Comparison of the Direct Identification and Short-Term Incubation Methods for Positive Blood Cultures via MALDI-TOF Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Testing
2.2. DI Method
2.3. STI Method
2.4. MALDI-TOF MS Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zengin Canalp, H.; Bayraktar, B. Direct rapid identification from positive blood cultures by MALDI-TOF MS: Specific focus on turnaround times. Microbiol. Spectr. 2021, 9, e0110321. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Shani, V.; Muchtar, E.; Kariv, G.; Robenshtok, E.; Leibovici, L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob. Agents Chemother. 2010, 54, 4851–4863. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, A.M.; Rabaan, A.A.; Edaily, Z.E.; John, S.; Fawarah, M.M.; Al-Tawfiq, J.A. Comparison among four proposed direct blood culture microbial identification methods using MALDI-TOF MS. J. Infect. Public Health 2017, 10, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Yonetani, S.; Ohnishi, H.; Ohkusu, K.; Matsumoto, T.; Watanabe, T. Direct identification of microorganisms from positive blood cultures by MALDI-TOF MS using an in-house saponin method. Int. J. Infect. Dis. 2016, 52, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Buehler, S.S.; Madison, B.; Snyder, S.R.; Derzon, J.H.; Cornish, N.E.; Saubolle, M.A.; Weissfeld, A.S.; Weinstein, M.P.; Liebow, E.B.; Wolk, D.M. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: A laboratory medicine best practices systematic review and meta-analysis. Clin. Microbiol. Rev. 2016, 29, 59–103. [Google Scholar] [CrossRef] [PubMed]
- Azrad, M.; Keness, Y.; Nitzan, O.; Pastukh, N.; Tkhawkho, L.; Freidus, V.; Peretz, A. Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology. BMC Infect. Dis. 2019, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- Delport, J.A.; Strikwerda, A.; Armstrong, A.; Schaus, D.; John, M. MALDI-ToF short incubation identification from blood cultures is associated with reduced length of hospitalization and a decrease in bacteremia associated mortality. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.M.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Performance of BioFire blood culture identification 2 Panel (BCID2) for the detection of bloodstream pathogens and their associated resistance markers: A systematic review and meta-analysis of diagnostic test accuracy studies. BMC Infect. Dis. 2022, 22, 794. [Google Scholar] [CrossRef] [PubMed]
- Verroken, A.; Defourny, L.; Lechgar, L.; Magnette, A.; Delmee, M.; Glupczynski, Y. Reducing time to identification of positive blood cultures with MALDI-TOF MS analysis after a 5-h subculture. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 405–413. [Google Scholar] [CrossRef]
- Kohlmann, R.; Hoffmann, A.; Geis, G.; Gatermann, S. MALDI-TOF mass spectrometry following short incubation on a solid medium is a valuable tool for rapid pathogen identification from positive blood cultures. Int. J. Med. Microbiol. 2015, 305, 469–479. [Google Scholar] [CrossRef]
- Idelevich, E.A.; Schule, I.; Grunastel, B.; Wullenweber, J.; Peters, G.; Becker, K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin. Microbiol. Infect. 2014, 20, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Christner, M.; Rohde, H.; Wolters, M.; Sobottka, I.; Wegscheider, K.; Aepfelbacher, M. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J. Clin. Microbiol. 2010, 48, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Lagace-Wiens, P.R.; Adam, H.J.; Karlowsky, J.A.; Nichol, K.A.; Pang, P.F.; Guenther, J.; Webb, A.A.; Miller, C.; Alfa, M.J. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: Analysis of performance, cost, and turnaround time. J. Clin. Microbiol. 2012, 50, 3324–3328. [Google Scholar] [CrossRef] [PubMed]
