A Cross-Sectional Validation of Horos and CoreSlicer Software Programs for Body Composition Analysis in Abdominal Computed Tomography Scans in Colorectal Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.2.1. Image Analysis
2.2.2. Operative Definitions of Dynapenia, Muscle Atrophy, Sarcopenia, and Visceral Obesity
2.2.3. Basic Anthropometry Protocol
2.2.4. Clinical Variables and Cancer Staging
2.2.5. Data Quality
2.3. Data Analysis
3. Results
3.1. Clinical and Demographical Descriptions of the Study Sample
3.2. Image Analysis Characteristics
3.3. Comparisons of Tissue CSAs and Tissue Intensities between Software Programs
3.4. Correlations of Tissue CSAs and Tissue Intensities between Software Programs
3.5. Agreement of Tissue CSA and Tissue Intensity between Software Programs
3.6. Handgrip Strength and Dynapenia
3.7. Misclassification Error and Its Clinical Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shachar, S.S.; Williams, G.R.; Muss, H.B.; Nishijima, T.F. Prognostic Value of Sarcopenia in Adults with Solid Tumours: A Meta-Analysis and Systematic Review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver Validation of Skeletal Muscle Measurement by Magnetic Resonance Imaging and Computerized Tomography. J. Appl. Physiol. 1998, 85, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A Practical and Precise Approach to Quantification of Body Composition in Cancer Patients Using Computed Tomography Images Acquired during Routine Care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St.-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total Body Skeletal Muscle and Adipose Tissue Volumes: Estimation from a Single Abdominal Cross-Sectional Image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef]
- Gohmann, R.F.; Gottschling, S.; Seitz, P.; Temiz, B.; Krieghoff, C.; Lücke, C.; Horn, M.; Gutberlet, M. 3D-Segmentation and Characterization of Visceral and Abdominal Subcutaneous Adipose Tissue on CT: Influence of Contrast Medium and Contrast Phase. Quant. Imaging Med. Surg. 2021, 11, 697–705. [Google Scholar] [CrossRef]
- Fischer, A.; Hertwig, A.; Hahn, R.; Anwar, M.; Siebenrock, T.; Pesta, M.; Liebau, K.; Timmermann, I.; Brugger, J.; Posch, M.; et al. Validation of Bedside Ultrasound to Predict Lumbar Muscle Area in the Computed Tomography in 200 Non-Critically Ill Patients: The USVALID Prospective Study. Clin. Nutr. 2022, 41, 829–837. [Google Scholar] [CrossRef]
- Fuchs, G.; Chretien, Y.R.; Mario, J.; Do, S.; Eikermann, M.; Liu, B.; Yang, K.; Fintelmann, F.J. Quantifying the Effect of Slice Thickness, Intravenous Contrast and Tube Current on Muscle Segmentation: Implications for Body Composition Analysis. Eur. Radiol. 2018, 28, 2455–2463. [Google Scholar] [CrossRef]
- Troschel, A.S.; Troschel, F.M.; Fuchs, G.; Marquardt, J.P.; Ackman, J.B.; Yang, K.; Fintelmann, F.J. Significance of Acquisition Parameters for Adipose Tissue Segmentation on CT Images. Am. J. Roentgenol. 2021, 217, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Hong, H.; Choi, Y.R.; Kim, D.H.; Kim, J.Y.; Yoon, J.-H.; Yoon, S.H. CT Analysis of Thoracolumbar Body Composition for Estimating Whole-Body Composition. Insights Imaging 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Mai, D.V.C.; Drami, I.; Pring, E.T.; Gould, L.E.; Lung, P.; Popuri, K.; Chow, V.; Beg, M.F.; Athanasiou, T.; Jenkins, J.T. A Systematic Review of Automated Segmentation of 3D Computed-tomography Scans for Volumetric Body Composition Analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1973–1986. [Google Scholar] [CrossRef]
- Alavi, D.H.; Sakinis, T.; Henriksen, H.; Beichmann, B.; Fløtten, A.-M.; Blomhoff, R.; Lauritzen, P.M. Body Composition Assessment by Artificial Intelligence from Routine Computed Tomography Scans in Colorectal Cancer: Introducing BodySegAI. JCSM Clin. Rep. 2022, 7, 55–64. [Google Scholar] [CrossRef]
