Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Neurological and Behavioral Function Assessment
2.3. HRV Measurement
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristic
3.2. Association of HRV Parameter, Neurological Function, Clinical Factors with Mortality
3.3. Association of HRV Parameters, Neurological Function, and Clinical Factors with Behavior Functional Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuriakose, D.; Xiao, Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, X.; Yu, X.; Liu, Z.; Jiang, Y.; Fang, Y.; Zong, M.; Suo, C.; Man, Q.; Xiong, L. Global Burden, Risk Factor Analysis, and Prediction Study of Ischemic Stroke, 1990–2030. Neurology 2023, 101, E137–E150. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, H.; Chen, X.; Li, M.; Zhou, X.; Jia, X. Analysis of ischemic stroke burden in Asia from 1990 to 2019: Based on the global burden of disease 2019 data. Front. Neurol. 2023, 14, 1309931. [Google Scholar] [CrossRef] [PubMed]
- Nichols-Larsen, D.S.; Clark, P.C.; Zeringue, A.; Greenspan, A.; Blanton, S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 2005, 36, 1480–1484. [Google Scholar] [CrossRef] [PubMed]
- Micieli, G.; Cavallini, A. The autonomic nervous system and ischemic stroke: A reciprocal interdependence. Clin. Auton. Res. 2008, 18, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Aftyka, J.; Staszewski, J.; Dębiec, A.; Pogoda-Wesołowska, A.; Żebrowski, J. Heart rate variability as a predictor of stroke course, functional outcome, and medical complications: A systematic review. Front. Physiol. 2023, 14, 1115164. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Walsh, R.J.; Fong, M.W.M.; Sykora, M.; Doering, M.M.; Wong, A.W.K. Heart rate variability as a biomarker of functional outcomes in persons with acquired brain injury: Systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 131, 737–754. [Google Scholar] [CrossRef]
- Hilz, M.J.; Moeller, S.; Akhundova, A.; Marthol, H.; Pauli, E.; De Fina, P.; Schwab, S. High NIHSS values predict impairment of cardiovascular autonomic control. Stroke 2011, 42, 1528–1533. [Google Scholar] [CrossRef]
- Tang, S.; Xiong, L.; Fan, Y.; Mok, V.C.T.; Wong, K.S.; Leung, T.W. Stroke Outcome Prediction by Blood Pressure Variability, Heart Rate Variability, and Baroreflex Sensitivity. Stroke 2020, 51, 1317–1320. [Google Scholar] [CrossRef]
- Tsai, W.C.; Lin, H.C.; Lai, Y.R.; Hsu, C.W.; Huang, C.C.; Wang, H.C.; Su, C.M.; Su, Y.J.; Lin, W.C.; Cheng, B.C.; et al. The Effect of Stroke Subtypes on Baroreceptor Sensitivity, a Predict for Acute Stroke Outcome. BioMed Res. Int. 2019, 2019, 7614828. [Google Scholar] [CrossRef]
- Kasner, S.E. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006, 5, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.B.J.; Lin, T.; Yang, C.C.H.; Li, C.L.; Chen, C.F.; Chou, P. Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol.-Heart Circ. Physiol. 1999, 277, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Alawneh, K.Z.; Qawasmeh MAl Raffee, L.A.; Al-Mistarehi, A.H. Ischemic stroke demographics, clinical features and scales and their correlations: An exploratory study from Jordan. Futur. Sci. OA 2022, 8, FSO809. [Google Scholar] [CrossRef] [PubMed]