- Vlek, A.L.M.; Bonten, M.J.M.; Boel, C.H.E. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS ONE 2012, 7, e32589. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Kostrzewa, M. Rapid identification of pathogens in positive blood culture of patients with sepsis: Review and meta-analysis of the performance of the sepsityper kit. Int. J. Microbiol. 2015, 2015, 827416. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.M.; Elgersma, P.E.; Friedrich, A.W.; Nagy, E.; Winkelhoff, A.J.V. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria. Clin. Microbiol. Infect. 2014, 20, O1091–O1097. [Google Scholar] [CrossRef] [PubMed]
- Chanderraj, R.; Baker, J.M.; Kay, S.G.; Brown, C.A.; Hinkle, K.J.; Fergle, D.J.; McDonald, R.A.; Falkowski, N.R.; Metcalf, J.D.; Kaye, K.S.; et al. In critically ill patients, anti-anaerobic antibiotics increase risk of adverse clinical outcomes. Eur. Respir. J. 2023, 61, 2200910. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.H.; Kim, M.; Lee, Y.; Lee, K.; Chong, Y. Antimicrobial susceptibility patterns of anaerobic bacterial clinical isolates from 2014 to 2016, including recently named or renamed species. Ann. Lab. Med. 2019, 39, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Barnini, S.; Ghelardi, E.; Brucculeri, V.; Morici, P.; Lupetti, A. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate. BMC Microbiol. 2015, 15, 124. [Google Scholar] [CrossRef]
- Ceballos-Garzón, A.; Cabrera, E.; Cortes-Fraile, G.C.; León, A.; Aguirre-Guataqui, K.; Linares-Linares, M.Y.; Ariza, B.; Valderrama-Beltrán, S.; Parra-Giraldo, C.M. In-house protocol and performance of MALDI-TOF MS in the early diagnosis of bloodstream infections in a fourth-level hospital in Colombia: Jumping to full use of this technology. Int. J. Infect. Dis. 2020, 101, 85–89. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, Z.; Li, J.; Chen, X.; Zhou, M. Rapid identification of microorganisms from positive blood cultures in pediatric patients by MALDI-TOF MS: Sepsityper kit versus short-term subculture. J. Microbiol. Methods 2020, 172, 105894. [Google Scholar] [CrossRef]
- Kumar, A.; Ellis, P.; Arabi, Y.; Roberts, D.; Light, B.; Parrillo, J.E.; Dodek, P.; Wood, G.; Kumar, A.; Simon, D.; et al. Cooperative antimicrobial therapy of septic shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009, 136, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Klinker, K.P.; Hidayat, L.K.; DeRyke, C.A.; DePestel, D.D.; Motyl, M.; Bauer, K.A. Antimicrobial stewardship and antibiograms: Importance of moving beyond traditional antibiograms. Ther. Adv. Infect. Dis. 2021, 8, 20499361211011373. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, S.G.; Raj, V.; Viswanathan, B.; Dhanasekaran, G.P.; Palaniappan, D.; Borra, S.S. Enhancing the empiric antibiotic selection by introducing an antibiogram toolkit in a tertiary care hospital in Southern India—A prospective study. J. Clin. Pharm. Ther. 2022, 47, 507–516. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Boonlayangoor, S.; Beavis, K.G.; Tesic, V. Evaluation of FilmArray and Verigene systems for rapid identification of positive blood cultures. J. Clin. Microbio. 2014, 52, 3433–3436. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.D.; Melnik, E.; Bogaerts, P.; Evrard, S.; Glupczynski, Y. Evaluation of the ePlex blood culture identification panels for detection of pathogens in bloodstream infections. J. Clin. Microbio. 2019, 57, e01597-18. [Google Scholar] [CrossRef]
