Potential of Carbohydrate Antigen 19-9 and Serum Apolipoprotein A2-Isoforms in the Diagnosis of Stage 0 and IA Pancreatic Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Methods
2.2.1. Laboratory Assays
2.2.2. Imaging Diagnosis of Stage 0 and IA PC
2.2.3. Pathological Diagnosis of Stage 0 and IA PC
2.3. Data Analysis
3. Results
3.1. Positivity Rates for the apoA2-i Index and CA19-9 by PC Stage
3.2. Positivity Rates for the apoA2-i Index and CA19-9 by Stage 0 PC
3.3. Positivity Rates for the apoA2-i Index and CA19-9 by Stage IA PC
3.4. Positivity Rates with a Combination of the apoA2-i Index and CA19-9
3.5. Association between Imaging Findings and the apoA2-i Index and CA19-9
3.6. Association between Pathological Findings and the apoA2-i Index and CA19-9
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warshaw, A.L.; Fernández-del Castillo, C.F. Pancreatic carcinoma. N. Engl. J. Med. 1992, 326, 455–465. [Google Scholar] [CrossRef]
- Egawa, S.; Toma, H.; Ohigashi, H.; Okusaka, T.; Nakao, A.; Hatori, T.; Maguchi, H.; Yanagisawa, A.; Tanaka, M. Japan pancreatic cancer registry; 30th year anniversary: Japan Pancreas Society. Pancreas 2012, 41, 985–992. [Google Scholar] [CrossRef]
- Hanada, K.; Shimizu, A.; Kurihara, K.; Ikeda, M.; Yamamoto, T.; Okuda, Y.; Tazuma, S. Endoscopic approach in the diagnosis of high-grade pancreatic intraepithelial neoplasia. Dig. Endosc. 2022, 34, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Ballehaninna, U.K.; Chamberlain, R.S. Serum CA 19-9 as a biomarker for pancreatic cancer—A comprehensive review. Indian J. Surg. Oncol. 2011, 2, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Sturgeon, C.; Lamerz, R.; Haglund, C.; Holubec, V.L.; Klapdor, R.; Nicolini, A.; Topolcan, O.; Heinmann, V. Tumor markers in pancreatic cancer: A European group on tumor markers (EGTM) status report. Ann. Oncol. 2010, 21, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Uchida, E.; Takasaki, H.; Burnett, D.A.; Steplewski, Z.; Pour, P.M. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 1987, 47, 5501–5503. [Google Scholar] [PubMed]
- Kanno, A.; Masamune, A.; Hanada, K.; Maguchi, H.; Shimizu, Y.; Ueki, T.; Kasebe, O.; Ohstuka, T.; Makamura, M.; Takenaka, M.; et al. Multicenter study of early pancreatic cancer in Japan. Pancreatology 2018, 18, 61–67. [Google Scholar] [CrossRef]
- