Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures
2.3. Psychometric Measures
2.4. Praxis Abilities Exercise
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadikoff, C.; Lang, A.E. Apraxia in movement disorders. Brain 2005, 128, 1480–1497. [Google Scholar] [CrossRef] [PubMed]
- Baumard, J.; Le Gall, D. The challenge of apraxia: Toward an operational definition? Cortex 2021, 141, 66–80. [Google Scholar] [CrossRef]
- Lane, D.; Tessari, A.; Ottoboni, G.; Marsden, J. Body representation in people with apraxia post Stroke—An observational study. Brain Inj. 2021, 35, 468–475. [Google Scholar] [CrossRef]
- Latarnik, S.; Stahl, J.; Vossel, S.; Grefkes, C.; Fink, G.R.; Weiss, P.H. The impact of apraxia and neglect on early rehabilitation outcome after stroke. Neurol. Res. Pract. 2022, 4, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- E Park, J. Apraxia: Review and Update. J. Clin. Neurol. 2017, 13, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Bergqvist, M.; Möller, M.C.; Björklund, M.; Borg, J.; Palmcrantz, S. The impact of visuospatial and executive function on activity performance and outcome after robotic or conventional gait training, long-term after stroke—As part of a randomized controlled trial. PLoS ONE 2023, 18, e0281212. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Lv, R.; Kuang, J.; Zhou, K.; Xu, M. Mediating effect of post-stroke depression between activities of daily living and health-related quality of life: Meta-analytic structural equation modeling. Qual. Life Res. 2023, 32, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, L.J.; Haaland, K.Y.; Hallett, M.; Wheaton, L.; Heilman, K.M.; Rodriguez, A.; Rothi, L.J.G. Treatment of limb apraxia: Moving forward to improved action. Am. J. Phys. Med. Rehabil. 2008, 87, 149–161. [Google Scholar] [CrossRef]
- Baak, B.; Bock, O.; Dovern, A.; Saliger, J.; Karbe, H.; Weiss, P.H. Deficits of reach-to-grasp coordination following stroke: Comparison of instructed and natural movements. Neuropsychologia 2015, 77, 1–9. [Google Scholar] [CrossRef]
- Galeoto, G.; Polidori, A.M.; Spallone, M.; Mollica, R.; Berardi, A.; Vanacore, N.; Celletti, C.; Carlizza, A.; Camerota, F. Evaluation of physiotherapy and speech therapy treatment in patients with apraxia: A systematic review and meta-analysis. La Clin. Ter. 2020, 171, E454–E465. [Google Scholar] [CrossRef]
- Satoh, M.; Mori, C.; Matsuda, K.; Ueda, Y.; Tabei, K.-I.; Kida, H.; Tomimoto, H. Improved Necker Cube Drawing-Based Assessment Battery for Constructional Apraxia: The Mie Constructional Apraxia Scale (MCAS). Dement. Geriatr. Cogn. Disord. Extra 2017, 6, 424–436. [Google Scholar] [CrossRef]
- Patsaki, I.; Dimitriadi, N.; Despoti, A.; Tzoumi, D.; Leventakis, N.; Roussou, G.; Papathanasiou, A.; Nanas, S.; Karatzanos, E. The effectiveness of immersive virtual reality in physical recovery of stroke patients: A systematic review. Front. Syst. Neurosci. 2022, 16, 880447. [Google Scholar] [CrossRef]
- Kim, W.-S.; Cho, S.; Ku, J.; Kim, Y.; Lee, K.; Hwang, H.-J.; Paik, N.-J. Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. J. Clin. Med. 2020, 9, 3369. [Google Scholar] [CrossRef] [PubMed]
- Ceradini, M.; Losanno, E.; Micera, S.; Bandini, A.; Orlandi, S. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: A scoping review. J. Neuroeng. Rehabil. 2024, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, J.-L.; Wong, A.M.; Liang, K.-C.; Tseng, K.C. Game-Based Virtual Reality System for Upper Limb Rehabilitation After Stroke in a Clinical Environment: Systematic Review and Meta-Analysis. Games Health J. 2022, 11, 277–297. [Google Scholar] [CrossRef]
