The Association between Echocardiographic Parameters of Heart Failure with Preserved Ejection Fraction and Fluid Status Biomarkers in Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Anthropometric Measurements
2.3. Laboratory Measurements
2.4. Echocardiography
2.5. Lung Ultrasound
2.6. Statistical Analysis
3. Results
3.1. Study Group
3.2. The Frequency of Diastolic Left Ventricular Function Assessed Using Different Echo Criteria
3.3. Comparison of the Study Subgroups Assessments with E/e’ Value ≤ or >9
3.4. The Associations of Echo Parameters and Study Biomarkers with Lung Comets
3.5. The Associations between Study Biomarkers and Echo Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed consent statement
Data Availability Statement
Conflicts of Interest
References
- Martin, L.C.; Franco, R.J.S.; Gavras, I.; Matsubara, B.B.; Garcia, S.; Caramori, J.T.; Barretti, B.B.; Balbi, A.L.; Barsanti, R.; Padovani, C.; et al. Association between hypervolemia and ventricular hypertrophy in hemodialysis patients. Am. J. Hypertens. 2004, 17, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Yilmaz, B.; Kucukseymen, S.; Ozpelit, E.; Pekel, N. Association of overhydration and cardiac dysfunction in patients have chronic kidney disease but not yet dialysis. Nephrol. Ther. 2016, 12, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Stegmayr, B.G. Ultrafiltration and dry weight—What are the cardiovascular effects? Artif. Organs 2003, 27, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.M.H.; van Londen, M.; Nakshbandi, U.; Yusof Said, M.; Eisenga, M.F.; Hepkema, B.G.; Nolte, I.M.; Berger, S.P.; de Borst, M.H.; Bakker, S.J.L. Pretransplant NT-proBNP, dialysis vintage, and posttransplant mortality in kidney transplant recipients. Transplantation 2020, 104, 2158–2165. [Google Scholar] [CrossRef] [PubMed]
- Basso, F.; Milan Manani, S.; Cruz, D.N.; Teixeira, C.; Brendolan, A.; Nalesso, F.; Zanella, M.; Ronco, C. Comparison and reproducibility of techniques for fluid status assessment in chronic hemodialysis patients. Cardiorenal Med. 2013, 3, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, C.; Karabork, M.; Siriopol, D.; Dincer, N.; Covic, A.; Kanbay, M. Effects of volume overload and current techniques for the assessment of fluid status in patients with renal disease. Blood Purif. 2018, 46, 34–47. [Google Scholar] [CrossRef] [PubMed]
- De Lima, J.J.G.; Macedo, T.A.; Gowdak, L.H.W.; David-Neto, E.; Bortolotto, L.A. Diastolic and systolic left ventricular dysfunction and mortality in chronic kidney disease patients on hemodialysis. Nephrology 2022, 27, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Koeda, M.; Nitta, K. Left ventricular diastolic dysfunction in end-stage kidney disease: Pathogenesis, diagnosis, and treatment. Ther. Apher. Dial. 2015, 19, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Papamichail, N.; Bechlioulis, A.; Lakkas, L.; Bougiakli, M.; Giannitsi, S.; Gouva, C.; Katopodis, K.; Michalis, L.K.; Naka, K.K. Impaired coronary microcirculation is associated with left ventricular diastolis dysfunction in end-stage chronic kidney disease patients. Echocardiography 2020, 37, 536–545. [Google Scholar] [CrossRef]
- Romejko, K.; Rymarz, A.; Szamotulska, K.; Bartoszewicz, Z.; Rozmyslowicz, T.; Niemczyk, S. Left ventricular diastolic dysfunction in chronic kidney disease patients not treated with dialysis. Nutrients 2022, 14, 4664. [Google Scholar] [CrossRef]
