85) | 0.004 | - | - | |
Postop RT (6W) vs. no RT | Wound-related complications | 0.69 (0.21–2.25) | 0.548 | 0.70 (0.21–2.29) | 0.560 |
Wound reoperation | 0.86 (0.25–2.88) | 0.811 | 0.86 (0.25–2.90) | 0.811 | |
Time to wound complications | −24.34 (−71.64, 22.96) | 0.286 | −42.40 (−124.61, 39.81) | 0.273 |
Patient | Age/Sex | Primary Organ | Instrumented Levels | Radiation | Time to Wound Complication | Reoperation for Wound Complication |
---|---|---|---|---|---|---|
1 | 58M | RCC | T10-L2 | Preop RT only | 48 days | No |
2 | 69M | Prostate ADK | T2-T9 | Preop RT only | 39 days | Yes |
3 | 44M | Lung ADK | T5-T9 | Postop EBRT | 14 days | Yes |
4 | 56F | Lung ADK | O-C5 | Postop EBRT | 22 days | Yes |
5 | 72M | Lung ADK | T1-T6 | Postop SBRT | 21 days | Yes |
6 | 52M | Lung ADK | C5-T5 | Postop EBRT | 22 days | Yes |
7 | 55M | Lung neuroendocrine | T5-T10 | No RT | 43 days | Yes |
8 | 67F | Unknown carcinoma | T11-S1 | No RT | 155 days | No |
9 | 74F | Lung neuroendocrine | T11-L3 | No RT | 22 days | Yes |
10 | 68F | Leiomyosarcoma | L3-S1 | No RT | 23 days | Yes |
11 | 75M | Adenocarcinoma | L1-L3 | No RT | 45 days | Yes |
12 | 65F | Thyroid | L4-S1 | No RT | 20 days | Yes |
13 | 68M | Lung ADK | L1-L3 | No RT | 84 days | Yes |
14 | 63M | Squamous-cell carcinoma/ENT | C7-T9 | No RT | 32 days | Yes |
15 | 65M | Melanoma | L1-L4 | No RT | 7 days | No |
16 | 56M | Squamous-cell carcinoma/ENT | T8-T10 | No RT | 8 days | Yes |
17 | 56F | RCC | T7-T11 | No RT | 46 days | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahluwalia, R.; Chanbour, H.; Zeoli, T.; Abtahi, A.M.; Stephens, B.F.; Zuckerman, S.L. Does Timing of Radiation Therapy Impact Wound Healing in Patients Undergoing Metastatic Spine Surgery? Diagnostics 2024, 14, 1059. https://doi.org/10.3390/diagnostics14101059
Ahluwalia R, Chanbour H, Zeoli T, Abtahi AM, Stephens BF, Zuckerman SL. Does Timing of Radiation Therapy Impact Wound Healing in Patients Undergoing Metastatic Spine Surgery? Diagnostics. 2024; 14(10):1059. https://doi.org/10.3390/diagnostics14101059
Chicago/Turabian StyleAhluwalia, Ranbir, Hani Chanbour, Tyler Zeoli, Amir M. Abtahi, Byron F. Stephens, and Scott L. Zuckerman. 2024. "Does Timing of Radiation Therapy Impact Wound Healing in Patients Undergoing Metastatic Spine Surgery?" Diagnostics 14, no. 10: 1059. https://doi.org/10.3390/diagnostics14101059
APA StyleAhluwalia, R., Chanbour, H., Zeoli, T., Abtahi, A. M., Stephens, B. F., & Zuckerman, S. L. (2024). Does Timing of Radiation Therapy Impact Wound Healing in Patients Undergoing Metastatic Spine Surgery? Diagnostics, 14(10), 1059. https://doi.org/10.3390/diagnostics14101059