- El Tallawy, H.N.; Farghaly, W.M.; Badry, R.; Hamdy, N.A.; Shehata, G.A.; Rageh, T.A.; Metwally, N.A.; Hassan, E.M.; Elsayed, S.S.; Yehia, M.A.; et al. Epidemiology and clinical presentation of stroke in upper egypt (Desert area). Neuropsychiatr. Dis. Treat. 2015, 11, 2177–2183. [Google Scholar] [PubMed]
- Yousufuddin, M.; Young, N. Aging ang Stroke. Aging 2019, 11, 2542–2544. [Google Scholar] [CrossRef] [PubMed]
- Soliman, R.H.; Oraby, M.I.; Fathy, M.; Essam, A.M. Risk factors of acute ischemic stroke in patients presented to Beni-Suef University Hospital: Prevalence and relation to stroke severity at presentation. Egypt. J. Neurol. Psychiatry Neurosurg. 2018, 54, 8. [Google Scholar] [CrossRef] [PubMed]
- Grau, A.J.; Weimar, C.; Buggle, F.; Heinrich, A.; Goertler, M.; Neumaier, S.; Glahn, J.; Brandt, T.; Hacke, W.; Diener, H.C. Risk factors, outcome, and treatment in subtypes of ischemic stroke: The German stroke data bank. Stroke 2001, 32, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Appelros, P.; Stegmayr, B.; Terent, A. Sex differences in stroke epidemiology: A systematic review. Stroke 2009, 40, 1082–1090. [Google Scholar] [CrossRef]
- Caso, V.; Paciaroni, M.; Agnelli, G.; Corea, F.; Ageno, W.; Alberti, A.; Lanari, A.; Micheli, S.; Bertolani, L.; Venti, M.; et al. Gender Differences in Patients with Acute Ischemic Stroke. Women’s Health 2010, 6, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ohya, Y.; Matsuo, R.; Sato, N.; Irie, F.; Wakisaka, Y.; Ago, T.; Kamouchi, M.; Kitazono, T. Modification of the effects of age on clinical outcomes through management of lifestyle-related factors in patients with acute ischemic stroke. J. Neurol. Sci. 2023, 446, 120589. [Google Scholar] [CrossRef]
- Chalos, V.; van der Ende, N.A.; Lingsma, H.F.; Mulder, M.J.; Venema, E.; Dijkland, S.A.; Berkhemer, O.A.; Yoo, A.J.; Broderick, J.P.; Palesch, Y.Y.; et al. National Institutes of Health Stroke Scale: An Alternative Primary Outcome Measure for Trials of Acute Treatment for Ischemic Stroke. Stroke 2020, 51, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.G.; Clissold, B.B.; Ma, H.; Van Ly, J.; Srikanth, V. Predicting disability after ischemic stroke based on comorbidity index and stroke severity-from the virtual international stroke trials archive-acute collaboration. Front. Neurol. 2017, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Wouters, A.; Nysten, C.; Thijs, V.; Lemmens, R. Prediction of outcome in patients with acute ischemic stroke based on initial severity and improvement in the first 24 h. Front. Neurol. 2018, 9, 308. [Google Scholar] [CrossRef] [PubMed]
- Muir, K.; Weir, C.J.; Murray, G.D.; Povey, C.; Lees, K.R. Comparison of Neurological Scales and Scoring Systems for Acute Stroke Prognosis. Stroke 1996, 27, 1817–1820. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Arnold, M.; Nedeltchev, K.; Brekenfeld, C.; Ballinari, P.; Remonda, L.; Schroth, G.; Mattle, H.P. NIHSS score and arteriographic findings in acute ischemic stroke. Stroke 2005, 36, 2121–2125. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Kim, B.J.; Kim, J.S.; Yang, M.H.; Jang, M.S.; Kim, N.; Han, M.K.; Lee, J.S.; Lee, J.; Kim, S.; et al. Impact of both ends of the hemoglobin range on clinical outcomes in acute ischemic stroke. Stroke 2013, 44, 3220–3222. [Google Scholar] [CrossRef] [PubMed]