- Kang, E.; Lee, S.W.; Ryu, H.; Kang, M.; Kim, S.; Park, S.K.; Jung, J.Y.; Lee, K.-B.; Han, S.H.; Ahn, C.; et al. Left ventricular diastolic dysfunction and progression of chronic kidney disease: Analysis of KNOW-CKD data. J. Am. Heart Assoc. 2022, 11, e025554. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Kim, B.; Lee, J.Y.; Kim, J.S.; Han, B.-G.; Choi, S.O.; Yang, J.W. Tissue Doppler-derived E/e’ ratio as a parameter for assessing diastolic heart failure and as a predictor of mortality in patients with chronic kidney disease. Korean J. Intern. Med. 2013, 28, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Han, B.-G.; Lee, J.Y.; Kim, M.R.; Shin, H.; Kim, J.-S.; Yang, J.-W.; Kim, J.Y. Fluid overload is a determinant for cardiac structural and functional impairments in type 2 diabetes mellitus and chronic kidney disease stage 5 not undergoing dialysis. PLoS ONE 2020, 15, e0235640. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [PubMed]
- Armstrong, D.W.J.; Tsimiklis, G.; Matangi, M.F. Factors influencing the echocardiographic estimate of right ventricular systolic pressure in normal patients and clinically relevant ranges according to age. Can. J. Cardiol. 2010, 26, e35–e39. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Reichek, N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977, 55, 613–618. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Gargani, L. Lung ultrasound: A new tool for the cardiologist. Cardiovasc. Ultrasound 2011, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Nitta, K. Clinical impact of left ventricular diastolic dysfunction in chronic kidney disease. Contrib. Nephrol. 2018, 195, 81–91. [Google Scholar]
- Borrelli, S.; De Nicola, L.; Garofalo, C.; Paoletti, E.; Luca, S.; Chiodini, P.; Luca, S.; Peruzzu, N.; Netti, A.; Lembo, E.; et al. Prevalence and renal prognosis of left ventricular diastolic dysfunction in non-dialysis chronic kidney disease patients with preserved systolic function. J. Hypertens. 2022, 40, 723–731. [Google Scholar] [CrossRef]
- Malik, J.; Kudlicka, J.; Valerianova, A.; Kovarova, L.; Kmentova, T.; Lachmanova, J. Diastolic dysfunction in asymptomatic hemodialysis patients in the light of the current echocardiographic guidelines. Int. J. Cardiovasc. Imaging 2019, 35, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Herzog, C.A.; Costanzo, M.R.; Tumlin, J.; Kellum, J.A.; McCullough, P.A.; Ronco, C. Proposal for a functional classification system of heart failure in patients with end-stage renal disease: Proceedings of the acute dialysis quality initiative (ADQI) XI workgroup. J. Am. Coll. Cardiol. 2014, 63, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Untersteller, K.; Seiler-Mussler, S.; Mallamaci, F.; Fliser, D.; London, G.M.; Zoccali, C.; Heine, G.H. Validation of echocardiographic criteria for the clinical diagnosis of heart failure in chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ji, Y.; Wang, Y.; Ding, M.; Xie, X.; Zhu, D.; Chen, F.; Zhang, N.; Wang, X. High-sensitive cardiac troponin T: A biomarker of left-ventricular diastolic dysfunction in hemodialysis patients. J. Nephrol. 2018, 31, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Bolignano, D.; De Rosa, S.; Greco, M.; Presta, P.; Patella, G.; Crugliano, G.; Sabatino, J.; Strangio, A.; Romano, L.R.; Comi, A.; et al. Marinobufagenin, left ventricular geometry and cardiac dysfunction in end-stage kidney disease patients. Int. Urol. Nephrol. 2022, 54, 2581–2589. [Google Scholar] [CrossRef] [PubMed]