- Bryant, S.; Almahmoud, I.; Pierre, I.; Bardet, J.; Touati, S.; Maubon, D.; Cornet, M.; Richarme, C.; Maurin, M.; Pavese, P.; et al. Evaluation of microbiological performance and the potential clinical impact of the ePlex® blood culture identification panels for the rapid diagnosis of bacteremia and fungemia. Front. Cell Infect. Microbiol. 2020, 10, 594951. [Google Scholar] [CrossRef]
- Altun, O.; Almuhayawi, M.; Ullberg, M.; Ozenci, V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J. Clin. Microbiol. 2013, 51, 4130–4136. [Google Scholar] [CrossRef]
- Faron, M.L.; Buchan, B.W.; Ledeboer, N.A. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for use with positive blood cultures: Methodology, performance, and optimization. J. Clin. Microbiol. 2017, 55, 3328–3338. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Giani, T.; Bassetti, M.; Marchese, A.; Viscoli, C.; Rossolini, G.M. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: Therapeutic implications. Clin. Microbiol. Infect. 2020, 26, 713–722. [Google Scholar] [CrossRef]
Microorganism | N | Direct Identification Method | |||||
---|---|---|---|---|---|---|---|
Score a < 1.7 | 1.7 ≤ Score a ≤ 1.99 | Score a ≥ 2.0 | Correct Genus | Misdentification | No Identification | ||
Gram-negative bacteria | 152 | 1 | 5 | 128 | 0 | 0 | 18 |
Gram-positive bacteria | 167 | 0 | 46 | 37 | 4 | 2 | 78 |
Yeast | 19 | 0 | 0 | 0 | 0 | 0 | 19 |
Anaerobic bacteria | 16 | 0 | 2 | 6 | 0 | 0 | 8 |
Total N (%) | 354 | 1 (0.3) | 53 (15.0) | 171 (48.3) | 4 (1.1) | 2 (0.6) | 123 (34.7) |
Species | Correct at Species Level | Correct at Genus Level | Misidentified | Non-Reliable Identification (No DI Result *) | Total Correct Identification (Identification Rate %) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MALDI-TOF MS Score | MALDI-TOF MS Score | MALDI-TOF MS Score | |||||||||
<1.7 | 1.7–1.99 | ≥2 | <1.7 | 1.7–1.99 | ≥2 | <1.7 | 1.7–1.99 | ≥2 | |||
Acinetobacter baumannii | 1 | 1 (100) | |||||||||
Acinetobacter johnsonii | 1 | 1 (100) | |||||||||
Acinetobacter ursingii | 1 | 1 (100) | |||||||||
Achromobacter xylosoxidans | 2 | 0 | |||||||||
Alistipes onderdonkii | 1 | 1 (100) | |||||||||
Aeromonas caviae | 1 | 1 (100) | |||||||||
Aeromonas veronii | 1 | 1 (100) | |||||||||
Bacteroides fragilis | 2 | 2 (100) | |||||||||
Bacteroides thetaiotaomicron | 1 | 1 (100) | |||||||||
Burkholderia multivorans | 1 | 1 (100) | |||||||||
Citrobacter diversus | 3 | 3 (100) | |||||||||
Citrobacter freundii complex | 1 | 1 (100) | |||||||||
E. coli | 77 | 8 | 77 (90.6) | ||||||||
Elizabethkingia meningoseptica | 1 | 1 (100) | |||||||||
Enterobacter cloacae complex | 5 | 1 | 5 (83.3) | ||||||||
Herbaspirillum aquaticum | 1 | 1 (100) | |||||||||
Herbaspirillum huttiense | 1 | 1 (100) | |||||||||
Klebsiella pneumoniae | 16 | 2 | 16 (88.9) | ||||||||
Moraxella osloensis | 1 | 0 | |||||||||
Moraxella sp. | 1 | 0 | |||||||||
Morganella morganii | 1 | 1 | 1 (50.0) | ||||||||
Pantoea dispersa | 1 | 1 (100) | |||||||||
Parabacteroides distasonis | 1 | 0 | |||||||||
Prevotella sp. | 1 | 0 | |||||||||
Proteus mirabilis | 1 | 1 (100) | |||||||||
Providencia stuartii | 1 | 1 | 1 (50.0) | ||||||||
Pseudomonas aeruginosa | 7 | 1 | 7 (87.5) | ||||||||
Ralstonia mannitolilytica | 1 | 1 (100) | |||||||||
Salmonella sp. | 5 | 5 (100) | |||||||||
Serratia marcescens | 2 | 2 (100) | |||||||||
Sphingomonas parapaucimobilis | 1 | 1 (100) | |||||||||
