Circulating IgG Fragments for Gastric Cancer and Esophageal Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilic, M.; Ilic, I. Epidemiology of stomach cancer. World J. Gastroenterol. 2022, 28, 1187–1203. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [Google Scholar] [CrossRef]
- Midiber, K.Y.; Biryukov, A.E.; Pechnikova, V.V.; Gracheva, N.A.; Shakhpazyan, N.K.; Gioeva, Z.V.; Mikhaleva, L.M. Clinical and morphological heterogeneity of diffuse gastric cancer. Clin. Exp. Morphol. 2022, 10 (Suppl. S4), 34–41. (In Russian) [Google Scholar] [CrossRef]
- Liu, C.Q.; Ma, Y.L.; Qin, Q.; Wang, P.H.; Luo, Y.; Xu, P.F.; Cui, Y. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac. Cancer 2023, 14, 3–11. [Google Scholar] [CrossRef]
- Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol. 2020, 13, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet 2017, 390, 2383–2396. [Google Scholar] [CrossRef]
- Patel, N.; Benipal, B. Incidence of Esophageal Cancer in the United States from 2001–2015: A United States Cancer Statistics Analysis of 50 States. Cureus 2018, 10, e3709. [Google Scholar] [CrossRef]
- GBD 2017 Oesophageal Cancer Collaborators. The global, regional, and national burden of esophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 582–597. [Google Scholar] [CrossRef]
- Huang, J.; Lucero-Prisno, D.E.; Zhang, L.; Xu, W.; Wong, S.H.; Ng, S.C.; Wong, M.S.H. Updated epidemiology of gastrointestinal cancers in East Asia. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 271–287. [Google Scholar] [CrossRef]
- Polat, E.; Duman, U.; Duman, M.; Peker, K.D.; Akyuz, C.; Yasar, N.F.; Uzun, O.; Akbulut, S.; Bostanci, E.B.; Yol, S. Preoperative serum tumor marker levels in gastric cancer. Pak. J. Med. Sci. 2014, 30, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Căinap, C.; Nagy, V.; Gherman, A.; Cetean, S.; Laszlo, I.; Constantin, A.M.; Căinap, S. Classic tumor markers in gastric cancer. Current standards and limitations. Clujul Med. 2015, 88, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Ma, Y.; Shi, W.; Zi, M.; Chen, J.; Liang, C.; Li, X.; Liu, Z.; Du, Y. Prognostic significance of serum tumor markers in various pathologic subtypes of gastric cancer. J. Gastrointest. Surg. 2024, 28, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, X.; Zhou, L.; Deng, T.; Ning, T.; Liu, R.; Zhang, L.; Bai, M.; Zhang, H.; Li, H.; et al. Clinical use of tumor biomarkers in prediction for prognosis and chemotherapeutic effect in esophageal squamous cell carcinoma. BMC Cancer 2019, 19, 526. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.S. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1104–1117. [Google Scholar] [CrossRef] [PubMed]
- Kushlinskii, N.E.; Gershtein, E.S. Biological markers of tumors: Fundamental and clinical research. In Biological Markers of Tumors: Fundamental and Clinical Research; Kushlinskii, N.E., Krasilnikov, M.A., Eds.; Izdatelstvo RAMN: Moscow, Russia, 2017; pp. 197–230. (In Russian) [Google Scholar]
- Andreasen, P.A.; Egelund, R.; Petersen, H.H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell. Mol. Life Sci. 2000, 57, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Shaker, B.T.; Bajou, K. The Plasminogen-Activator Plasmin System in Physiological and Pathophysiological Angiogenesis. Int. J. Mol. Sci. 2021, 23, 337. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, N.; Høyer-Hansen, G.; Johnsen, M.; Lund, L.; Ploug, M.; Rømer, J.; Danø, K. Plasminogen activation and cancer. Thromb. Haemost. 2005, 93, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef]
- Parfyonova, Y.; Plekhanova, O.S.; Tkachuk, V.A. Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry 2002, 67, 119–134. [Google Scholar]