- Balling, L.; Gustafsson, F. Copeptin as a biomarker in heart failure. Biomark. Med. 2014, 8, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Dieplinger, B.; Gegenhuber, A.; Haltmayer, M.; Mueller, T. Evaluation of novel biomarkers for the diagnosis of acute destabilized heart failure in patients with shortness of breath. Heart 2009, 95, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.; Lund, L.H.; Donal, E.; Daubert, J.-C.; Linde, C.; Mellbin, L. Copeptin in patients with heart failure and preserved ejection fraction: A report from the prospective KaRen-study. Open Heart 2015, 2, e000260. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, J.W.; Chai, M.H.; Lee, J.Y.; Park, H.; Kim, Y.; Choi, S.O.; Han, B.G. Copeptin in hemodialysis patients with left ventricular dysfunction. Yonsei Med. J. 2015, 56, 976–980. [Google Scholar] [CrossRef]
- Kolonko, A.; Chudek, J.; Kujawa-Szewieczek, A.; Czerwieńska, B.; Więcek, A. Serum copeptin level predicts a rapid decrease of overhydration after kidney transplantation. Clin. Chem. Lab. Med. 2013, 52, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
Parameter | Percentage of Diastolic Heart Dysfunction |
---|---|
LV mass index ≥ 95 g/m2 (female) or ≥115 g/m2 (male) | 88.0% |
RWT > 0.42 | 70.0% |
LA volume index > 34 mL/m2 | 39.0% |
E/e’ > 9 | 28.0% |
NT-proBNP > 365 pg/ml | 100% |
PA systolic pressure > 35 mmHg | 51% |
TR velocity at rest > 2.8 m/s | 13.4% |
Parameter | E/e’ ≤ 9 | E/e’ > 9 | p |
---|---|---|---|
72 Measurements | 28 Measurements | ||
Age [years] | 62 (55–69) | 67 (54–74) | 0.26 |
Sex [M/F] | 45/27 | 13/15 | 0.14 |
BMI [kg/m2] | 25.4 (20.8–30.0) | 24.9 (20.5–29.6) | 0.25 |
Dialysis vintage [months] | 32 (7–66) | 41 (7–73) | 0.94 |
Vascular access | <0.001 | ||
AVF [n, %] | 50 [68.4] | 14 [48.5] | |
Catheter [n, %] | 22 [31.6] | 14 [51.5] | |
Residual diuresis [mL] | 500 (200–1000) | 500 (225–1000) | 0.74 |
Smoking status [%] | 6.9 5/67 | 10.7 3/25 | 0.53 |
Hypertension [%] | 87.5 63/9 | 96.4 27/1 | 0.18 |
Diabetes [%] | 26.4 19/53 | 32.1 9/19 | 0.57 |
CVD [n, %] | 52.8 38/34 | 71.4 20/8 | 0.09 |
NYHA class [n, %] | 0.50 | ||
II | 77.8 56/16 | 71.4 20/8 | |
III | 22.2 16/56 | 28.6 8/20 | |
Albumin [g/dL] | 4.0 (3.8–4.2) | 3.8 (3.6–4.0) | <0.01 |
hs-CRP [mg/L] | 6.4 (2.6–20.0) | 4.9 (2.6–15.2) | 0.39 |
IL-6 [pg/mL] | 4.1 (2.2–9.0) | 5.0 (2.8–12.7) | 0.28 |
LVMI | 147 (125–167) | 169 (124–213) | <0.05 |
LVEF [%] | 60 (55–65) | 58 (50–65) | 0.71 |
RVSP [mmHg] | 32 (29–39) | 38 (34–45) | <0.01 |
LAVI [mL/m2] | 28.8 (20.7–34.8) | 42.6 (32.2–53.5) | <0.001 |
RAVI [mL/m2] | 18.0 (14.0–22.7) | 18.3 (15.8–28.1) | 0.47 |
IVRT [ms] | 102 (90–132) | 102 (72–129) | 0.18 |
E/A | 1.05 (0.80–1.30) | 0.98 (0.73–1.10) | 0.62 |
E/e’ | 6.9 (5.7–7.9) | 10.1 (9.4–12.8) | <0.001 |
LUTs [n] | 7 (3–12) | 12 (7–41) | <0.001 |
NT-proBNP [pg/mL] | 2642 (1551–5315) | 5399 (3409–16,441) | <0.001 |
MR-proANP [pmol/L] | 577 (455–748) | 770 (610–1120) | <0.01 |
CPP [pmol/L] | 122 (69–190) | 98 (39–153) | 0.12 |
Parameter | NT-proBNP [pg/mL] | p | MR-proANP [pmol/L] | p | CPP [pmol/L] | p | LUTs [n] | p |
---|---|---|---|---|---|---|---|---|
LVMI [g/m2] | 0.264 (0.071–0.437) | <0.01 | 0.314 (0.125–0.481) | <0.01 | −0.172 (−0.356–0.026) | 0.09 | 0.073 (−0.125–0.266) | 0.47 |
RWT | 0.026 (−0.171–0.221) | 0.80 | −0.054 (−0.248–0.144) | 0.59 | −0.070 (−0.263–0.128) | 0.49 | 0.108 (−0.090–0.298) | 0.28 |