- Cappadona, I.; Ielo, A.; La Fauci, M.; Tresoldi, M.; Settimo, C.; De Cola, M.C.; Muratore, R.; De Domenico, C.; Di Cara, M.; Corallo, F.; et al. Feasibility and Effectiveness of Speech Intervention Implemented with a Virtual Reality System in Children with Developmental Language Disorders: A Pilot Randomized Control Trial. Children 2023, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Calderone, A.; Gangemi, A.; Rifici, C.; Bonanno, M.; Maggio, M.G.; Cappadona, I.; Veneziani, I.; Ielo, A.; Corallo, F.; et al. Is Virtual Reality Orientation Therapy Useful to Optimize Cognitive and Behavioral Functioning Following Severe Acquired Brain Injury? An Exploratory Study. Brain Sci. 2024, 14, 410. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Bonanno, M.; Rifici, C.; Pollicino, P.; Caminiti, A.; Morone, G.; Calabrò, R.S. Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sci. 2022, 12, 1211. [Google Scholar] [CrossRef]
- Barhorst-Cates, E.M.; Isaacs, M.W.; Buxbaum, L.J.; Wong, A.L. Does spatial perspective in virtual reality affect imitation accuracy in stroke patients? Front. Virtual Real. 2022, 3, 934642. [Google Scholar] [CrossRef]
- Rohrbach, N.; Krewer, C.; Löhnert, L.; Thierfelder, A.; Randerath, J.; Jahn, K.; Hermsdörfer, J. Improvement of Apraxia with Augmented Reality: Influencing Pantomime of Tool Use via Holographic Cues. Front. Neurol. 2021, 12, 711900. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The frontal assessment battery (FAB): Normative values in an Italian population sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Italian standardisation and calibration of neuropsychological tests (in Italian language). Ital. J. Neurol. Sci. 1987, 8, 111–119. [Google Scholar]
- De Renzi, E.; Faglioni, P. Apraxia. In Handbook of Clinical and Experimental Neuropsy-Chology; Denes, G., Pizzamiglio, L., Eds.; Psychology Press: Hove, UK, 1999. [Google Scholar]
- Schmittmann, V.D.; Cramer, A.O.; Waldorp, L.J.; Epskamp, S.; Kievit, R.A.; Borsboom, D. Deconstructing the construct: A network perspective on psychological phenomena. New Ideas Psychol. 2013, 31, 43–53. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, L.D.; Rao, U.; Garber, J. Executive function moderates the relation between coping and depressive symptoms. Anxiety Stress. Coping 2015, 28, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lenze, E.J.; Mohr, D.C.; Lee, J.-M.; Hu, L.; Metts, C.L.; Fong, M.W.; Wong, A.W. Post-stroke Depressive Symptoms and Cognitive Performances: A Network Analysis. Arch. Phys. Med. Rehabil. 2024, 105, 892–900. [Google Scholar] [CrossRef]
- Hoffman, H.G.; Doctor, J.N.; Patterson, D.R.; Carrougher, G.J.; Furness, T.A. Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain 2000, 85, 305–309. [Google Scholar] [CrossRef]
- Howard, M.C. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput. Hum. Behav. 2017, 70, 317–327. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; A Michaleff, Z.; Howard, K.; Clemson, L.; Hopewell, S.; E Lamb, S. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019, 2019, CD012424. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual Reality for Stroke Rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Stagnitti, M.C.; Rizzo, E.; Andaloro, A.; Manuli, A.; Bruschetta, A.; Naro, A.; Calabrò, R.S. Limb apraxia in individuals with multiple sclerosis: Is there a role of semi-immersive virtual reality in treating the Cinderella of neuropsychology? Mult. Scler. Relat. Disord. 2023, 69, 104405. [Google Scholar] [CrossRef] [PubMed]
- Rapaic, D.; Medenica, V.; Kozomora, R.; Ivanovic, L. Limb apraxia in multiple sclerosis. Vojn. Pregl. 2014, 71, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Kamm, C.P.; Heldner, M.R.; Vanbellingen, T.; Mattle, H.P.; Müri, R.; Bohlhalter, S. Limb Apraxia in Multiple Sclerosis: Prevalence and Impact on Manual Dexterity and Activities of Daily Living. Arch. Phys. Med. Rehabil. 2012, 93, 1081–1085. [Google Scholar] [CrossRef]
