Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images
Abstract
:1. Introduction
- Improve multi-class classification accuracy by using segmentation-based ROI cropping and transfer learning;
- Improve visualization of disease lesions in CXR films using lower-level information in the saliency map; we named it the ML-Crad-CAM (multi-layer Grad-CAM) algorithm;
- Propose severity assessment index (SAI) value from the saliency map as an indication of the severity level, which could be used for prognosis purposes.
2. Related Works
3. Methodology
3.1. Dataset
3.2. ROI Cropping
3.3. Data Augmentation
3.4. Classification and Visualization
4. Experimental Design and Results
5. Visualization and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278. [Google Scholar] [CrossRef] [PubMed]
- Duong, D. Alpha, Beta, Delta, Gamma: What’s important to know about SARS-CoV-2 variants of concern? Can. Med. Assoc. J. 2021, 193, E1059–E1060. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.S.A.; Karim, Q.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021, 398, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Lee, H.; Ko, J.; Pittet, M.J. COVID-19 diagnostics in context. Sci. Transl. Med. 2020, 12, eabc1931. [Google Scholar] [CrossRef]
- Han, Y.; Chen, C.; Tewfik, A.; Ding, Y.; Peng, Y. Pneumonia detection on chest x-ray using radiomic features and contrastive learning. In Proceedings of the 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 247–251. [Google Scholar]
- Khan, A.I.; Shah, J.L.; Bhat, M.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Comput. Methods Programs Biomed. 2020, 196, 105581. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Xu, H.; Shen, Q.; Zhang, X.; Fan, B.; Wang, C.; Li, H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 2020, 126, 108961. [Google Scholar] [CrossRef] [PubMed]
- Sirazitdinov, I.; Kholiavchenko, M.; Mustafaev, T.; Yixuan, Y.; Kuleev, R.; Ibragimov, B. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput. Electr. Eng. 2019, 78, 388–399. [Google Scholar] [CrossRef]
- Infante, M.; Lutman, R.; Imparato, S.; Di Rocco, M.; Ceresoli, G.; Torri, V.; Bottoni, E. Differential diagnosis and management of focal ground-glass opacities. Eur. Respir. J. 2009, 33, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Whitney; Palmer, J. Physician Specialty Shortage-Including Radiologist-Continue to Climb. Diagnostic Imaging. Available online: https://www.diagnosticimaging.com/view/physician-specialty-shortage-including-radiologists-continues-to-climb (accessed on 2 August 2024).
- Doi, K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 2007, 31, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Liston, C. New machine-learning technologies for computer-aided diagnosis. Nat. Med. 2018, 24, 1304–1305. [Google Scholar] [CrossRef]
- Nazarian, S.; Glover, B.; Ashrafian, H.; Darzi, A.; Teare, J. Diagnostic accuracy of artificial intelligence and computer-aided diagnosis for the detection and characterization of colorectal polyps: Systematic review and meta-analysis. J. Med. Internet Res. 2021, 23, e27370. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, J.; Li, Q.; Appelbaum, D.; Doi, K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin. Nucl. Med. 2011, 41, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, Z.; Chen, T.; Hu, X.; Zhang, Q.; Xiong, X. Design Space Exploration for YOLO Neural Network Accelerator. Electronics 2020, 9, 1921. [Google Scholar] [CrossRef]
- Huang, S.; Huang, M.; Zhang, Y.; Li, M. Under Water Object Detection Based on Convolution Neural Network. In Proceedings of the International Conference on Web Information Systems and Applications, Qingdao, China, 20–22 September 2019; Springer: Berlin, Germany, 2019; pp. 47–58. [Google Scholar]
- Wen, Y.; Rahman, M.F.; Xu, H.; Tseng, T.-L.B. Recent Advances and Trends of Predictive Maintenance from Data-driven Machine Prognostics Perspective. Measurement 2021, 187, 110276. [Google Scholar] [CrossRef]