LAVI [ml/m2] | 0.575 (0.427–0.693) | <0.001 | 0.531 (0.373–0.659) | <0.001 | −0.079 (−0.271–0.120) | 0.44 | 0.317 (0.129–0.484) | <0.01 |
Mean E/e’ | 0.511 (0.350–0.643) | <0.001 | 0.370 (0.187–0.528) | <0.001 | −0.243 (−0.419–−0.049) | <0.05 | 0.388 (0.208–0.543) | <0.001 |
NT-proBNP [pg/mL] | - | - | 0.801 (0.718–0.862) | <0.001 | 0.047 (−0.151–0.241) | 0.65 | 0.506 (0.344–0.639) | <0.001 |
PA systolic pressure [mmHg] | 0.272 (0.080–0.445) | <0.01 | 0.169 (−0.028–0.354) | 0.10 | −0.129 (−317–0.070) | 0.20 | 0.323 (0.135–0.488) | <0.001 |
TR velocity at rest [m/s] | 0.312 (0.123–0.479) | <0.01 | 0.233 (0.039–0.411) | <0.05 | −0.180 (−0.363–0.017) | 0.07 | 0.320 (0.132–0.486) | <0.01 |
LUTs [n] | 0.506 (0.344–0.639) | <0.001 | 0.250 (0.057–0.426) | <0.05 | −0.194 (−0.376–0.003) | 0.06 | - | - |
NT-proBNP | MR-proANP | CPP | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p | β | 95% CI | p | β | 95% CI | p | |
Age | 97.5 | −128.5–223.5 | 0.13 | 2.6 | −1.6–6.8 | 0.23 | −1.2 | −2.1–−0.2 | <0.05 |
Vascular access type (catheter vs. AVF) | −427 | −4931–4079 | 0.85 | −72.8 | −222.2–76.6 | 0.34 | −37.2 | −71.2–3.2 | <0.05 |
Previous CVD | 6701 | 1957–11446 | <0.01 | 66.4 | −97.3–230.1 | 0.42 | −35.2 | −72.6–2.2 | 0.07 |
NYHA class | 2643 | −2393–7679 | 0.30 | 86.6 | −81.2–254.5 | 0.31 | −20.0 | −58.8–19.0 | 0.31 |
LVMI | 133.6 | 95.3–171.9 | <0.001 | 3.7 | 2.3–5.1 | <0.001 | −0.3 | −0.6–0.1 | 0.15 |
LVEF | −660.1 | −1010.5–310.9 | <0.001 | −10.7 | −22.9–1.6 | 0.09 | 3.3 | 0.5–6.1 | <0.05 |
LAVI | 303.4 | 154.7–452.1 | <0.001 | 9.9 | 4.9–14.9 | <0.001 | −0.3 | −1.5–1.0 | 0.65 |
LUTs | 50.9 | −28.2–130.0 | 0.20 | 1.7 | 0.93–4.3 | 0.20 | −0.8 | −1.4–−0.2 | <0.05 |
E/e’ | 614.0 | 3.3–1224.7 | <0.05 | 22.8 | 2.6–43.0 | <0.05 | −6.6 | −11.3–−2.0 | <0.01 |
Serum albumin | −451.3 | −895.2–−7.5 | <0.05 | −15.4 | −30.1–−0.7 | <0.05 | 3.7 | −0.2–7.0 | <0.05 |
IL-6 | 385.1 | 56.2–714.1 | <0.05 | 5.2 | −6.0–16.4 | 0.36 | −3.3 | −5.9–−0.8 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupa, M.; Pardała, A.; Bednarek, A.; Mrochem-Kwarciak, J.; Deja, R.; Mizia-Stec, K.; Kolonko, A. The Association between Echocardiographic Parameters of Heart Failure with Preserved Ejection Fraction and Fluid Status Biomarkers in Hemodialysis Patients. Diagnostics 2024, 14, 1310. https://doi.org/10.3390/diagnostics14121310
Lupa M, Pardała A, Bednarek A, Mrochem-Kwarciak J, Deja R, Mizia-Stec K, Kolonko A. The Association between Echocardiographic Parameters of Heart Failure with Preserved Ejection Fraction and Fluid Status Biomarkers in Hemodialysis Patients. Diagnostics. 2024; 14(12):1310. https://doi.org/10.3390/diagnostics14121310
Chicago/Turabian StyleLupa, Mariusz, Agnieszka Pardała, Anna Bednarek, Jolanta Mrochem-Kwarciak, Regina Deja, Katarzyna Mizia-Stec, and Aureliusz Kolonko. 2024. "The Association between Echocardiographic Parameters of Heart Failure with Preserved Ejection Fraction and Fluid Status Biomarkers in Hemodialysis Patients" Diagnostics 14, no. 12: 1310. https://doi.org/10.3390/diagnostics14121310
APA StyleLupa, M., Pardała, A., Bednarek, A., Mrochem-Kwarciak, J., Deja, R., Mizia-Stec, K., & Kolonko, A. (2024). The Association between Echocardiographic Parameters of Heart Failure with Preserved Ejection Fraction and Fluid Status Biomarkers in Hemodialysis Patients. Diagnostics, 14(12), 1310. https://doi.org/10.3390/diagnostics14121310