Patients with Severe Trauma Having an Injury Severity Score of 24 and above Develop Nutritional Disorders
Abstract
:1. Introduction
1.1. Injury Severity Score (ISS)
1.2. CONUT Score
2. Materials and Methods
2.1. Study Participants
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, B.E.; McClave, S.A.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit. Care Med. 2016, 44, 390–438. [Google Scholar] [CrossRef] [PubMed]
- Waitzberg, D.L.; Goiburu, M.E.; Goiburu, M.J.; Bianco, H.; Díaz, J.R.; Alderete, F.; Palacios, M.C.; Cabral, V.; Escobar, D.; López, R. The impact of malnutrition on morbidity, mortality and length of hospital stay in trauma patients. Nutr. Hosp. 2006, 21, 604–610. [Google Scholar]
- Ihle, C.; Freude, T.; Zehendner, E.; Braunsberger, J.; Biesalski, H.K.; Lambert, C.; Stöckle, U.; Wintermeyer, E.; Grünwald, J.; Grünwald, L. Malnutrition—An underestimated factor in the inpatient treatment of traumatology and orthopedic patients: A prospective evaluation of 1055 patients. Injury 2017, 48, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Dijkink, S.; Meier, K.; Krijnen, P.; Yeh, D.D.; Velmahos, G.C.; Schipper, I.B. Malnutrition and its effects in severely injured trauma patients. Eur. J. Trauma Emerg. Surg. 2020, 46, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Stahel, P.F.; Flierl, M.A.; Moore, E.E. “Metabolic staging” after major trauma—A guide for clinical decision making? Scand. J. Trauma Resusc. Emerg. Med. 2010, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Hasenboehler, E.; Williams, A.; Leinhase, I.; Morgan, S.J.; Smith, W.R.; Moore, E.E.; Stahel, P.F. Metabolic changes after polytrauma: An imperative for early nutritional support. World J. Emerg. Surg. 2006, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- De Ulíbarri, J.I.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- González-Madroño, A.; Mancha, A.; Rodríguez, F.J.; Culebras, J.; de Ulibarri, J.I. Confirming the validity of the CONUT system for early detection and monitoring of clinical undernutrition: Comparison with two logistic regression models developed using SGA as the gold standard. Nutr. Hosp. 2012, 27, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X. Controlling nutritional status score, a promising prognostic marker in patients with gastrointestinal cancers after surgery: A systematic review and meta-analysis. Int. J. Surg. 2018, 55, 39–45. [Google Scholar] [CrossRef]
- Kuroda, D.; Sawayama, H.; Kurashige, J.; Iwatsuki, M.; Eto, T.; Tokunaga, R.; Kitano, Y.; Yamamura, K.; Ouchi, M.; Nakamura, K.; et al. Controlling Nutritional Status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection. Gastric Cancer 2018, 21, 204–212. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Kinoshita, K.; Nakagawa, K.; Mizuochi, M. Undernutrition scored using the CONUT score with hypoglycemic status in ICU-admitted elderly patients with sepsis shows increased ICU mortality. Diagnostics 2023, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Nishi, I.; Seo, Y.; Hamada-Harimura, Y.; Sato, K.; Sai, S.; Yamamoto, M.; Ishizu, T.; Sugano, A.; Obara, K.; Wu, L.; et al. Utility of nutritional screening in predicting short-term prognosis of heart failure patients. Int. Heart J. 2018, 59, 354–360. [Google Scholar] [CrossRef]
- Huang, X.W.; Luo, J.J.; Baldinger, B. The controlling nutritional status score and clinical outcomes in patients with heart failure: Pool analysis of observational studies. Front. Cardiovasc. Med. 2022, 9, 961141. [Google Scholar] [CrossRef]
- Nishi, I.; Seo, Y.; Hamada-Harimura, Y.; Sato, K.; Sai, S.; Yamamoto, M.; Ishizu, T.; Sugano, A.; Obara, K.; Wu, L.; et al. Nutritional screening based on the controlling nutritional status (CONUT) score at the time of admission is useful for long-term prognostic prediction in patients with heart failure requiring hospitalization. Heart Vessel. 2017, 32, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, M.; Kang, Y.; Jianguo, X. Controlling nutritional status (CONUT) score is a predictive marker for patients with traumatic brain injury. Clin. Neurol. Neurosurg. 2020, 195, 105909. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Luo, X.; He, Q.; Cheng, Y.; Shen, W.; Xie, Z. Controlling nutritional status score and prognostic nutrition index predict the outcome after severe traumatic brain injury. Nutr. Neurosci. 