- Ayan, E.; Ünver, H.M. Diagnosis of pneumonia from chest X-ray images using deep learning. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Chouhan, V.; Singh, S.K.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; De Albuquerque, V.H.C. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl. Sci. 2020, 10, 559. [Google Scholar] [CrossRef]
- Jain, R.; Nagrath, P.; Kataria, G.; Kaushik, V.S.; Hemanth, D.J. Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning. Measurement 2020, 165, 108046. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.-H.; Zhang, S.-C.; Liu, L.; Wu, M.; Cheng, M.-M. Revisiting Computer-Aided Tuberculosis Diagnosis. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 46, 2316–2332. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Mo, J.; Zhou, G.; Xu, L.; Liu, Y. An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. PLoS ONE 2020, 15, e0242535. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Abdelsamea, M.M.; Gaber, M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell. 2021, 51, 854–864. [Google Scholar] [CrossRef]
- El-Rashidy, N.; El-Sappagh, S.; Islam, S.R.; El-Bakry, H.M.; Abdelrazek, S. End-to-end deep learning framework for coronavirus (COVID-19) detection and monitoring. Electronics 2020, 9, 1439. [Google Scholar] [CrossRef]
- Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-COVID: Predicting COVID-19 from chest x-ray images using deep transfer learning. Med. Image Anal. 2020, 65, 101794. [Google Scholar] [CrossRef] [PubMed]
- Ismael, A.M.; Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2021, 164, 114054. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.R.; Nayak, D.R.; Sinha, U.; Arora, V.; Pachori, R.B. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomed. Signal Process. Control 2021, 64, 102365. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.K.; Rahman, M.M.; Kabir, M.A. PDCOVIDNet: A parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images. Health Inf. Sci. Syst. 2020, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, H.; Xu, C. Deep learning for the detection of COVID-19 using transfer learning and model integration. In Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 281–284. [Google Scholar]
- Loey, M.; El-Sappagh, S.; Mirjalili, S. Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data. Comput. Biol. Med. 2022, 142, 105213. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Chowdhury, M.E.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kashem, S. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl. Sci. 2020, 10, 3233. [Google Scholar] [CrossRef]
- Hussain, E.; Hasan, M.; Rahman, M.A.; Lee, I.; Tamanna, T.; Parvez, M.Z. CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. Chaos Solitons Fractals 2021, 142, 110495. [Google Scholar] [CrossRef] [PubMed]
- Panwar, H.; Gupta, P.; Siddiqui, M.K.; Morales-Menendez, R.; Bhardwaj, P.; Singh, V. A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images. Chaos Solitons Fractals 2020, 140, 110190. [Google Scholar] [CrossRef]
- Umair, M.; Khan, M.S.; Ahmed, F.; Baothman, F.; Alqahtani, F.; Alian, M.; Ahmad, J. Detection of COVID-19 Using Transfer Learning and Grad-CAM Visualization on Indigenously Collected X-ray Dataset. Sensors 2021, 21, 5813. [Google Scholar] [CrossRef]
- Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Al Emadi, N. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Khan, M.S. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 2021, 132, 104319. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Jian, S.; Hongda, P.; Zhiguo, Z.; Haibin, G. An image enhancement method based on gamma correction. In Proceedings of the 2009 Second International Symposium on Computational Intelligence and Design, Changsha, China, 12–14 December 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 1, pp. 60–63. [Google Scholar]