- Wasserthal, J.; Breit, H.-C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.; Cyriac, J.; Yang, S.; et al. TotalSegmentator: Robust Segmentation of 104 Anatomical Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [Google Scholar] [CrossRef]
- Beetz, N.L.; Geisel, D.; Maier, C.; Auer, T.A.; Shnayien, S.; Malinka, T.; Neumann, C.C.M.; Pelzer, U.; Fehrenbach, U. Influence of Baseline CT Body Composition Parameters on Survival in Patients with Pancreatic Adenocarcinoma. J. Clin. Med. 2022, 11, 2356. [Google Scholar] [CrossRef] [PubMed]
- van Baar, H.; Winkels, R.M.; Brouwer, J.G.M.; Posthuma, L.; Bours, M.J.L.; Weijenberg, M.P.; Boshuizen, H.C.; van Zutphen, M.; van Duijnhoven, F.J.B.; Kok, D.E.; et al. Associations of Abdominal Skeletal Muscle Mass, Fat Mass, and Mortality among Men and Women with Stage I-III Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Caan, B.J.; Meyerhardt, J.A.; Weltzien, E.; Xiao, J.; Cespedes Feliciano, E.M.; Kroenke, C.H.; Castillo, A.; Kwan, M.L.; Prado, C.M. The Deterioration of Muscle Mass and Radiodensity Is Prognostic of Poor Survival in Stage I-III Colorectal Cancer: A Population-Based Cohort Study (C-SCANS). J. Cachexia Sarcopenia Muscle 2018, 9, 664–672. [Google Scholar] [CrossRef]
- Hopkins, J.J.; Reif, R.L.; Bigam, D.L.; Baracos, V.E.; Eurich, D.T.; Sawyer, M.B. The Impact of Muscle and Adipose Tissue on Long-Term Survival in Patients with Stage I to III Colorectal Cancer. Dis. Colon. Rectum. 2019, 62, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Shirdel, M.; Andersson, F.; Myte, R.; Axelsson, J.; Rutegård, M.; Blomqvist, L.; Riklund, K.; van Guelpen, B.; Palmqvist, R.; Gylling, B. Body Composition Measured by Computed Tomography Is Associated with Colorectal Cancer Survival, Also in Early-Stage Disease. Acta Oncol. 2020, 59, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Derksen, J.W.G.; Kurk, S.A.; Peeters, P.H.M.; Dorresteijn, B.; Jourdan, M.; van der Velden, A.M.T.; Nieboer, P.; de Jong, R.S.; Honkoop, A.H.; Punt, C.J.A.; et al. The Association between Changes in Muscle Mass and Quality of Life in Patients with Metastatic Colorectal Cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 919–928. [Google Scholar] [CrossRef]
- Barbalho, E.R.; Gonzalez, M.C.; Bielemann, R.M.; da Rocha, I.M.G.; de Sousa, I.M.; Bezerra, R.A.; de Medeiros, G.O.C.; Fayh, A.P.T. Is Skeletal Muscle Radiodensity Able to Indicate Physical Function Impairment in Older Adults with Gastrointestinal Cancer? Exp. Gerontol. 2019, 125, 110688. [Google Scholar] [CrossRef]
- Hanna, L.; Nguo, K.; Furness, K.; Porter, J.; Huggins, C.E. Association between Skeletal Muscle Mass and Quality of Life in Adults with Cancer: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 839–857. [Google Scholar] [CrossRef]
- Fujimoto, T.; Manabe, T.; Yukimoto, K.; Tsuru, Y.; Kitagawa, H.; Okuyama, K.; Takesue, S.; Kai, K.; Noshiro, H. Risk Factors for Postoperative Paralytic Ileus in Advanced-Age Patients after Laparoscopic Colorectal Surgery: A Retrospective Study of 124 Consecutive Patients. J. Anus Rectum Colon 2023, 7, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Caan, B.J.; Cespedes Feliciano, E.M.; Meyerhardt, J.A.; Peng, P.D.; Baracos, V.E.; Lee, V.S.; Ely, S.; Gologorsky, R.C.; Weltzien, E.; et al. Association of Low Muscle Mass and Low Muscle Radiodensity With Morbidity and Mortality for Colon Cancer Surgery. JAMA Surg. 2020, 155, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Hopkins, J.; Malietzis, G.; Jenkins, J.T.; Sawyer, M.B.; Brisebois, R.; MacLean, A.; Nelson, G.; Gramlich, L.; Baracos, V.E. Assessment of Computed Tomography (CT)-Defined Muscle and Adipose Tissue Features in Relation to Short-Term Outcomes After Elective Surgery for Colorectal Cancer: A Multicenter Approach. Ann. Surg. Oncol. 