Comparison of Small Blood Vessel Diameter with Intravascular Ultrasound and Coronary Angiography for Guidance of Percutaneous Coronary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Outcomes
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahjehan, R.D.; Bhutta, B.S. Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wolk, M.J.; Bailey, S.R.; Doherty, J.U.; Douglas, P.S.; Hendel, R.C.; Kramer, C.M.; Min, J.K.; Patel, M.R.; Rosenbaum, L.; Shaw, L.J.; et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2014, 63, 380–406. [Google Scholar] [CrossRef] [PubMed]
- Frak, W.; Wojtasinska, A.; Lisinska, W.; Mlynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthelemy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. [Google Scholar] [CrossRef]
- Orbach, D.B.; Pramanik, B.K.; Lee, J.; Maldonado, T.S.; Riles, T.; Grossman, R.I. Carotid artery stent implantation: Evaluation with multi-detector row CT angiography and virtual angioscopy—initial experience. Radiology 2006, 238, 309–320. [Google Scholar] [CrossRef]
- Malik, P. Grossman’s Cardiac Catheterization, Angiography, and Intervention, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Biondi-Zoccai, G.; Moretti, C.; Abbate, A.; Sheiban, I. Percutaneous coronary intervention for small vessel coronary artery disease. Cardiovasc. Revascularization Med. 2010, 11, 189–198. [Google Scholar] [CrossRef]
- Lee, S.Y.; Zhang, J.J.; Mintz, G.S.; Hong, S.J.; Ahn, C.M.; Kim, J.S.; Kim, B.K.; Ko, Y.G.; Choi, D.; Jang, Y.; et al. Procedural Characteristics of Intravascular Ultrasound-Guided Percutaneous Coronary Intervention and Their Clinical Implications. J. Am. Heart Assoc. 2022, 11, e025258. [Google Scholar] [CrossRef] [PubMed]
- Mintz, G.S.; Popma, J.J.; Pichard, A.D.; Kent, K.M.; Salter, L.F.; Chuang, Y.C.; Griffin, J.; Leon, M.B. Intravascular ultrasound predictors of restenosis after percutaneous transcatheter coronary revascularization. J. Am. Coll. Cardiol. 1996, 27, 1678–1687. [Google Scholar] [CrossRef]
- Murphy, G.; Naughton, A.; Durand, R.; Heron, E.; McCaughey, C.; Murphy, R.T.; Pearson, I. Long-term Outcomes for Drug-eluting Balloons versus Drug-eluting Stents in the Treatment of Small Vessel Coronary Artery Disease: A Systematic Review and Meta-analysis. Interv. Cardiol. 2023, 18, e14. [Google Scholar] [CrossRef]
- Wybraniec, M.T.; Banka, P.; Bochenek, T.; Roleder, T.; Mizia-Stec, K. Small vessel coronary artery disease: How small can we go with myocardial revascularization? Cardiol. J. 2021, 28, 767–778. [Google Scholar] [CrossRef]
- Sanz-Sánchez, J.; Chiarito, M.; Gill, G.S.; van der Heijden, L.C.; Piña, Y.; Cortese, B.; Alfonso, F.; von Birgelen, C.; Diez Gil, J.L.; Waksman, R.; et al. Small Vessel Coronary Artery Disease: Rationale for Standardized Definition and Critical Appraisal of the Literature. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100403. [Google Scholar] [CrossRef]
- Topol, E.J.; Nissen, S.E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995, 92, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Kip, K.E.; Hollabaugh, K.; Marroquin, O.C.; Williams, D.O. The problem with composite end points in cardiovascular studies: The story of major adverse cardiac events and percutaneous coronary intervention. J. Am. Coll. Cardiol. 2008, 51, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Chamie, D.; Costa, J.R., Jr.; Abizaid, A.; Feres, F.; Staico, R.; Devito, F.; Costa, R.A.; Abizaid, A.; Tanajura, L.F.; Sousa, A.G.; et al. Serial angiography and intravascular ultrasound: Results of the SISC Registry (Stents in Small Coronaries). JACC Cardiovasc. Interv. 2010, 3, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Tan, J.; Yang, Y. Comparison of Six Different Percutaneous Coronary Intervention Guidance Modalities. J. Cardiovasc. Dev. Dis. 2022, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Maehara, A.; Mintz, G.S.; Witzenbichler, B.; Weisz, G.; Neumann, F.J.; Rinaldi, M.J.; Metzger, D.C.; Henry, T.D.; Cox, D.A.; Duffy, P.L.; et al. Relationship between Intravascular Ultrasound Guidance and Clinical Outcomes after Drug-Eluting Stents. Circ. Cardiovasc. Interv. 2018, 11, e006243. [Google Scholar] [CrossRef] [PubMed]
- Mentias, A.; Aminian, A.; Youssef, D.; Pandey, A.; Menon, V.; Cho, L.; Nissen, S.E.; Desai, M.Y. Long-Term Cardiovascular Outcomes after Bariatric Surgery in the Medicare Population. J. Am. Coll. Cardiol. 2022, 79, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Cortese, B.; Micheli, A.; Picchi, A.; Coppolaro, A.; Bandinelli, L.; Severi, S.; Limbruno, U. Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO study. Heart 2010, 96, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Jensen, L.O.; Thayssen, P.; Mintz, G.S.; Egede, R.; Maeng, M.; Junker, A.; Galloee, A.; Christiansen, E.H.; Pedersen, K.E.; Hansen, H.S.; et al. Comparison of intravascular ultrasound and angiographic assessment of coronary reference segment size in patients with type 2 diabetes mellitus. Am. J. Cardiol. 2008, 101, 590–595. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Zhai, C.J.; Mou, Y.R.; Wang, J.H.; Cui, L.Q. Clinical utility of intravascular ultrasonography-guided therapy in a small-vessel coronary lesion associated with Type 2 diabetes mellitus. Anatol. J. Cardiol. 2019, 22, 68–76. [Google Scholar] [CrossRef] [PubMed]
- De Vriese, A.S.; Verbeuren, T.J.; Van de Voorde, J.; Lameire, N.H.; Vanhoutte, P.M. Endothelial dysfunction in diabetes. Br. J. Pharmacol. 2000, 130, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Title, L.M.; Cummings, P.M.; Giddens, K.; Nassar, B.A. Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: An effect prevented by vitamins C and E. J. Am. Coll. Cardiol. 2000, 36, 2185–2191. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Stehouwer, C.D. Vascular complications in diabetes mellitus: The role of endothelial dysfunction. Clin. Sci. 2005, 109, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Weidig, P.; McMaster, D.; Bayraktutan, U. High glucose mediates pro-oxidant and antioxidant enzyme activities in coronary endothelial cells. Diabetes Obes. Metab. 2004, 6, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Baron, A.D. Hemodynamic actions of insulin. Am. J. Physiol. 1994, 267, E187–E202. [Google Scholar] [CrossRef] [PubMed]
- Kim, F.; Gallis, B.; Corson, M.A. TNF-alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am. J. Physiol. Cell Physiol. 2001, 280, C1057–C1065. [Google Scholar] [CrossRef] [PubMed]
- Omori, K.; Naruishi, K.; Nishimura, F.; Yamada-Naruishi, H.; Takashiba, S. High glucose enhances interleukin-6-induced vascular endothelial growth factor 165 expression via activation of gp130-mediated p44/42 MAPK-CCAAT/enhancer binding protein signaling in gingival fibroblasts. J. Biol. Chem. 2004, 279, 6643–6649. [Google Scholar] [CrossRef] [PubMed]
- Quinones, M.J.; Hernandez-Pampaloni, M.; Schelbert, H.; Bulnes-Enriquez, I.; Jimenez, X.; Hernandez, G.; De La Rosa, R.; Chon, Y.; Yang, H.; Nicholas, S.B.; et al. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann. Intern. Med. 2004, 140, 700–708. [Google Scholar] [CrossRef]
- Picchi, A.; Capobianco, S.; Qiu, T.; Focardi, M.; Zou, X.; Cao, J.M.; Zhang, C. Coronary microvascular dysfunction in diabetes mellitus: A review. World J. Cardiol. 2010, 2, 377–390. [Google Scholar] [CrossRef]
- McCallinhart, P.E.; Cho, Y.; Sun, Z.; Ghadiali, S.; Meininger, G.A.; Trask, A.J. Reduced stiffness and augmented traction force in type 2 diabetic coronary microvascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1410–H1419. [Google Scholar] [CrossRef] [PubMed]
- Vieyra-Herrera, G.; Garcia-Navarrete, M.G.; Damazo-Escobedo, C.A.; Gonzalez-Pacheco, H.; Rodriguez-Chavez, L.L.; Silva-Ruz, C. Outlook of coronary ectasia at the National Institute of Cardiology Ignacio Chavez: A cross-sectional study. Arch. Cardiol. Mex. 2023, 93, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.M. Early Vascular Aging in Hypertension. Front. Cardiovasc. Med. 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, X.; Kan, J.; Ge, Z.; Han, L.; Lu, S.; Tian, N.; Lin, S.; Lu, Q.; Wu, X.; et al. Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation: The ULTIMATE Trial. J. Am. Coll. Cardiol. 2018, 72, 3126–3137. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.F.; Kan, J.; Zhang, Y.J.; Zhang, J.J.; Tian, N.L.; Ye, F.; Ge, Z.; Xiao, P.X.; Chen, F.; Mintz, G.; et al. Comparison of one-year clinical outcomes between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: A single-center analysis of a 1,016-patient cohort. Patient Prefer. Adherence 2014, 8, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.; Mohamed, S.; Mahmoud, M.; Kahan, J.; Mohsen, A.; Rahman, F.; Kayani, W.; Alfonso, F.; Brilakis, E.S.; Elgendy, I.Y.; et al. Intravascular Imaging-Guided Versus Coronary Angiography-Guided Complex PCI: A Meta-analysis of Randomized Controlled Trials. Cardiol. Ther. 2024, 13, 379–399. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.M.; Kang, S.J.; Yoon, S.H.; Park, H.W.; Kang, S.M.; Lee, J.Y.; Lee, S.W.; Kim, Y.H.; Lee, C.W.; Park, S.W.; et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am. J. Cardiol. 2014, 113, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.A.; Angiolillo, D.J.; Tannenbaum, M.; Driesman, M.; Chu, A.; Patterson, J.; Kuehl, W.; Battaglia, J.; Dabbons, S.; Shamoon, F.; et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am. J. Cardiol. 2008, 101, 1704–1711. [Google Scholar] [CrossRef]
- Haffner, S.M.; Lehto, S.; Ronnemaa, T.; Pyorala, K.; Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef]
Characteristic | n = 48 |
---|---|
Age | 69.1 ± 11.9 |
Men | 34 (70.8) |
Women | 14 (29.2) |
T2D | 21 (43.8) |
Hypertension | 31 (64.6) |
Dyslipidemia | 3 (6.3) |
Chronic kidney disease | 2 (4.2) |
Obesity (BMI ≥ 30) | 5 (10.4) |
Current smokers | 11 (22.9) |
Previous AMI | 3 (6.3) |
Previous PCI | 8 (16.7) |
Stable angina | 20 (41.7) |
Unstable angina | 6 (12.5) |
NSTEMI | 6 (12.5) |
STEMI | 12 (25.0) |
Affected blood vessel | |
Anterior descendant | 32 (66.7) |
Right coronary | 11 (22.9) |
Circumflex artery | 3 (6.3) |
Intermediate branch | 1 (2.1) |
Posterior descendant | 1 (2.1) |
Characteristic | No Change (n = 11) | Reclassified Blood Vessel (n = 37) | p-Value | Univariate OR (95% CI) |
---|---|---|---|---|
Age (mean ± SD) | 68.0 ± 10.6 | 69.5 ± 12.4 | 0.714 | 1.01 (0.95–1.07) |
Men (frequency %) | 8 (73) | 26 (70) | 0.875 | 0.88 (0.20–3.98) |
Obesity | 1 (13) | 4 (11) | 0.870 | 1.21 (0.12–12.12) |
T2D | 4 (36) | 13 (35) | 0.036 * | 0.20 (0.05–0.90) |
Hypertension | 8 (73) | 23 (62) | 0.522 | 0.62 (0.14–2.72) |
Active smoking | 1 (13) | 10 (27) | 0.239 | 3.70 (0.42–32.77) |
Previous AMI | 0 | 3 (8) | 0.001 * | 1 (1.57–6.10) |
Fibro calcic plaque | 7 (64) | 25 (68) | 0.808 | 1.19 (0.29–4.87) |
Fibro lipidic plaque | 3 (27) | 9 (24) | 0.843 | 0.86 (0.19–3.94) |
Variable | OR (CI 95%) | p-Value |
---|---|---|
Age | 1.08 (0.97–1.20) | 0.134 |
T2D | 0.05 (0.01–0.81) | 0.035 * |
Hypertension | 0.54 (0.05–5.88) | 0.620 |
Obesity | 0.08 (0.01–2.66) | 0.159 |
Active smoking | 6.46 (0.25–170.15) | 0.264 |
Previous AMI | 1.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuñiga-Mendoza, S.A.; Zayas-Diaz, E.; Armenta-Velazquez, V.R.; Silva-Baeza, A.A.; Beltran-Ochoa, J.J.; Medina-Servin, M.A.; Zavala-Cerna, M.G. Comparison of Small Blood Vessel Diameter with Intravascular Ultrasound and Coronary Angiography for Guidance of Percutaneous Coronary Intervention. Diagnostics 2024, 14, 1312. https://doi.org/10.3390/diagnostics14121312
Zuñiga-Mendoza SA, Zayas-Diaz E, Armenta-Velazquez VR, Silva-Baeza AA, Beltran-Ochoa JJ, Medina-Servin MA, Zavala-Cerna MG. Comparison of Small Blood Vessel Diameter with Intravascular Ultrasound and Coronary Angiography for Guidance of Percutaneous Coronary Intervention. Diagnostics. 2024; 14(12):1312. https://doi.org/10.3390/diagnostics14121312
Chicago/Turabian StyleZuñiga-Mendoza, Sergio A., Emanuel Zayas-Diaz, Victoria R. Armenta-Velazquez, Ana A. Silva-Baeza, Juan J. Beltran-Ochoa, Misael A. Medina-Servin, and Maria G. Zavala-Cerna. 2024. "Comparison of Small Blood Vessel Diameter with Intravascular Ultrasound and Coronary Angiography for Guidance of Percutaneous Coronary Intervention" Diagnostics 14, no. 12: 1312. https://doi.org/10.3390/diagnostics14121312
APA StyleZuñiga-Mendoza, S. A., Zayas-Diaz, E., Armenta-Velazquez, V. R., Silva-Baeza, A. A., Beltran-Ochoa, J. J., Medina-Servin, M. A., & Zavala-Cerna, M. G. (2024). Comparison of Small Blood Vessel Diameter with Intravascular Ultrasound and Coronary Angiography for Guidance of Percutaneous Coronary Intervention. Diagnostics, 14(12), 1312. https://doi.org/10.3390/diagnostics14121312