Stenotrophomonas maltophilia | 1 | 3 | 4 (100) |
Species | Correct at Species Level | Correct at Genus Level | Misidentified | Non-Reliable Identification (No DI Result *) | Total Correct Identification (Identification Rate %) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MALDI-TOF MS Score | MALDI-TOF MS Score | MALDI-TOF MS Score | |||||||||
<1.7 | 1.7–1.99 | ≥2 | <1.7 | 1.7–1.99 | ≥2 | <1.7 | 1.7–1.99 | ≥2 | |||
Aerococcus | 1 | 0 | |||||||||
Arthrobacter creatinolyticus | 1 | 1 (100) | |||||||||
B-Streptococcus Group B | 1 | 2 | 3 (100) | ||||||||
Bacillus | 1 | 2 | 1 (33.3) | ||||||||
Bacillus flexus | 1 | 0 | |||||||||
Bacillus subtilis | 1 | 1 (100) | |||||||||
Bacillus horneckiae | 1 | 1 (100) | |||||||||
Cellulosimicrobium cellulans | 1 | 1 (100) | |||||||||
Clostridium clostridioforme | 1 | 0 | |||||||||
Coagulase (−) Staphylococcus | 1 | 0 | |||||||||
Corynebacterium imitans | 1 | 0 | |||||||||
Corynebacterium propinquum | 2 | 0 | |||||||||
Corynebacterium sp. | 3 | 0 | |||||||||
Enterococcus faecalis | 2 | 2 | 4 (100) | ||||||||
Enterococcus faecium | 1 | 3 | 1 | 3 | 5 (62.5) | ||||||
Enterococcus gallinarum | 1 | 0 | |||||||||
Enterococcus raffinosus | 1 | 0 | |||||||||
Lactobacillus rhamnosus | 1 | 0 | |||||||||
Lactococcus garvieae | 1 | 0 | |||||||||
Leuconostoc | 1 | 0 | |||||||||
Microbacterium sp. | 2 | 0 | |||||||||
Micrococcu | 2 | 0 | |||||||||
Micrococcus luteus | 2 | 0 | |||||||||
Paenibacillus sp. | 1 | 0 | |||||||||
Propionibacterium acnes | 1 | 2 | 1 (33.3) | ||||||||
Propionibacterium sp. | 2 | 2 | 2 (50.0) | ||||||||
Staphylococcus aureus | 8 | 8 | 15 | 16 (51.6) | |||||||
Staphylococcus capitis | 8 | 6 | 1 | 1 | 6 | 15 (68.2) | |||||
Staphylococcus caprae | 2 | 2 (100) | |||||||||
Staphylococcus epidermidis | 12 | 2 | 14 | 14 (50.0) | |||||||
Staphylococcus haemolyticus | 2 | 4 | 1 | 5 | 7 (58.3) | ||||||
Staphylococcus hominis | 5 | 4 | 5 | 9 (64.3) | |||||||
Staphylococcus pettenkoferi | 2 | 2 (100) | |||||||||
Staphylococcus saprophyticus | 2 | 0 | |||||||||
Staphylococcus warneri | 3 | 1 | 3 (75.0) | ||||||||
Streptococcus constellatus | 1 | 0 | |||||||||
Streptococcus cristatus | 1 | 0 | |||||||||
Streptococcus mitis | 1 | 1 | 1 (50.0) | ||||||||
Streptococcus oralis | 1 | 1 | 1 (50.0) | ||||||||
Streptococcus salivarius | 1 | 0 | |||||||||
Staphylococcus sciuri | 1 | 1 (100) | |||||||||
Viridans streptococcus | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, S.-F.; Huang, T.-Y.; Lee, C.-Y.; Lee, C.-H. Comparison of the Direct Identification and Short-Term Incubation Methods for Positive Blood Cultures via MALDI-TOF Mass Spectrometry. Diagnostics 2024, 14, 1611. https://doi.org/10.3390/diagnostics14151611
Kuo S-F, Huang T-Y, Lee C-Y, Lee C-H. Comparison of the Direct Identification and Short-Term Incubation Methods for Positive Blood Cultures via MALDI-TOF Mass Spectrometry. Diagnostics. 2024; 14(15):1611. https://doi.org/10.3390/diagnostics14151611
Chicago/Turabian StyleKuo, Shu-Fang, Tsung-Yu Huang, Chih-Yi Lee, and Chen-Hsiang Lee. 2024. "Comparison of the Direct Identification and Short-Term Incubation Methods for Positive Blood Cultures via MALDI-TOF Mass Spectrometry" Diagnostics 14, no. 15: 1611. https://doi.org/10.3390/diagnostics14151611
APA StyleKuo, S. -F., Huang, T. -Y., Lee, C. -Y., & Lee, C. -H. (2024). Comparison of the Direct Identification and Short-Term Incubation Methods for Positive Blood Cultures via MALDI-TOF Mass Spectrometry. Diagnostics, 14(15), 1611. https://doi.org/10.3390/diagnostics14151611