2018, 25, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Lieffers, J.R.; Bathe, O.F.; Fassbender, K.; Winget, M.; Baracos, V.E. Sarcopenia Is Associated with Postoperative Infection and Delayed Recovery from Colorectal Cancer Resection Surgery. Br. J. Cancer 2012, 107, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, J.J.; Skubleny, D.; Bigam, D.L.; Baracos, V.E.; Eurich, D.T.; Sawyer, M.B. Barriers to the Interpretation of Body Composition in Colorectal Cancer: A Review of the Methodological Inconsistency and Complexity of the CT-Defined Body Habitus. Ann. Surg. Oncol. 2018, 25, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Hacker, U.T.; Hasenclever, D.; Linder, N.; Stocker, G.; Chung, H.-C.; Kang, Y.-K.; Moehler, M.; Busse, H.; Lordick, F. Prognostic Role of Body Composition Parameters in Gastric/Gastroesophageal Junction Cancer Patients from the EXPAND Trial. J. Cachexia Sarcopenia Muscle 2020, 11, 135–144. [Google Scholar] [CrossRef] [PubMed]
- van Baar, H.; Beijer, S.; Bours, M.J.L.; Weijenberg, M.P.; van Zutphen, M.; van Duijnhoven, F.J.B.; Slooter, G.D.; Pruijt, J.F.M.; Dronkers, J.J.; Haringhuizen, A.; et al. Low Radiographic Muscle Density Is Associated with Lower Overall and Disease-Free Survival in Early-Stage Colorectal Cancer Patients. J. Cancer Res. Clin. Oncol. 2018, 144, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, C.H.; Prado, C.M.; Meyerhardt, J.A.; Weltzien, E.K.; Xiao, J.; Cespedes Feliciano, E.M.; Caan, B.J. Muscle Radiodensity and Mortality in Patients with Colorectal Cancer. Cancer 2018, 124, 3008–3015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, S.; Wang, Y.; Lin, X.; Ran, P.; Zhou, X.; Fu, W.; Wang, H. Impact of Body Composition During Neoadjuvant Chemoradiotherapy on Complications, Survival and Tumor Response in Patients With Locally Advanced Rectal Cancer. Front. Nutr. 2022, 9, 796601. [Google Scholar] [CrossRef]
- Kim, J.-M.; Chung, E.; Cho, E.-S.; Lee, J.-H.; Shin, S.-J.; Lee, H.S.; Park, E.J.; Baik, S.H.; Lee, K.Y.; Kang, J. Impact of Subcutaneous and Visceral Fat Adiposity in Patients with Colorectal Cancer. Clin. Nutr. 2021, 40, 5631–5638. [Google Scholar] [CrossRef]
- Słomian, G.; Świętochowska, E.; Nowak, G.; Pawlas, K.; Żelazko, A.; Nowak, P. Chemotherapy and Plasma Adipokines Level in Patients with Colorectal Cancer. Adv. Hyg. Exp. Med. 2017, 71, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Tolonen, A.; Pakarinen, T.; Sassi, A.; Kyttä, J.; Cancino, W.; Rinta-Kiikka, I.; Pertuz, S.; Arponen, O. Methodology, Clinical Applications, and Future Directions of Body Composition Analysis Using Computed Tomography (CT) Images: A Review. Eur. J. Radiol. 2021, 145, 109943. [Google Scholar] [CrossRef] [PubMed]
- Bocca, G.; Mastoridis, S.; Yeung, T.; James, D.R.C.; Cunningham, C. Visceral-to-Subcutaneous Fat Ratio Exhibits Strongest Association with Early Post-Operative Outcomes in Patients Undergoing Surgery for Advanced Rectal Cancer. Int. J. Colorectal. Dis. 2022, 37, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.K.; Park, K.J.; Ryoo, S.B.; Moon, S.H.; Oh, H.K.; Han, E.C. Prognostic Impact of Changes in Adipose Tissue Areas after Colectomy in Colorectal Cancer Patients. J. Korean Med. Sci. 2016, 31, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, A.; Pereira-Cunill, J.L.; Limón-Mirón, M.L.; López-Ladrón, A.; Salvador-Bofill, F.J.; García-Luna, P.P. A Cross-Sectional Validation Study of Camry EH101 versus JAMAR Plus Handheld Dynamometers in Colorectal Cancer Patients and Their Correlations with Bioelectrical Impedance and Nutritional Status. Nutrients 2024, 16, 1824. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-J.; Zhong, W.-H.; Liu, Y.-X.; Miao, H.-Z.; Li, Y.-C.; Ji, M.-H. Sample Size for Assessing Agreement between Two Methods of Measurement by Bland-Altman Method. Int. J. Biostat. 2016, 12, 20150039. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, N. blandPower: Tools for Bland-Altman Analysis. R Package Version 0.1.0. Available online: https://rdrr.io/github/nwisn/blandPower (accessed on 22 June 2024).