- Rahman, M.F.; Tseng, T.-L.B.; Pokojovy, M.; Qian, W.; Totada, B.; Xu, H. An automatic approach to lung region segmentation in chest x-ray images using adapted U-Net architecture. Int. Soc. Opt. Photonics 2021, 11595, 115953I. [Google Scholar]
- Jaeger, S.; Candemir, S.; Antani, S.; Wáng, Y.-X.J.; Lu, P.-X.; Thoma, G. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 2014, 4, 475. [Google Scholar] [PubMed]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning; International Conference on Artificial Neural Networks; Springer: Berlin, Germany, 2018; pp. 270–279. [Google Scholar]
- Sitaula, C.; Hossain, M.B. Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl. Intell. 2021, 51, 2850–2863. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, K. Modified convolutional neural network with global average pooling for intelligent fault diagnosis of industrial gearbox. Eksploatacja i Niezawodność 2020, 22, 63–72. [Google Scholar] [CrossRef]
- Bae, W.; Noh, J.; Kim, G. Rethinking class activation mapping for weakly supervised object localization. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin, Germany, 2020; pp. 618–634. [Google Scholar]
- Huang, X.; Sun, W.; Tseng, T.-L.B.; Li, C.; Qian, W. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput. Med. Imaging Graph. 2019, 74, 25–36. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Narkhede, M.V.; Bartakke, P.P.; Sutaone, M.S. A review on weight initialization strategies for neural networks. Artif. Intell. Rev. 2022, 55, 291–322. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C. Revisiting spatial dropout for regularizing convolutional neural networks. Multimed. Tools Appl. 2020, 79, 34195–34207. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
Class | Before Augmentation | Augmentation Techniques | After Augmentation |
---|---|---|---|
COVID-19 | 2892 | “Vertical shift” and “Zoom” | 8678 |
Pneumonia | 4809 | “Vertical shift” or “Zoom” | 7214 |
Normal | 8153 | “None” | 8153 |
Class | Training | Validation (10% of Original Data) | Test (10% of Original Data) |
---|---|---|---|
COVID-19 | 2892 | 362 | 362 |
Normal | 8153 | 1019 | 1020 |
Pneumonia | 4809 | 601 | 602 |
Total | 15,854 | 1982 | 1984 |
Reference | Methid | Classification Task | COVID | Pneumonia | Noraml | Accuracy |
---|---|---|---|---|---|---|
[22] | TL | Binary | 565 | - | 537 | 96.7% |
[23] | TL | Binary | 105 | - | 80 | 93.1% |
[24] | DL | Binary | 250 | - | 500 | 97.9% |
[25] | TL | Binary | 184 | - | 5000 | 92.3% |
[28] | CNN | Multi-Class | 219 | 1345 | 1341 | 96.5% |
[29] | ResNet | Multi-Class | 140 | 9576 | 8851 | 96.1% |
[30] | DL | Multi-Class | 3616 | 3616 | 3616 | 96.0% |
Proposed Method | DL | Multi-Class | 362 | 602 | 1020 | 96.5% |
Experiments | Overall Acc. | P(C) * | R(C) | P(P) | R(P) | P(N) | R(N) |
---|---|---|---|---|---|---|---|
Exp-1 | 0.856 | 0.681 | 0.867 | 0.893 | 0.792 | 0.918 | 0.890 |
Exp-2 | 0.930 | 0.834 | 0.928 | 0.956 | 0.947 | 0.953 | 0.921 |
Exp-3 | 0.965 | 0.891 | 0.972 | 0.983 | 0.977 | 0.983 | 0.955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.F.; Tseng, T.-L.; Pokojovy, M.; McCaffrey, P.; Walser, E.; Moen, S.; Vo, A.; Ho, J.C. Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images. Diagnostics 2024, 14, 1699. https://doi.org/10.3390/diagnostics14161699
Rahman MF, Tseng T-L, Pokojovy M, McCaffrey P, Walser E, Moen S, Vo A, Ho JC. Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images. Diagnostics. 2024; 14(16):1699. https://doi.org/10.3390/diagnostics14161699
Chicago/Turabian StyleRahman, Md Fashiar, Tzu-Liang (Bill) Tseng, Michael Pokojovy, Peter McCaffrey, Eric Walser, Scott Moen, Alex Vo, and Johnny C. Ho. 2024. "Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images" Diagnostics 14, no. 16: 1699. https://doi.org/10.3390/diagnostics14161699
APA StyleRahman, M. F., Tseng, T. -L., Pokojovy, M., McCaffrey, P., Walser, E., Moen, S., Vo, A., & Ho, J. C. (2024). Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images. Diagnostics, 14(16), 1699. https://doi.org/10.3390/diagnostics14161699