2022, 25, 690–697. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujiwara, Y.; Masuda, M.; Kubota, K.; Sakai, H.; Kawano, O.; Morishita, Y.; Yokota, K.; Maeda, T. Time course and characteristics of the nutritional conditions in acute traumatic cervical spinal cord injury. Spine Surg. Relat. Res. 2023, 7, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon , W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Copes, W.S.; Champion, H.R.; Sacco, W.J.; Lawnick, M.M.; Keast, S.L.; Bain, L.W. The Injury Severity Score revisited. J. Trauma 1988, 28, 69–77. [Google Scholar] [CrossRef]
- Mitani, A.; Iwai, T.; Shichinohe, T.; Takeda, H.; Kumagai, S.; Nishida, M.; Sugita, J.; Teshima, T. The combined usage of the global leadership initiative on malnutrition criteria and controlling nutrition status score in acute care hospitals. Ann. Nutr. Metab. 2021, 77, 178–184. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; de Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. Apache II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Japanese Society of Intensive Care Medicine. Guidelines for Nutrition Management in Critically Ill Patients. Nihon Shuchu Chiryo Igakukai Zasshi J. Jpn. Soc. Intensive Care Med. 2016, 23, 185–281. [CrossRef]
- Yukl, R.L.; Bar-Or, D.; Harris, L.; Shapiro, H.; Winkler, J.V. Low albumin level in the emergency department: A potential independent predictor of delayed mortality in blunt trauma. J. Emerg. Med. 2003, 25, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Bochicchio, G.V.; Joshi, M.; Bochicchio, K.; Costas, A.; Tracy, K.; Scalea, T.M. Admission serum albumin is predicitve of outcome in critically ill trauma patients. Am. Surg. 2004, 70, 1099–1102. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Kinoshita, K.; Ihara, S.; Furukawa, M.; Sakurai, A. The clinical significance of low serum arachidonic acid in sepsis patients with hypoalbuminemia. Intern. Med. 2018, 57, 1833–1840. [Google Scholar] [CrossRef]
- Furukawa, M.; Kinoshita, K.; Yamaguchi, J.; Hori, S.; Sakurai, A. Correction to: Sepsis patients with complication of hypoglycemia and hypoalbuminemia are an early and easy identification of high mortality risk. Intern. Emerg. Med. 2019, 14, 1365, Erratum in Intern. Emerg. Med. 2019, 14, 539–548. [Google Scholar] [CrossRef]
- Garwe, T.; Albrecht, R.M.; Stoner, J.A.; Mitchell, S.; Motghare, P. Hypoalbuminemia at admission is associated with increased incidence of in-hospital complications in geriatric trauma patients. Am. J. Surg. 2016, 212, 109–115. [Google Scholar] [CrossRef]
- Kumar, M.; Jain, K.; Chauhan, R.; Meena, S.C.; Luthra, A.; Thakur, H.; Singh, A.; Nair, R.; Gupta, R. Hypoalbuminemia: Incidence and its impact on acute respiratory distress syndrome and 28-day outcome in trauma patients. Eur. J. Trauma Emerg. Surg. 2023, 49, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Dunham, C.M.; Frankenfield, D.; Belzberg, H.; Wiles, C.E., 3rd; Cushing, B.; Grant, Z. Inflammatory markers: Superior predictors of adverse outcome in blunt trauma patients? Crit. Care Med. 1994, 22, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.S.; Dunham, C.M.; Chance, E.A.; Hileman, B.M.; DelloStritto, D.J. Body mass index interaction effects with hyperglycemia and hypocholesterolemia modify blunt traumatic brain injury outcomes: A retrospective study. Int. J. Burns. Trauma 2020, 10, 314–323. [Google Scholar] [PubMed]
- Siwicka-Gieroba, D.; Dabrowski, W. Credibility of the neutrophil-to-lymphocyte count ratio in severe traumatic brain injury. Life 2021, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Brait, V.H.; Arumugam, T.V.; Drummond, G.R.; Sobey, C.G. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J. Cereb. Blood Flow Metab. 2012, 32, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Petrone, A.B.; Gionis, V.; Giersch, R.; Barr, T.L. Immune biomarkers for the diagnosis of mild traumatic brain injury. NeuroRehabilitation 2017, 40, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, D. Intensive-care-metabolic response to injury. Br. J. Surg. 1970, 57, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Uehara, M.; Plank, L.D.; Hill, G.L. Components of energy expenditure in patients with severe sepsis and major trauma: A basis for clinical care. Crit. Care Med. 1999, 27, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Monk, D.N.; Plank, L.D.; Franch-Arcas, G.; Finn, P.J.; Streat, S.J.; Hill, G.L. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann. Surg. 1996, 223, 395–405. [Google Scholar] [CrossRef]