- RStudio Team. RStudio: Integrated Development for R. Available online: https://www.rstudio.com (accessed on 22 June 2024).
- Mullie, L.; Afilalo, J. CoreSlicer: A Web Toolkit for Analytic Morphomics. BMC Med. Imaging 2019, 19, 15. [Google Scholar] [CrossRef]
- Tschann, P.; Weigl, M.P.; Clemens, P.; Szeverinski, P.; Attenberger, C.; Kowatsch, M.; Jäger, T.; Emmanuel, K.; Brock, T.; Königsrainer, I. Sarcopenic Obesity Is a Risk Factor for Worse Oncological Long-Term Outcome in Locally Advanced Rectal Cancer Patients: A Retrospective Single-Center Cohort Study. Nutrients 2023, 15, 2632. [Google Scholar] [CrossRef]
- Rollins, K.E.; Awwad, A.; Macdonald, I.A.; Lobo, D.N. A Comparison of Two Different Software Packages for Analysis of Body Composition Using Computed Tomography Images. Nutrition 2019, 57, 92–96. [Google Scholar] [CrossRef]
- van Vugt, J.L.A.; Levolger, S.; Gharbharan, A.; Koek, M.; Niessen, W.J.; Burger, J.W.A.; Willemsen, S.P.; de Bruin, R.W.F.; IJzermans, J.N.M. A Comparative Study of Software Programmes for Cross-Sectional Skeletal Muscle and Adipose Tissue Measurements on Abdominal Computed Tomography Scans of Rectal Cancer Patients. J. Cachexia Sarcopenia Muscle 2017, 8, 285–297. [Google Scholar] [CrossRef]
- Pescatori, L.C.; Savarino, E.; Mauri, G.; Silvestri, E.; Cariati, M.; Sardanelli, F.; Sconfienza, L.M. Quantification of Visceral Adipose Tissue by Computed Tomography and Magnetic Resonance Imaging: Reproducibility and Accuracy. Radiol. Bras. 2019, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cevik, J.; Rozen, W. A Novel Optimization Technique of Computed Tomography Angiographic 3D-Reconstructions for Pre-Operative Planning of DIEP Flaps. JPRAS Open 2023, 35, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Van Vugt, J.L.A.; Van Putten, Y.; Van Der Kall, I.M.; Buettner, S.; D’Ancona, F.C.H.; Dekker, H.M.; Kimenai, H.J.A.N.; De Bruin, R.W.F.; Warlé, M.C.; IJzermans, J.N.M. Estimated Skeletal Muscle Mass and Density Values Measured on Computed Tomography Examinations in over 1000 Living Kidney Donors. Eur. J. Clin. Nutr. 2019, 73, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.D.; Almasaudi, A.S.; Dieu, L.B.; Horgan, P.G.; McSorley, S.T.; McMillan, D.C. The Relationship between Computed Tomography-derived Body Composition, Systemic Inflammatory Response, and Survival in Patients Undergoing Surgery for Colorectal Cancer. J. Cachexia Sarcopenia Muscle 2019, 10, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.L.; Bennett, A.M.; Donohoe, C.L.; Mongan, A.M.; Howard, J.M.; Lithander, F.E.; Pidgeon, G.P.; Reynolds, J.V.; Lysaght, J. Establishing Computed Tomography-Defined Visceral Fat Area Thresholds for Use in Obesity-Related Cancer Research. Nutr. Res. 2013, 33, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Earthman, C.P. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. JPEN J. Parenter. Enter. Nutr. 2015, 39, 787–822. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. JOSS 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Wilke, C. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R Package Version 1.1.3. Available online: https://CRAN.R-project.org/package=cowplot (accessed on 22 June 2024).
- Signorell, A. DescTools: Tools for Descriptive Statistics. R Package Version 0.99.54. Available online: https://CRAN.R-project.org/package=DescTools (accessed on 22 June 2024).
