Predicting Complete Cytoreduction with Preoperative [18F]FDG PET/CT in Patients with Ovarian Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- enrolled patients were diagnosed with ovarian cancer;
- patients underwent primary or secondary cytoreductive surgery;
- patients had preoperative FDG-PET/CT performed prior to cytoreductive surgeries;
- patients could be categorized into favorable and unfavorable groups according to their PET/CT results, and complete vs. incomplete cytoreductive surgeries could be distinguished;
- the number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) cases can be determined from the articles.
- Grouping the cases into these four categories was performed using the following definitions:
- TP = PET/CT favorable and complete cytoreduction achieved;
- TN = PET/CT unfavorable and incomplete cytoreduction achieved;
- FP = PET/CT favorable and incomplete cytoreduction achieved;
- FN = PET/CT unfavorable and complete cytoreduction achieved.
- all articles that were reviews, guidelines, case reports, clinical trials, preclinical studies, and poster abstracts were excluded;
- articles that used radiopharmaceuticals other than FDG;
- data from prediction models that included PET/CT results alongside other laboratory and clinical results (e.g., CA-125, HE-4);
- articles that categorized cases as optimal debulking (less than 1 cm residual tumor diameter) and suboptimal debulking (more than 1 cm residual tumor diameter).
2.2. Search Strategy
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
2.6. PRISMA Statement
3. Results
3.1. Study Selection and Characteristics
3.2. Quality Assessment
3.3. Predictive Performance of [18F]FDG PET/CT
3.3.1. Sensitivity
3.3.2. Specificity
3.3.3. Positive Predictive Value
3.3.4. Negative Predictive Value
3.3.5. Summary Receiver Operating Characteristic (SROC) Curves
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Kuroki, L.; Guntupalli, S.R. Treatment of epithelial ovarian cancer. BMJ 2020, 371, 3773. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Renz, M.; Kehoe, S.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int. J. Gynaecol. Obstet. 2021, 155 (Suppl. S1), 61–85. [Google Scholar] [CrossRef]
- Tanizaki, Y.; Kobayashi, A.; Shiro, M.; Ota, N.; Takano, R.; Mabuchi, Y.; Yagi, S.; Minami, S.; Terada, M.; Ino, K. Diagnostic value of preoperative SUVmax on FDG-PET/CT for the detection of ovarian cancer. Int. J. Gynecol. Cancer 2014, 24, 454–460. [Google Scholar] [CrossRef]
- Sehouli, J.; Grabowski, J.P. Surgery in recurrent ovarian cancer. Cancer 2019, 125, 4598–4601. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.C.; Hsu, P.J.; Lee, C.W.; Hsu, J.T.; Wu, T.J. Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Gastric Cancer with Peritoneal Carcinomatosis: Additional Information Helps to Optimize Patient Selection before Surgery. Cancers 2023, 15, 2089. [Google Scholar] [CrossRef] [PubMed]
- Schorge, J.O.; Bregar, A.J.; Durfee, J.; Berkowitz, R.S.; Meigs, J.V. Meigs to modern times: The evolution of debulking surgery in advanced ovarian cancer. Gynecol. Oncol. 2018, 149, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.J.; Bristow, R.E. Evolution of surgical treatment paradigms for advanced-stage ovarian cancer: Redefining ‘optimal’ residual disease. Gynecol. Oncol. 2012, 125, 483–492. [Google Scholar] [CrossRef]