- Goldenberg, G.; Daumüller, M.; Hagmann, S. Assessment and therapy of complex activities of daily living in apraxia. Neuropsychol. Rehabil. 2001, 11, 147–169. [Google Scholar] [CrossRef]
- Alashram, A.R.; Annino, G.; Aldajah, S.; Raju, M.; Padua, E. Rehabilitation of limb apraxia in patients following stroke: A systematic review. Appl. Neuropsychol. Adult 2022, 29, 1658–1668. [Google Scholar] [CrossRef]
- Romano, D.; Tosi, G.; Gobbetto, V.; Pizzagalli, P.; Avesani, R.; Moro, V.; Maravita, A. Back in control of intentional action: Improvement of ideomotor apraxia by mirror box treatment. Neuropsychologia 2021, 160, 107964. [Google Scholar] [CrossRef]
- Kim, J.; Yi, J.; Song, C.-H. Kinematic analysis of head, trunk, and pelvic motion during mirror therapy for stroke patients. J. Phys. Ther. Sci. 2017, 29, 1793–1799. [Google Scholar] [CrossRef]
- Khrulev, A.; Kuryatnikova, K.; Belova, A.; Popova, P.; Khrulev, S. Modern Rehabilitation Technologies of Patients with Motor Disorders at an Early Rehabilitation of Stroke (Review). Sovrem. Tekhnologii v Med. 2022, 14, 64–78. [Google Scholar] [CrossRef]
- Pastore-Wapp, M.; Nyffeler, T.; Nef, T.; Bohlhalter, S.; Vanbellingen, T. Non-invasive brain stimulation in limb praxis and apraxia: A scoping review in healthy subjects and patients with stroke. Cortex 2021, 138, 152–164. [Google Scholar] [CrossRef]
- Maggio, M.G.; Naro, A.; Manuli, A.; Maresca, G.; Balletta, T.; Latella, D.; De Luca, R.; Calabrò, R.S. Effects of Robotic Neurorehabilitation on Body Representation in Individuals with Stroke: A Preliminary Study Focusing on an EEG-Based Approach. Brain Topogr. 2021, 34, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Russo, M.; Naro, A.; De Luca, R.; Leo, A.; Tomasello, P.; Molonia, F.; Dattola, V.; Bramanti, A.; Bramanti, P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J. Neurol. Sci. 2017, 377, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Banz, R.; Bolliger, M.; Colombo, G.; Dietz, V.; Lünenburger, L. Computerized Visual Feedback: An Adjunct to Robotic-Assisted Gait Training. Phys. Ther. 2008, 88, 1135–1145. [Google Scholar] [CrossRef]
- Emedoli, D.; Arosio, M.; Tettamanti, A.; Iannaccone, S. Virtual Reality Augmented Feedback Rehabilitation Associated to Action Observation Therapy in Buccofacial Apraxia: Case Report. Clin. Med. Insights Case Rep. 2021, 14, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Portaro, S.; Le Cause, M.; De Domenico, C.; Maggio, M.G.; Cristina Ferrera, M.; Giuffrè, G.; Bramanti, A.; Calabrò, R.S. Cog-nitive rehabilitation using immersive virtual reality at young age: A case report on traumatic brain injury. Appl. Neuro-Psychol. Child 2020, 9, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Kim, J.; Kim, M. Efficacy of virtual reality therapy in ideomotor apraxia rehabilitation. Medicine 2021, 100, e26657. [Google Scholar] [CrossRef]
- Qian, Q.; Zhao, J.; Zhang, H.; Yang, J.; Wang, A.; Zhang, M. Object-based inhibition of return in three-dimensional space: From simple drawings to real objects. J. Vis. 2023, 23, 7. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve☆. Neuropsychologia 2009, 47, 2015–2028. [Google Scholar] [CrossRef]
Domain | Objective of Therapy | Activities Carried Out through Traditional Therapy (Control Group) | Activities Carried Out through Therapy with VRRS (Experimental Group) |
---|---|---|---|
Ideomotor Apraxia | Therapy for ideomotor apraxia aims to improve the ability to perform intentional movements and coordination between thought and action in patients with this condition. |
|
|
Constructive Apraxia | Therapy for constructive apraxia aims to improve drawing, construction, and object manipulation skills in patients with this condition. |
|
|