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.6.0. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 22 June 2024).
- Fox, J. The R Commander: A Basic-Statistics Graphical User Interface to R. J. Stat. Soft. 2005, 14, 1–42. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Barbalho, E.R.; Rocha, I.M.G.D.; Medeiros, G.O.C.D.; Friedman, R.; Fayh, A.P.T. Agreement between Software Programmes of Body Composition Analyses on Abdominal Computed Tomography Scans of Obese Adults. Arch. Endocrinol. Metab. 2019, 64, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Nappi, C.; Megna, R.; Volpe, F.; Ponsiglione, A.; Caiazzo, E.; Piscopo, L.; Mainolfi, C.G.; Vergara, E.; Imbriaco, M.; Klain, M.; et al. Quantification of Coronary Artery Atherosclerotic Burden and Muscle Mass: Exploratory Comparison of Two Freely Available Software Programs. Appl. Sci. 2022, 12, 5468. [Google Scholar] [CrossRef]
- Viddeleer, A.R.; Vedder, I.R.; Dob, R.; Bokkers, R.P.H. Objective Comparison of Commonly Used Computed Tomography Body Composition Analysis Software. Nutrition 2024, 123, 112421. [Google Scholar] [CrossRef]
- Martin, L.; Tom, M.; Basualdo-Hammond, C.; Baracos, V.; Gramlich, L. Piloting a Training Program in Computed Tomography Skeletal Muscle Assessment for Registered Dietitians. JPEN J. Parenter. Enteral. Nutr. 2022, 46, 1317–1325. [Google Scholar] [CrossRef]
Parameter | Results |
---|---|
Sample size (ni) | n = 68 |
Age (years) | Me = 64.72 |
IQR = 12.67 | |
Older than 65 (ni) | n = 32 (47.05%) |
Female (ni) | n = 31 (45.58%) |
Neoplasm location (ni) | Right colon, n = 13 |
Transverse colon, n = 4 | |
Left colon, n = 6 | |
Rectosigmoid, n = 5 | |
Sigma, n = 13 | |
Rectum, n = 27 | |
Stage (TNM) at diagnosis | IIA (n = 10); IIB (n = 2); IIC (n = 2) |
IIIA (n = 4); IIIB (n = 22); IIIC (n = 9) | |
IVA (n = 9); IVB (n = 10); IVC (n = 0) | |
Previous surgery | Yes, n = 58 |
No, n = 10 | |
First surgery | Abdomino-perineal resection, n = 3 |
Colostomy, n = 2 | |
Hepatectomy, n = 3 | |
Left hemi-colectomy, n = 8 | |
Low anterior resection, n = 16 | |
Right hemi-colectomy, n = 15 | |
Sigmoidectomy, n = 10 | |
Sub-total colectomy, n = 1 | |
Active chemotherapy (ni) | Yes, n = 17 |
No, n = 51 | |
ECOG (ni) | 0, n = 46 |
1, n = 22 | |
Weight (kg) | Mean = 74.17 |
SD = 14.61 | |
Height (m) | Mean = 1.644 |
SD = 0.092 | |
BMI (kg/m2) | Me = 27.0 |
IQR = 4.6 | |
BMI by group (ni) | Underweight, n = 4 |
Normal weight, n = 20 | |
Overweight, n = 30 | |
Grade 1 obesity, n = 7 | |
Grade 2 obesity, n = 7 |
CoreSlicer | Horos | Absolute Differences (cm2) | Δ (%) | p-Value | |
---|---|---|---|---|---|
MT | 130.682 (48.583) | 130.852 (48.260) | −0.008 (2.334) | −0.007 (1.882) | 0.537 |
SAT | 188.911 (128.498) | 187.352 (131.454) | 5.349 (6.844) | +2.576 (4.702) | 2.3 × 10−8 |
VAT | 182.990 (152.620) | 166.092 (147.960) | 12.171 (8.815) | +8.624 (5.591) | 7.9 × 10−12 |
IMAT | 8.700 (7.112) | 8.317 (7.760) | 0.187 (1.556) | +18.045 (2.572) | 0.08 |
CoreSlicer | Horos | Absolute Differences (HU) | Δ (%) | p-Value | |
---|---|---|---|---|---|