- Pinto, P.; Burgetova, A.; Cibula, D.; Haldorsen, I.S.; Indrielle-Kelly, T.; Fischerova, D. Prediction of Surgical Outcome in Advanced Ovarian Cancer by Imaging and Laparoscopy: A Narrative Review. Cancers 2023, 15, 1904. [Google Scholar] [CrossRef]
- Querleu, D.; Planchamp, F.; Chiva, L.; Fotopoulou, C.; Barton, D.; Cibula, D.; Aletti, G.; Carinelli, S.; Creutzberg, C.; Davidson, B.; et al. European Society of Gynaecological Oncology (ESGO) Guidelines for Ovarian Cancer Surgery. Int. J. Gynecol. Cancer 2017, 27, 1534–1542. [Google Scholar] [CrossRef]
- Song, Y.J. Prediction of optimal debulking surgery in ovarian cancer. Gland. Surg. 2021, 10, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Mangieri, C.W.; Moaven, O.; Valenzuela, C.D.; Erali, R.A.; Votanopoulos, K.I.; Shen, P.; Levine, E.A. Utility of hyperthermic intraperitoneal chemotherapy in cases of incomplete cytoreductive surgery. J. Surg. Oncol. 2022, 125, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Suidan, R.S.; Ramirez, P.T.; Sarasohn, D.M.; Teitcher, J.B.; Iyer, R.B.; Zhou, Q.; Iasonos, A.; Denesopolis, J.; Zivanovic, O.; Long Roche, K.C.; et al. A multicenter assessment of the ability of preoperative computed tomography scan and CA-125 to predict gross residual disease at primary debulking for advanced epithelial ovarian cancer. Gynecol. Oncol. 2017, 145, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Duska, L.R.; Lambrou, N.C.; Fishman, E.K.; O’Neill, M.J.; Trimble, E.L.; Montz, F.J. A model for predicting surgical outcome in patients with advanced ovarian carcinoma using computed tomography. Cancer 2000, 89, 1532–1540. [Google Scholar] [CrossRef]
- Delgado Bolton, R.C.; Aide, N.; Colletti, P.M.; Ferrero, A.; Paez, D.; Skanjeti, A.; Giammarile, F. EANM guideline on the role of 2-[18F]FDG PET/CT in diagnosis, staging, prognostic value, therapy assessment and restaging of ovarian cancer, endorsed by the American College of Nuclear Medicine (ACNM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI) and the International Atomic Energy Agency (IAEA). Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3286–3302. [Google Scholar]
- Tawakol, A.; Abdelhafez, Y.G.; Osama, A.; Hamada, E.; El Refaei, S. Diagnostic performance of 18F-FDG PET/contrast-enhanced CT versus contrast-enhanced CT alone for post-treatment detection of ovarian malignancy. Nucl. Med. Commun. 2016, 37, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef]
- Zamora, J.; Abraira, V.; Muriel, A.; Khan, K.; Coomarasamy, A. Meta-DiSc: A software for meta-analysis of test accuracy data. BMC Med. Res. Methodol. 2006, 6, 31. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Chong, G.O.; Jeong, S.Y.; Lee, Y.H.; Lee, H.J.; Lee, S.W.; Han, H.S.; Hong, D.G.; Lee, Y.S. The ability of whole-body SUVmax in F-18 FDG PET/CT to predict suboptimal cytoreduction during primary debulking surgery for advanced ovarian cancer. J. Ovarian Res. 2019, 12, 12. [Google Scholar] [CrossRef]
- Boria, F.; Chiva, L.; Carbonell, M.; Gutierrez, M.; Sancho, L.; Alcazar, A.; Coronado, M.; Hernández Gutiérrez, A.; Zapardiel, I. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) predictive score for complete resection in primary cytoreductive surgery. Int. J. Gynecol. Cancer, 2022; ahead of print. [Google Scholar] [CrossRef]