- Kimberly, W.T.; Wu, O.; Arsava, E.M.; Garg, P.; Ji, R.; Vangel, M.; Singhal, A.B.; Ay, H.; Sorensen, A.G. Lower Hemoglobin Correlates with Larger Stroke Volumes in Acute Ischemic Stroke. Cerebrovasc. Dis. Extra 2011, 1, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Bellwald, S.; Balasubramaniam, R.; Nagler, M.; Burri, M.S.; Fischer, S.D.; Hakim, A.; Dobrocky, T.; Yu, Y.; Scalzo, F.; Heldner, M.R.; et al. Association of anemia and hemoglobin decrease during acute stroke treatment with infarct growth and clinical outcome. PLoS ONE 2018, 13, e0203535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, Q.; Wang, A.; Jiang, Y.; Meng, X.; Zhou, M.; Wang, Y.; Liu, G. Hemoglobin concentration and clinical outcomes after acute ischemic stroke or transient ischemic attack. J. Am. Heart Assoc. 2021, 10, e022547. [Google Scholar] [CrossRef]
- Panwar, B.; Judd, S.E.; Warnock, D.G.; McClellan, W.M.; Booth, I.I.I.J.N.; Muntner, P.; Gutiérrez, O.M. Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults. Stroke 2016, 47, 2017–2024. [Google Scholar] [CrossRef]
- Chang, J.Y.; Lee, J.S.; Kim, B.J.; Kim, J.T.; Lee, J.; Cha, J.K.; Kim, D.H.; Cho, Y.J.; Hong, K.S.; Lee, S.J.; et al. Influence of Hemoglobin Concentration on Stroke Recurrence and Composite Vascular Events. Stroke 2020, 51, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.W.; Arima, H.; Miyazawa, I.; Fujii, T.; Miyamatsu, N.; Sugimoto, Y.; Nagata, S.; Komori, M.; Takashima, N.; Kita, Y.; et al. The association between glomerular filtration rate estimated on admission and acute stroke outcome: The Shiga stroke registry. J. Atheroscler. Thromb. 2018, 25, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Tsagalis, G.; Akrivos, T.; Alevizaki, M.; Manios, E.; Stamatellopoulos, K.; Laggouranis, A.; Vemmos, K.N. Renal dysfunction in acute stroke: An independent predictor of long-term all combined vascular events and overall mortality. Nephrol. Dial. Transplant. 2009, 24, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, G.; Schwartz, R.; Schwammenthal, Y.; Merzeliak, O.; Toashi, M.; Orion, D.; Sela, B.A.; Tanne, D. Chronic kidney disease and clinical outcome in patients with acute stroke. Stroke 2009, 40, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Arima, H.; Zhou, J.; Zhao, Y.; Li, Q.; Wu, G.; Zhang, Y. Effects of low estimated glomerular filtration rate on outcomes after stroke: A hospital-based stroke registry in China. Eur. J. Neurol. 2014, 21, 1143–1145. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.H.; Kang, N.Y.; Huh, S.; Ko, S.H.; Shin, Y.I.; Min, J.H. The Effects of Autonomic Dysfunction on Functional Outcomes in Patients with Acute Stroke. Brain Sci. 2023, 13, 1694. [Google Scholar] [CrossRef]
- Zhao, M.; Guan, L.; Collet, J.P.; Wang, Y. Relationship between ischemic stroke locations, etiology subtypes, neurological outcomes, and autonomic cardiac function. Neurol. Res. 2020, 42, 630–639. [Google Scholar] [CrossRef]
Variables | Value |
---|---|
Age, mean ± SD | 70.9 ± 13.31 |
Gender: Female/Male, number (%) | 25 (43.1)/33 (56.9) |
BMI: Obese, number (%) | 31 (53.4) |
Stroke Severity at admission | |
Mild (NIHSS score <5) | 11 (18.9) |
Moderate (NIHSS score >5, ≤15) | 27 (46.6) |
Severe (NIHSS score >15) | 20 (34.5) |
Stroke Severity at discharge | |
Mild (NIHSS score <5) | 25 (43.1) |
Moderate (NIHSS score >5, ≤15) | 15 (25.9) |