MT | 33.237 (12.038) | 35.398 (11.421) | −1.388 (2.016) | −4.163 (5.226) | 4.4 × 10−9 |
SAT | −103.945 (9.417) | −106.530 (8.177) | 2.538 (2.695) | −2.459 (2.688) | 2.8 × 10−12 |
VAT | −87.868 (11.788) | −92.723 (10.624) | 4.141 (3.824) | −4.542 (4.255) | 7.8 × 10−11 |
IMAT | −64.353 (5.453) | −65.272 (8.659) | 0.368 (2.201) | −0.537 (3.362) | 0.026 |
Measured Tissue | CSA (cm2, 95% CI) | Intensity (HU, 95% CI) |
---|---|---|
MT | 0.998 (0.997 to 0.998) | 0.982 (0.971 to 0.989) |
SAT | 0.998 (0.997 to 0.999) | 0.984 (0.975 to 0.990) |
VAT | 0.998 (0.996 to 0.998) | 0.946 (0.914 to 0.966) |
IMAT | 0.985 (0.976 to 0.990) | 0.843 (0.756 to 0.900) |
MT | SAT | VAT | IMAT | |
---|---|---|---|---|
ρ (95% CI) | 0.998 (0.997; 0.998) | 0.997 (0.995; 0.998) | 0.989 (0.984; 0.992) | 0.984 (0.974; 0.990) |
Bias (cm2) | 0.225 | 4.456 | 13.052 | 0.346 |
Δ (%) | 0.188 | 3.479 | 11.881 | 4.259 |
Lower LoA (cm2) | −3.354 | −5.460 | −1.151 | −2.432 |
Upper LoA (cm2) | 3.804 | 14.374 | 27.256 | 3.124 |
LoA range (cm2) | 7.159 | 19.835 | 28.407 | 5.557 |
MT | SAT | VAT | IMAT | |
---|---|---|---|---|
ρ (95% CI) | 0.967 (0.949; 0.979) | 0.930 (0.902; 0.951) | 0.824 (0.755; 0.875) | 0.797 (0.706; 0.862) |
Bias (HU) | −1.445 | 3.078 | 4.628 | 1.130 |
Δ (%) | −4.560 | −3.537 | −5.582 | −1.522 |
Lower LoA (HU) | −4.526 | −2.836 | −2.493 | 8.377 |
Upper LoA (HU) | 1.635 | 8.993 | 11.750 | −6.115 |
LoA range (HU) | 6.162 | 11.829 | 14.244 | 14.493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Sánchez, A.; Soriano-Redondo, M.E.; Pereira-Cunill, J.L.; Martínez-Ortega, A.J.; Rodríguez-Mowbray, J.R.; Ramallo-Solís, I.M.; García-Luna, P.P. A Cross-Sectional Validation of Horos and CoreSlicer Software Programs for Body Composition Analysis in Abdominal Computed Tomography Scans in Colorectal Cancer Patients. Diagnostics 2024, 14, 1696. https://doi.org/10.3390/diagnostics14151696
Jiménez-Sánchez A, Soriano-Redondo ME, Pereira-Cunill JL, Martínez-Ortega AJ, Rodríguez-Mowbray JR, Ramallo-Solís IM, García-Luna PP. A Cross-Sectional Validation of Horos and CoreSlicer Software Programs for Body Composition Analysis in Abdominal Computed Tomography Scans in Colorectal Cancer Patients. Diagnostics. 2024; 14(15):1696. https://doi.org/10.3390/diagnostics14151696
Chicago/Turabian StyleJiménez-Sánchez, Andrés, María Elisa Soriano-Redondo, José Luis Pereira-Cunill, Antonio Jesús Martínez-Ortega, José Ramón Rodríguez-Mowbray, Irene María Ramallo-Solís, and Pedro Pablo García-Luna. 2024. "A Cross-Sectional Validation of Horos and CoreSlicer Software Programs for Body Composition Analysis in Abdominal Computed Tomography Scans in Colorectal Cancer Patients" Diagnostics 14, no. 15: 1696. https://doi.org/10.3390/diagnostics14151696
APA StyleJiménez-Sánchez, A., Soriano-Redondo, M. E., Pereira-Cunill, J. L., Martínez-Ortega, A. J., Rodríguez-Mowbray, J. R., Ramallo-Solís, I. M., & García-Luna, P. P. (2024). A Cross-Sectional Validation of Horos and CoreSlicer Software Programs for Body Composition Analysis in Abdominal Computed Tomography Scans in Colorectal Cancer Patients. Diagnostics, 14(15), 1696. https://doi.org/10.3390/diagnostics14151696