- Parmar, D.; Apte, M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur. J. Pharmacol. 2021, 899, 174021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Quan, Y.; Ma, X.; Zeng, L.; Li, J.; Chen, S.; Su, M.; Hong, L.; Li, P.; Wang, H.; et al. Synergistic effect of glutathione and IgG4 in immune evasion and the implication for cancer immunotherapy. Redox. Biol. 2023, 60, 102608. [Google Scholar] [CrossRef] [PubMed]
- Brezski, R.J.; Jordan, R.E. Cleavage of IgGs by proteases associated with invasive diseases: An evasion tactic against host immunity? mAbs 2010, 2, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Aisina, R.B.; Mukhametova, L.I.; Gershkovich, K.B.; Yakovlev, V.N.; Goufman, E.I.; Tikhonova, N.B. Effect of Specific Cleavage of Immunoglobulin G by Plasmin on the Binding and Activation of Plasminogen. J. Bioorganic Chem. 2018, 44, 210–216. (In Russian) [Google Scholar] [CrossRef]
- Lokshin, A.; Mikhaleva, L.M.; Goufman, E.I.; Boltovskaya, M.N.; Tikhonova, N.B.; Stepanova, I.I.; Stepanov, A.A.; Potoldykova, N.V.; Vinarov, A.Z.; Stemmer, P.; et al. Proteolyzed Variant of IgG with Free C-Terminal Lysine as a Biomarker of Prostate Cancer. Biology 2021, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Goufman, E.I.; Iakovlev, V.N.; Tikhonova, N.B.; Nizyaeva, N.V.; Gershkovich, K.B.; Aisina, R.B.; Kovaleva, O.V.; Kushlinskii, N.E. Concentration of IgG degradation products in the blood serum of patients with lung cancer. Russ. Clin. Lab. Diagn. 2023, 68, 32–35. (In Russian) [Google Scholar] [CrossRef]
- Morgan, E.L.; Hugli, T.E.; Weigle, W.O. Isolation and identification of a biologically active peptide derived from the CH3 domain of human IgG1. Proc. Natl. Acad. Sci. USA 1982, 79, 5388–5391. [Google Scholar] [CrossRef]
- Colomb, M.; Porter, R.R. Characterization of a plasmin-digest fragment of rabbit immunoglobulin gamma that binds antigen and complement. Biochem. J. 1975, 145, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef]
- The WHO Classification of Tumours Editorial Board. Digestive system tumours. In WHO Classification of Tumours, 5th ed.; IARC: Lyon, France, 2019; 580p. [Google Scholar]
- Rickles, F.R. Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol. Haemost. Thromb. 2006, 35, 103–110. [Google Scholar] [CrossRef]
- Zhang, Y. Epidemiology of esophageal cancer. World J. Gastroenterol. 2013, 19, 5598–5606. [Google Scholar] [CrossRef] [PubMed]
- Hisada, Y.; Garratt, K.B.; Maqsood, A.; Grover, S.P.; Kawano, T.; Cooley, B.C.; Erlich, J.; Moik, F.; Flick, M.J.; Pabinger, I.; et al. Plasminogen activator inhibitor 1 and venous thrombosis in pancreatic cancer. Blood Adv. 2021, 5, 487–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moik, F.; Ay, C. Hemostasis and cancer: Impact of haemostatic biomarkers for the prediction of clinical outcomes in patients with cancer. J. Thromb. Haemost. 2022, 20, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K. The pathogenesis of cancer-associated thrombosis. Int. J. Hematol. 2024, 119, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Prager, M.D.; Baxter, C.R.; Hartline, B. Proteolytic activity in burn wound exudates and comparison of fibrin degradation products and protease inhibitors in exudates and sera. J. Burn Care Rehabil. 1994, 15, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, L.; Chan, P.; Hu, Z.; Shen, A.; Duenas, E.; Kirschbrown, W.; Schick, A.J., 3rd; Chen, Y.; Kim, M.T. C-Terminal Lysine Processing of IgG in Human Suction Blister Fluid: Implications for Subcutaneous Administration. Mol. Pharm. 2022, 19, 4043–4054. [Google Scholar] [CrossRef] [PubMed]
- Tătaru, O.S.; Vartolomei, M.D.; Rassweiler, J.J.; Virgil, O.; Lucarelli, G.; Porpiglia, F.; Amparore, D.; Manfredi, M.; Carrieri, G.; Falagario, U.; et al. Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives. Diagnostics 2021, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Artemyeva, K.A.; Goufman, E.I.; Stepanova, I.I.; Tikhonova, N.B.; Boltovskaya, M.N.; Ponomarenko, E.A.; Bogdanova, I.M.; Mnikhovich, M.V.; Mikhaleva, L.M. The level of IgG proteolysis fragments as an additional prognostic biomarker of prostate cancer. Clin. Exp. Morphol. 2022, 11, 22–31. (In Russian) [Google Scholar] [CrossRef]