Domain | Individual Session Duration | VRRS Therapy | Traditional Therapy | ||||
---|---|---|---|---|---|---|---|
Exercise | Description | Aim | Exercise | Description | Aim | ||
Ideomotor apraxia | 3 times a week for 60 min of traditional therapy or virtual reality therapy for 8 weeks | Virtual meal preparation | Simulation of food preparation, such as cutting and mixing. | Coordination and sequencing of complex movements. | Imitation of Movements | The patient imitates the hand and arm movements performed by the therapist. | Helps restore the ability to perform movements on command. |
Virtual money management | Count, manage, and give change in a virtual environment. | Strengthens computational and object manipulation skills. | Sequences of movements | The patient performs a series of movements in a specific sequence (e.g., bring a hand to the mouth, then raise an arm). | Improves the ability to perform sequences of motor actions. | ||
Farm | Simulation of virtual farming activities, such as cultivating and harvesting. | Improves motor sequence and coordination in complex tasks. | Gestures on command | The patient performs symbolic gestures such as waving, pointing, or mimicking the use of objects upon request. | Enhances the ability to perform learned gestures and actions on command. | ||
Virtual dressing | Clothing activities: buttoning shirts, putting on shoes. | Facilitates motor coordination and sequencing of complex movements. | Handling of objects | The patient manipulates everyday objects such as combs, pens or cups, performing appropriate actions with them. | Strengthens the ability to use objects functionally. | ||
Replica of gestures | Perform gestures or actions shown in VR simulations, such as greetings or orders. | Improves learning of symbolic gestures and imitative movements. | Acknowledgment of shares | The patient observes images of people performing actions and must recognise or describe the action. | Stimulates recognition and understanding of motor actions. | ||
Identify the action | Recognise and replicate specific actions shown in VR simulations. | Enhances the ability to understand and perform actions on command. | Dressing in Sequence | The patient performs the complete dressing sequence, from putting on socks and shoes to putting on a jacket and hat. | Strengthens the ability to perform complex, everyday motor sequences. | ||
Virtual supermarket | Simulate the purchase of products: take items from shelves, pay at checkout. | Enhances motor skills and management of daily actions. | Reordering of sequences | The patient must sequentially order pictures representing an action (e.g., washing hands). | Improves understanding of the logical sequence of motor actions. | ||
Constructive apraxia | 3 times a week for 60 min of traditional therapy or virtual reality therapy for 8 weeks | Virtual puzzle | Solve three-dimensional puzzles by fitting virtual pieces into a predefined pattern. | Strengthens spatial perception and hand-eye coordination. | Construction of geometric figures | The patient must construct simple geometric figures using blocks or puzzle pieces. | Improves ability to perceive and organise spatial shapes. |
Design and construction | Draw and build complex objects or structures in a virtual three-dimensional space. | Enhances spatial and motor planning skills. | Copy of drawings | The patient copies simple and complex drawings or shapes, such as squares, triangles, and more articulated objects. | Strengthens drawing accuracy and spatial perception. | ||
Assembly of virtual objects | Assemble parts of a complex object, such as a model or device, following step-by-step instructions. | Strengthens ability to follow assembly and construction sequences. | Cutting and gluing activities | The patient uses scissors, paper and glue to create shapes and compositions, practicing precise manipulation and hand control. | Improves hand–eye coordination and manual dexterity. | ||