- Kim, J.; Gil, J.; Kim, S.I.; Hwangbo, S.; Noh, J.J.; Lee, J.W.; Cheon, G.J.; Kim, J.W.; Cho, Y.S.; Lee, M. Development and Validation of 18F-FDG PET/CT-Based Models for Predicting Successful Complete Cytoreduction During Primary Cytoreductive Surgery for Advanced Ovarian cancer. Clin. Nucl. Med. 2023, 48, e51–e59. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Cho, A.; Lee, J.H.; Yun, M.; Lee, J.D.; Kim, Y.T.; Kang, W.J. The role of metabolic tumor volume and total lesion glycolysis on ¹⁸F-FDG PET/CT in the prognosis of epithelial ovarian cancer. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1898–1906. [Google Scholar] [CrossRef]
- Lenhard, S.M.; Burges, A.; Johnson, T.R.; Kirschenhofer, A.; Bruns, C.; Linke, R.; Friese, K. Predictive value of PET-CT imaging versus AGO-scoring in patients planned for cytoreductive surgery in recurrent ovarian cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 140, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.L.; Teixeira, F.R.; Diniz, T.P.; Faloppa, C.C.; Mantoan, H.; da Costa, A.A.B.A.; Baiocchi, G. The value of PET/CT for cytoreductive surgery selection in recurrent ovarian carcinoma. J. Gynecol. Oncol. 2023, 34, e31. [Google Scholar] [CrossRef] [PubMed]
- Risum, S.; Høgdall, C.; Loft, A.; Berthelsen, A.K.; Høgdall, E.; Nedergaard, L.; Lundvall, L.; Engelholm, S.A. Prediction of suboptimal primary cytoreduction in primary ovarian cancer with combined positron emission tomography/computed tomography--a prospective study. Gynecol. Oncol. 2008, 108, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, T.T.; Chiu, K.W.H.; Chu, M.Y.; Ngan, H.Y.S.; Lee, E.Y.P. Metabolic active peritoneal sites affect tumor debulking in ovarian and peritoneal cancers. J. Ovarian Res. 2020, 13, 61. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Pang, H.; Liu, L.; Jing, X.; Li, Y. Preoperative PET/CT score can predict incomplete resection after debulking surgery for advanced serous ovarian cancer better than CT score, MTV, tumor markers and hematological markers. Acta Obstet. Gynecol. Scand. 2022, 101, 1315–1327. [Google Scholar] [CrossRef]
- Fotopoulou, C.; Planchamp, F.; Aytulu, T.; Chiva, L.; Cina, A.; Ergönül, Ö.; Fagotti, A.; Haidopoulos, D.; Hasenburg, A.; Hughes, C.; et al. European Society of Gynaecological Oncology guidelines for the peri-operative management of advanced ovarian cancer patients undergoing debulking surgery. Int. J. Gynecol. Cancer 2021, 31, 1199–1206. [Google Scholar] [CrossRef]
- Engbersen, M.P.; Van Driel, W.; Lambregts, D.; Lahaye, M. The role of CT, PET-CT, and MRI in ovarian cancer. Br. J. Radiol. 2021, 94, 20210117. [Google Scholar] [CrossRef]
- Kitajima, K.; Murakami, K.; Yamasaki, E.; Domeki, Y.; Kaji, Y.; Fukasawa, I.; Inaba, N.; Suganuma, N.; Sugimura, K. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent ovarian cancer: Comparison with integrated FDG-PET/non-contrast-enhanced CT and enhanced CT. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1439–1448. [Google Scholar] [CrossRef]
- Climent, M.T.; Serra, A.; Llueca, M.; Llueca, A. Surgery in Recurrent Ovarian Cancer: A Meta-Analysis. Cancers 2023, 15, 3470. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Yin, S.; Zhu, J.; Zhang, P.; Liu, J.; Zhu, Y.; Wu, S.; Chen, X.; Wang, X.; Teng, Y.; et al. A phase II trial of cytoreductive surgery combined with niraparib maintenance in platinum-sensitive, secondary recurrent ovarian cancer: SGOG SOC-3 study. J. Gynecol. Oncol. 2020, 31, e61. [Google Scholar] [CrossRef] [PubMed]
Study | Year | No. of Patients | Variable Measured | Surgery | Study Type |
---|---|---|---|---|---|
Boria et al. [21] | 2022 | 45 | Extra-abdominal lymph node involvement | Primary | Retrospective |
Kim et al. [22] | 2023 | 159 | MTV in epigastric and hypochondriac regions | Primary | Retrospective |
Lee et al. [23] | 2014 | 166 | TLG | Primary | Retrospective |
Lenhard et al. [24] | 2008 | 16 | PET/CT read | Secondary | Retrospective |
Nunes et al. [25] | 2023 | 69 | Number of lesions | Secondary | Retrospective |
Risum et al. [26] | 2008 | 54 | Large bowel mesentery implants | Primary | Prospective |
Tsoi et al. [27] | 2020 | 49 | Number of FDG-avid peritoneal sites | Primary and Secondary | Retrospective |
Wang et al. [28] ➥ Primary ➥ Secondary | 2022 | 62 38 24 | MTV | Primary and Secondary | Retrospective |
Boria et al. [21] | Kim et al. [22] | Lee et al. [23] | Lenhard et al. [24] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Epithelial | 41 | 91.1% | Epithelial | 149 | 93.7% | Epithelial | 163 | 98.2% | Epithelial | 16 | 100.0% | |
High-grade serous | 35 | 77.8% | Serous | 118 | 74.2% | Serous | 110 | 66.3% | All | 16 | ||
Low-grade serous | 2 | 4.4% | Endometrioid | 12 | 7.5% | Endometrioid | 18 | 10.8% | ||||
Clear cell | 3 | 6.7% | Mucinous | 5 | 3.1% | Mucinous | 16 | 9.6% | ||||
Endometrioid | 1 | 2.2% | Clear cell | 14 | 8.8% | Clear cell | 19 | 11.4% | ||||
Other | 4 | 8.9% | Other | 10 | 6.3% | Other | 3 | 1.8% | ||||
All | 45 | Mixed | 9 | 5.7% | Mixed | 3 | 1.8% | |||||
Other | 1 | 0.6% | All | 166 | ||||||||
All | 159 | |||||||||||
Nunes et al. [25] | Risum et al. [26] | Tsoi et al. [27] | Wang et al. [28] | |||||||||
Epithelial | 65 | 94.2% | Epithelial | 53 | 98.1% | Epithelial | 43 | 87.8% | Epithelial | 62 | 100.0% | |
High-grade serous | 54 | 78.3% | Serous | 50 | 92.6% | Other | 6 | 12.2% | Serous | 62 | 100.0% | |
Low-grade serous | 3 | 4.3% | Mucinous | 2 | 3.7% | Germ cell | 4 | 8.2% | All | 62 | ||
Clear cell | 4 | 5.8% | Endometrioid | 1 | 1.9% | Stromal cell | 2 | 4.1% | ||||
Endometrioid | 4 | 5.8% | Other | 1 | 1.9% | All | 49 | |||||
Other | 4 | 5.8% | Transitional cell | 1 | 1.9% | |||||||
Mixed | 3 | 4.3% | All | 54 | ||||||||
Carcinosarcoma All | 1 69 | 1.4% | ||||||||||
All | ||||||||||||
Epithelial | 596 | 96.1% | ||||||||||
Other | 24 | 3.9% | ||||||||||
All | 620 |
Stage | Boria et al. [21] | Kim et al. [22] | Lee et al. [23] | Lenhard et al. [24] | Nunes et al. [25] | Risum et al. [26] | Tsoi et al. [27] | Wang et al. [28] | All | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIGO I. | 65 | 39.2% | 7 | 10.1% | 15 | 30.6% | 100 | 16.1% | ||||||||||
FIGO II. | 1 | 1.4% | 12 | 24.5% | ||||||||||||||
FIGO III. | 36 | 80.0% | 115 | 72.3% | 87 | 52.4% | 55 | 79.7% | 50 | 92.6% | 18 | 36.7% | 37 | 59.7% | 398 | 64.2% | ||