Severe (NIHSS score >15) | 18 (31.0) |
Infarct Side | |
Left, number (%) | 29 (50.0) |
Right, number (%) | 24 (41.4) |
Bilateral, number (%) | 5 (8.6) |
Received tPa treatment, number (%) | 28 (48.3) |
HRV | |
RR mean, median (IQR) | 723.45 (265.83) |
TP, median (IQR) | 6.62 (2.66) |
HF, median (IQR) | 5.16 (2.77) |
LF, median (IQR) | 5.78 (2.55) |
LF/HF ratio, median (IQR) | 0.76 (0.93) |
LF%, median (IQR) | 71.42 (20.01) |
Length of stay in hospital, mean ± SD | 21.67 ± 18.15 |
Mortality status | |
Survive/Death, number (%) | 45 (77.6)/13 (22.4) |
3-Month Functional Outcome | |
Favorable (mRS score 0–2)/Unfavorable (mRS score 3–6) | 28 (48.3)/30 (51.7) |
Variables | Mortality | p-Value | |
---|---|---|---|
Survive n = 50 | Death n = 8 | ||
HRV | |||
RR mean, median (IQR) | 715.93 (269.23) | 784.03 (257.31) | 0.755 |
TP, median (IQR) | 6.62 (2.46) | 6.71 (3.81) | 0.638 |
HF, median (IQR) | 5.08 (2.76) | 5.76 (3.78) | 0.343 |
LF, median (IQR) | 5.66 (2.42) | 5.95 (4.30) | 0.603 |
LF/HF ratio, median (IQR) | 0.78 (0.89) | 0.62 (1.21) | 0.387 |
LF%, median (IQR) | 71.42 (18.27) | 67.68 (29.57) | 0.450 |
NIHSS score at admission, mean ± SD | 11.54 ± 8.58 | 21.38 ± 6.97 | 0.003 |
Variables | Mortality | p-Value | |
---|---|---|---|
Survive n = 50 | Death n = 8 | ||
Age, mean ± SD | 69.38 ± 12.73 | 80.38 ± 13.73 | 0.029 |
Female/Male, number (%) | 21 (42.0%)/29 (58.0%) | 4 (50.0%)/4 (50.0%) | 0.671 |
BMI | 0.330 | ||
Obese, number (%) | 28 (56.0%) | 3 (37.5%) | |
non-obese, number (%) | 22 (44.0%) | 5 (62.5%) | |
Infarct Side | 0.570 | ||
Left, number (%) | 24 (48.0%) | 5 (62.5%) | |
Right, number (%) | 21 (42.0%) | 3 (37.5%) | |
Bilateral, number (%) | 5 (10.0%) | 0 (0.0%) | |
Diseases History | |||
Hypertension/Other, number (%) | 35 (70.0%) | 7 (87.5%) | 0.304 |
Drinking, number (%) | 8 (16.0%) | 0 (0.0%) | 0.223 |
Smoking, number (%) | 10 (20.0%) | 1 (12.5%) | 0.615 |
Diabetes mellitus, number (%) | 22 (44.0%) | 3 (37.5%) | 0.730 |
Stroke, number (%) | 5 (10.0%) | 4 (50.0%) | 0.004 |
Laboratory result at admission | |||
Hemoglobin (g/dL), mean ± SD | 13.31 ± 2.23 | 11.53 ± 2.58 | 0.044 |
HbA1C (%), mean ± SD | 6.46 ± 1.88 | 6.01 ± 0.57 | 0.508 |
Triglyceride (mg/dL), mean ± SD | 126.35 ± 111.95 | 78.63 ± 32.49 | 0.240 |
Cholesterol (mg/dL), mean ± SD | 181.71 ± 51.28 | 159.00 ± 68.69 | 0.274 |
K (mmol/L), mean ± SD | 3.87 ± 0.42 | 4.11 ± 0.81 | 0.423 |
Bun (mg/dL), mean ± SD | 17.66 ± 7.02 | 28.71 ± 17.78 | 0.153 |
Creatinin (mg/dL), mean ± SD | 1.04 ± 0.52 | 1.49 ± 1.04 | 0.264 |
eGFR (mL/min/1.73 m2), mean ± SD | 78.33 ± 31.72 | 57.30 ± 26.60 | 0.081 |
Na (mmol/L), mean ± SD | 138.70 ± 3.45 | 138.13 ± 4.29 | 0.674 |
Variables | Univariate OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|
NIHSS score at admission | 1.134 (1.031–1.248) | 0.010 | 1.109 (0.988–1.244) | 0.079 |
Age | 1.068 (1.003–1.138) | 0.039 | 1.024 (0.944–1.111) | 0.570 |
Stroke history | 0.743 (0.548–1.008) | 0.056 | 0.267 (0.041–1.736) | 0.167 |
Hb | 0.111 (0.021–0.588) | 0.010 | 0.835 (0.565–1.235) | 0.366 |
Variables | 3-Month Behavioral Functional Outcome | p-Value | |
---|---|---|---|
Favorable n = 28 | Unfavorable n = 30 | ||
HRV | |||
RR mean, median (IQR) | 795.13 (278.40) | 658.63 (272.50) | 0.049 |
TP, median (IQR) | 6.95 (2.11) | 6.04 (3.48) | 0.275 |
HF, median (IQR) | 5.23 (1.92) | 4.89 (4.11) | 0.546 |