Simulation of home environment | Rearrange the decor of a virtual room, choosing and placing furniture and decorations in a functional way. | Improves the ability to visualise and realise spatial configurations. | Block construction | The patient uses physical blocks to build towers or other structures, following a model or freely. | Enhances hand–eye coordination and spatial planning. | ||
Advanced dot connection | Complete figures by joining virtual dots in complex sequences. | Enhances the ability to follow and complete sequences. | Modeling activities | The patient uses plasticine to build three-dimensional models following detailed instructions, such as creating figures or buildings. | Enhances perception and spatial manipulation. | ||
Virtual Pathways | Follow and complete virtual paths that require coordinated movements through complex virtual environments. | Improves ability to orient and perform multiple tasks. | Drawing of maps | The patient creates or completes maps of simple environments, such as a room or neighborhood, by correctly placing key elements. | Strengthens the ability to organise and represent spatial configurations. |
All | EG | CG | p-Value | |
---|---|---|---|---|
Participants | 20 | 10 (50.0) | 10 (50.0) | - |
Male | 10 (50.0) | 4 (40.0) | 6 (60.0) | 0.65 |
Age (years) | 48.30 ± 14.77 | 53.50 ± 8.87 | 43.10 ± 17.93 | 0.29 |
Education (years) | 6.90 ± 4.83 | 11.10 ± 2.96 | 2.70 ± 1.16 | <0.001 |
EG | CG | |||
---|---|---|---|---|
Median (1st Qu.–3rd Qu.) | Median (1st Qu.–3rd Qu.) | p-Value | ||
MMSE | T0 | 16.00 (14.25–17.75) | 22.00 (19.50–23.00) | 0.002 |
T1 | 20.50 (19.00–21.00) | 23.50 (23.00–25.00) | 0.007 | |
p-value | 0.002 | 0.002 | ||
FAB | T0 | 13.53 (12.63–14.00) | 14.03 (12.25–14.50) | 0.306 |
T1 | 14.50 (13.63–16.50) | 15.15 (13.63–13.00) | 0.568 | |
p-value | 0.002 | 0.022 | ||
HRS-D | T0 | 12.00 (10.25–15.50) | 12.00 (8.00–15.00) | 0.761 |
T1 | 11.50 (10.00–13.75) | 12.00 (6.00–13.00) | 0.704 | |
p-value | 0.012 | 0.021 | ||
Constructional Apraxia | T0 | 9.00 (8.25–9.75) | 10.00 (6.75–12.00) | 0.337 |
T1 | 13.00 (12.00–13.75) | 12.00 (10.25–13.00) | 0.512 | |
p-value | 0.002 | 0.042 | ||
Ideomotor Apraxia | T0 | 6.50 (4.25–8.75) | 12.00 (3.75–16.00) | 0.363 |
T1 | 14.50 (12.25–17.75) | 18.50 (14.25–19.00) | 0.383 | |
p-value | 0.002 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, R.; Gangemi, A.; Maggio, M.G.; Bonanno, M.; Calderone, A.; Mazzurco Masi, V.M.; Rifici, C.; Cappadona, I.; Pagano, M.; Cardile, D.; et al. Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial. Diagnostics 2024, 14, 1892. https://doi.org/10.3390/diagnostics14171892
De Luca R, Gangemi A, Maggio MG, Bonanno M, Calderone A, Mazzurco Masi VM, Rifici C, Cappadona I, Pagano M, Cardile D, et al. Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial. Diagnostics. 2024; 14(17):1892. https://doi.org/10.3390/diagnostics14171892
Chicago/Turabian StyleDe Luca, Rosaria, Antonio Gangemi, Maria Grazia Maggio, Mirjam Bonanno, Andrea Calderone, Vincenza Maura Mazzurco Masi, Carmela Rifici, Irene Cappadona, Maria Pagano, Davide Cardile, and et al. 2024. "Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial" Diagnostics 14, no. 17: 1892. https://doi.org/10.3390/diagnostics14171892
APA StyleDe Luca, R., Gangemi, A., Maggio, M. G., Bonanno, M., Calderone, A., Mazzurco Masi, V. M., Rifici, C., Cappadona, I., Pagano, M., Cardile, D., Giuffrida, G. M., Ielo, A., Quartarone, A., Calabrò, R. S., & Corallo, F. (2024). Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial. Diagnostics, 14(17), 1892. https://doi.org/10.3390/diagnostics14171892