- Sato, Y.; Okamoto, K.; Kawano, Y.; Kasai, A.; Kawaguchi, T.; Sagawa, T.; Sogabe, M.; Miyamoto, H.; Takayama, T. Novel Biomarkers of Gastric Cancer: Current Research and Future Perspectives. J. Clin. Med. 2023, 12, 4646. [Google Scholar] [CrossRef]
- Dhakras, P.; Uboha, N.; Horner, V.; Reinig, E.; Matkowskyj, K.A. Gastrointestinal cancers: Current biomarkers in esophageal and gastric adenocarcinoma. Transl. Gastroenterol. Hepatol. 2020, 5, 55. [Google Scholar] [CrossRef]
Cohort | Gastric Cancer | Esophageal Cancer | Control Group | |||
---|---|---|---|---|---|---|
Male | Femal | Male | Female | Male | Female | |
n | 36 | 32 | 31 | 12 | 12 | 8 |
Age, years old, min–max (median) | 20–80 (62) | 34–83 (66) | 39–82 (63) | 33–70 (63) | 48–71 (62) | 26–70 (62) |
Adenocarcinoma | n = 31 | n = 26 | n = 4 | n = 1 | - | - |
Signet ring cancer | n = 5 | n = 6 | - | - | - | - |
Squamous cell carcinoma | - | - | n = 27 | n = 11 | - | - |
Stage I–II | n = 15 | n = 12 | n = 13 | n = 6 | - | - |
Stage III–IV | n = 21 | n = 20 | n = 18 | n = 6 | - | - |
Tumor size T1-2 | n = 7 | n = 8 | n = 8 | n = 3 | - | - |
Tumor size T3-4 | n = 29 | n = 24 | n = 23 | n = 9 | - | - |
Lymph nodal spreadN0 | n = 13 | n = 13 | n = 11 | n = 6 | - | - |
Lymph nodal spread n+ | n = 23 | n = 19 | n = 20 | n = 6 | - | - |
Metastasis M+ | n = 9 | n = 11 | n = 4 | n = 1 | - | - |
Group | Number of Cases | IgG-LysK | ||
---|---|---|---|---|
Median; Quartiles Me (Q1:Q3) | p | |||
1. Control group | 20 | 0.86 (0.74; 1.00) | 1–2 | 1–3 |
2. Esophageal cancer | 43 | 1.71 (1.09; 4.03) | <0.0001 * | |
3. Gastric cancer | 68 | 1.08 (0.90; 1.60) | 0.003 * |
Group | Number of Cases | Median; Quartiles Me (Q1:Q3) | p | |
---|---|---|---|---|
IgG-LysK− | 11 | 7.6 (5.6: 8.8) | IgG-LysK−/IgG-LysK+ | =0.001 * |
IgG-LysK+ | 11 | 11.1 (9.5: 12.3) |
Group | Number of Cases | Median; Quartiles Me (Q1:Q3) | p | |
---|---|---|---|---|
IgG-LysK− | 20 | 12.20 (11.7:12.9) | IgG-LysK−/IgG-LysK+ | <0.0001 * |
IgG-LysK+ | 44 | 13.75 (13.4:14.3) |
Group | n | Median; Quartiles Me (Q1:Q3) | p | |
---|---|---|---|---|
IgG-LysK− | 15 | 67.3 (53.8:78.8) | IgG-LysK−/IgG-LysK+ | <0.0001 |
IgG-LysK+ | 14 | 33.2 (23.9:43.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goufman, E.I.; Tikhonova, N.B.; Aleksankin, A.P.; Gershkovich, K.B.; Stepanov, A.A.; Stepanova, I.I.; Mikhaleva, L.M.; Nizyaeva, N.V.; Kovaleva, O.V.; Alferov, A.A.; et al. Circulating IgG Fragments for Gastric Cancer and Esophageal Cancer. Diagnostics 2024, 14, 1396. https://doi.org/10.3390/diagnostics14131396
Goufman EI, Tikhonova NB, Aleksankin AP, Gershkovich KB, Stepanov AA, Stepanova II, Mikhaleva LM, Nizyaeva NV, Kovaleva OV, Alferov AA, et al. Circulating IgG Fragments for Gastric Cancer and Esophageal Cancer. Diagnostics. 2024; 14(13):1396. https://doi.org/10.3390/diagnostics14131396
Chicago/Turabian StyleGoufman, Eugene I., Nataliia B. Tikhonova, Andrey P. Aleksankin, Karina B. Gershkovich, Alexander A. Stepanov, Irina I. Stepanova, Liudmila M. Mikhaleva, Natalia V. Nizyaeva, Olga V. Kovaleva, Alexander A. Alferov, and et al. 2024. "Circulating IgG Fragments for Gastric Cancer and Esophageal Cancer" Diagnostics 14, no. 13: 1396. https://doi.org/10.3390/diagnostics14131396
APA StyleGoufman, E. I., Tikhonova, N. B., Aleksankin, A. P., Gershkovich, K. B., Stepanov, A. A., Stepanova, I. I., Mikhaleva, L. M., Nizyaeva, N. V., Kovaleva, O. V., Alferov, A. A., Kuzmin, Y. B., & Kushlinskii, N. E. (2024). Circulating IgG Fragments for Gastric Cancer and Esophageal Cancer. Diagnostics, 14(13), 1396. https://doi.org/10.3390/diagnostics14131396