FIGO IV. | 9 | 20.0% | 44 | 27.7% | 14 | 8.4% | 6 | 8.7% | 4 | 7.4% | 1 | 2.0% | 25 | 40.3% | 103 | 16.6% | ||
Unknown | 16 | 100.0% | 3 | 6.1% | 19 | 3.1% | ||||||||||||
All | 45 | 159 | 166 | 16 | 69 | 54 | 49 | 62 | 620 |
Study | Risk of Bias | Applicability | |||||||
---|---|---|---|---|---|---|---|---|---|
Participants | Predictors | Outcome | Analysis | Overall | Participants | Predictors | Outcome | Overall | |
Boria et al. [21] | Unclear ◉ | Low ◉ | Low ◉ | Low ◉ | Unclear ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Kim et al. [22] | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Lee et al. [23] | Unclear ◉ | Low ◉ | Low ◉ | Unclear ◉ | Unclear ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Lenhard et al. [24] | Unclear ◉ | Unclear ◉ | High ◉ | High ◉ | High ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Nunes et al. [25] | Unclear ◉ | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Risum et al. [26] | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Tsoi et al. [27] | High ◉ | Low ◉ | Low ◉ | Low ◉ | High ◉ | High concerns ◉ | Low concerns ◉ | Low concerns ◉ | High concerns ◉ |
Wang et al. [28] | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ | Low concerns ◉ |
Study | TP | FP | TN | FN | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|---|
Boria et al. [21] | 33 | 5 | 4 | 3 | 91.7% | 44.4% | 86.8% | 57.1% |
Kim et al. [22] | 63 | 11 | 44 | 41 | 60.6% | 80.0% | 85.1% | 51.8% |
Lee et al. [23] | 59 | 5 | 40 | 62 | 48.8% | 88.9% | 92.2% | 39.2% |
Lenhard et al. [24] | 11 | 2 | 3 | 0 | 100.0% | 60.0% | 84.6% | 100.0% |
Nunes et al. [25] | 48 | 5 | 5 | 11 | 81.4% | 50.0% | 90.6% | 31.3% |
Risum et al. [26] | 13 | 8 | 27 | 6 | 68.4% | 77.1% | 61.9% | 81.8% |
Tsoi et al. [27] | 38 | 7 | 4 | 0 | 100.0% | 36.4% | 84.4% | 100.0% |
Wang et al. [28] | 32 | 13 | 12 | 5 | 86.5% | 48.0% | 71.1% | 70.6% |
➥Primary | 14 | 11 | 9 | 4 | 77.8% | 45.0% | 56.0% | 69.2% |
➥Secondary | 18 | 2 | 3 | 1 | 94.7% | 60.0% | 90.0% | 75.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csikos, C.; Czina, P.; Molnár, S.; Kovács, A.R.; Garai, I.; Krasznai, Z.T. Predicting Complete Cytoreduction with Preoperative [18F]FDG PET/CT in Patients with Ovarian Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 1740. https://doi.org/10.3390/diagnostics14161740
Csikos C, Czina P, Molnár S, Kovács AR, Garai I, Krasznai ZT. Predicting Complete Cytoreduction with Preoperative [18F]FDG PET/CT in Patients with Ovarian Cancer: A Systematic Review and Meta-Analysis. Diagnostics. 2024; 14(16):1740. https://doi.org/10.3390/diagnostics14161740
Chicago/Turabian StyleCsikos, Csaba, Péter Czina, Szabolcs Molnár, Anna Rebeka Kovács, Ildikó Garai, and Zoárd Tibor Krasznai. 2024. "Predicting Complete Cytoreduction with Preoperative [18F]FDG PET/CT in Patients with Ovarian Cancer: A Systematic Review and Meta-Analysis" Diagnostics 14, no. 16: 1740. https://doi.org/10.3390/diagnostics14161740
APA StyleCsikos, C., Czina, P., Molnár, S., Kovács, A. R., Garai, I., & Krasznai, Z. T. (2024). Predicting Complete Cytoreduction with Preoperative [18F]FDG PET/CT in Patients with Ovarian Cancer: A Systematic Review and Meta-Analysis. Diagnostics, 14(16), 1740. https://doi.org/10.3390/diagnostics14161740