LF, median (IQR) | 6.06 (1.98) | 5.28 (3.72) | 0.397 |
LF/HF ratio, median (IQR) | 0.79 (0.89) | 0.73 (1.07) | 0.745 |
LF%, median (IQR) | 71.02 (18.65) | 71.60 (22.68) | 0.587 |
NIHSS score at admission, mean ± SD | 7.21 ± 4.83 | 18.20 ± 8.78 | <0.0001 |
Variables | 3-Month Behavioral Functional Outcome | p-Value | |
---|---|---|---|
Favorable n = 28 | Unfavorable n = 30 | ||
Age, mean ± SD | 66.25 ± 11.12 | 75.23 ± 13.88 | 0.009 |
Female/Male, number (%) | 8 (28.6%)/20 (71.4%) | 17 (56.7%)/13 (43.3%) | 0.031 |
BMI | |||
Obese, number (%) | 17 (60.7%) | 14 (46.7%) | 0.284 |
non-obese, number (%) | 11 (39.3%) | 16 (53.3%) | |
Infarct Side | |||
Left, number (%) | 10 (35.7%) | 19 (63.3%) | 0.109 |
Right, number (%) | 15 (53.6%) | 9 (30.0%) | |
Bilateral, number (%) | 3 (10.7%) | 2 (6.7%) | |
Diseases History | |||
Hypertension, number (%) | 21 (75.0%) | 21 (70.0%) | 0.670 |
Drinking, number (%) | 6 (21.4%) | 2 (6.7%) | 0.103 |
Smoking, number (%) | 6 (21.4%) | 5 (16.7%) | 0.644 |
Diabetes mellitus, number (%) | 15 (53.6%) | 10 (33.3%) | 0.120 |
Stroke, number (%) | 1 (3.6%) | 8 (26.7%) | 0.015 |
Laboratory result at admission | |||
Hb (g/dL), mean ± SD | 13.80 ± 1.52 | 12.38 ± 2.76 | 0.018 |
HbA1C (%), mean ± SD | 6.50 ± 2.28 | 6.31 ± 1.12 | 0.698 |
Triglyceride (mg/dL), mean ± SD | 139.68 ± 129.16 | 99.39 ± 71.73 | 0.155 |
Cholesterol (mg/dL), mean ± SD | 184.61 ± 44.60 | 172.32 ± 62.16 | 0.399 |
K (mmol/L), mean ± SD | 3.82 ± 0.36 | 3.97 ± 0.59 | 0.236 |
Bun (mg/dL), mean ± SD | 17.40 ± 5.07 | 20.61 ± 12.16 | 0.273 |
Creatinin (mg/dL), mean ± SD | 0.98 ± 0.30 | 1.21 ± 0.81 | 0.151 |
eGFR (mL/min/1.73 m2), mean ± SD | 82.67 ± 26.61 | 68.68 ± 34.91 | 0.022 |
Na | 138.32 ± 2.45 | 138.90 ± 4.35 | 0.532 |
Variables | Univariate OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|
Age | 1.060 (1.012–1.110) | 0.014 | 0.980 (0.909–1.057) | 0.597 |
Gender | 0.306 (0.103–0.912) | 0.034 | 0.166 (0.022–1.230) | 0.079 |
RR mean | 0.997 (0.994–1.000) | 0.055 | 0.989 (0.982–0.997) | 0.007 |
NIHSS score at admission | 1.231 (1.109–1.367) | <0.0001 | 1.396 (1.135–1.717) | 0.002 |
eGFR | 0.985 (0.967–1.003) | 0.103 | 0.981 (0.950–1.012) | 0.219 |
Hb | 0.738 (0.563–0.968) | 0.028 | 0.411 (0.208–0.810) | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.-J.; Dewi, S.R.K.; Hsu, W.-T.; Hsu, T.-Y.; Liao, S.-F.; Chan, L.; Lin, M.-C. Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke. Diagnostics 2024, 14, 1304. https://doi.org/10.3390/diagnostics14121304
Wu M-J, Dewi SRK, Hsu W-T, Hsu T-Y, Liao S-F, Chan L, Lin M-C. Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke. Diagnostics. 2024; 14(12):1304. https://doi.org/10.3390/diagnostics14121304
Chicago/Turabian StyleWu, Mei-Jung, Sari R. K. Dewi, Wan-Ting Hsu, Tien-Yu Hsu, Shu-Fen Liao, Lung Chan, and Ming-Chin Lin. 2024. "Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke" Diagnostics 14, no. 12: 1304. https://doi.org/10.3390/diagnostics14121304
APA StyleWu, M. -J., Dewi, S. R. K., Hsu, W. -T., Hsu, T. -Y., Liao, S. -F., Chan, L., & Lin, M. -C. (2024). Exploring Relationships of Heart Rate Variability, Neurological Function, and Clinical Factors with Mortality and Behavioral Functional Outcome in Patients with Ischemic Stroke. Diagnostics, 14(12), 1304. https://doi.org/10.3390/diagnostics14121304