- Vasileiou, G.; Mulder, M.B.; Qian, S.; Iyengar, R.; Gass, L.M.; Parks, J.; Lineen, E.; Byers, P.; Yeh, D.D. Continuous indirect calorimetry in critically injured patients reveals significant daily variability and delayed, sustained hypermetabolism. JPEN J. Parenter. Enteral Nutr. 2020, 44, 889–894. [Google Scholar] [CrossRef]
Median (Quartile Range) | |
---|---|
Age (years) | 52.0 (37.5–67.5) |
Sex (M:F) | 40:9 |
BMI | 24.1 (20.3–25.6) |
Energy intake during 7 days (kcal) | 6234.0 (4764.0–7321.0) |
Sufficiency rate * (%) | 49.3 (37.9–66.9) |
Site of injury | |
Head | 21 |
Spine | 16 |
Chest | 10 |
Abdomen | 5 |
Extremities | 21 |
Number of surgeries [n/ALL (%)] | 29 [59.2] |
APACHE II score | 9.0 (5.0–14.0) |
SOFA score | 3.0 (2.0–4.0) |
ISS score | 17.0 (9.0–25.5) |
Normal category (CONUT0-1) ** | 16.0 (9.0–25.0) |
Light category (CONUT2-4) | 5.0 (16.0–30.0) |
ICU stay (day) | 10.0 (6.0–13.0) |
Hospital stay (day) | 32.0 (20.5–49.0) |
Transthyretin (mg/dL) | 27.7 (24.3–29.8) |
Phosphorus (mg/dL) | 3.1 (2.6–3.7) |
Magnesium (mg/dL) | 1.9 (1.8–2.2) |
Zinc (μg/dL) | 68.0 (57.0–79.0) |
CONUT score at admission | 1.0 (0.0–2.0) |
Normal category | 28 |
Light category | 21 |
Moderate category | 0 |
Severe category | 0 |
Lymphocyte count (/μL) | 1883.7 (1149.0–2456.9) |
T-cho (mg/dL) | 189.0 (161.0–212.0) |
Albumin (g/dL) | 4.2 (3.9–4.5) |
High CONUT Score Group (n = 24) | Low CONUT Score Group (n = 25) | p-Value * | |
---|---|---|---|
Age (years) | 60.0 (43.0–77.8) | 49.0 (28.5–64.5) | 0.023 |
Sex (M:F) | 18:6 | 22:3 | 0.289 |
BMI | 22.2 (20.6–26.7) | 24.4 (20.0–25.5) | 0.741 |
Site of injury | |||
Head | 13 | 9 | 0.234 |
Spine | 5 | 11 | 0.054 |
Chest | 6 | 5 | 0.530 |
Abdomen | 3 | 2 | 0.519 |
Extremities | 14 | 9 | 0.159 |
Number of surgeries [n/ALL (%)] | 18 [36.7] | 11 [22.4] | 0.042 |
Energy intake during 7 days (kcal) | 5572.0 (3928.0–6808.5) | 6266.0 (4977.0–9339.4) | 0.072 |
APACHE II score | 12.0 (7.0–15.0) | 5.0 (2.0–9.0) | <0.001 |
SOFA score | 3.0 (2.0–4.0) | 0.5 (0.0–2.75) | 0.007 |
ISS | 25.0 (11.5–33.0) | 16.0 (9.0–20.0) | 0.022 |
Transthyretin (mg/dL) | 28.3 (24.2–30.2) | 26.0 (23.8–29.4) | 0.529 |
Phosphorus (mg/dL) | 3.2 (2.6–4.5) | 3.1 (2.6–3.4) | 0.332 |
Magnesium (mg/dL) | 2.0 (1.8–2.4) | 1.9 (1.8–2.1) | 0.739 |
Zinc (μg/dL) | 67.5 (54.0–79.5) | 73.0 (62.0–79.0) | 0.638 |
CONUT score at admission | 2.0 (1.0–3.0) | 1.0 (0.0–1.5) | 0.008 |
Normal category | 9 | 19 | 0.010 |
Light category | 15 | 6 | 0.010 |
Lymphocyte count (/μL) | 1581.1 (1000.7–2430.9) | 2157.4 (1451.0–2780.6) | 0.129 |
T-cho (mg/dL) | 182.0 (151.8–205.3) | 198.0 (162.5–214.0) | 0.412 |
Albumin (g/dL) | 4.1 (3.7–4.3) | 4.3 (4.0–4.7) | 0.023 |
Explanatory Variable | Odds Ratio | 95% CI | p-Value * |
---|---|---|---|
SOFA | - | ||
Operation | - | ||
Age | 1.094 | 1.027–1.165 | 0.005 |
ISS | 1.158 | 1.034–1.296 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuochi, M.; Yamaguchi, J.; Chiba, N.; Kinoshita, K. Patients with Severe Trauma Having an Injury Severity Score of 24 and above Develop Nutritional Disorders. Diagnostics 2024, 14, 1307. https://doi.org/10.3390/diagnostics14121307
Mizuochi M, Yamaguchi J, Chiba N, Kinoshita K. Patients with Severe Trauma Having an Injury Severity Score of 24 and above Develop Nutritional Disorders. Diagnostics. 2024; 14(12):1307. https://doi.org/10.3390/diagnostics14121307
Chicago/Turabian StyleMizuochi, Minori, Junko Yamaguchi, Nobutaka Chiba, and Kosaku Kinoshita. 2024. "Patients with Severe Trauma Having an Injury Severity Score of 24 and above Develop Nutritional Disorders" Diagnostics 14, no. 12: 1307. https://doi.org/10.3390/diagnostics14121307
APA StyleMizuochi, M., Yamaguchi, J., Chiba, N., & Kinoshita, K. (2024). Patients with Severe Trauma Having an Injury Severity Score of 24 and above Develop Nutritional Disorders. Diagnostics, 14(12), 1307. https://doi.org/10.3390/diagnostics14121307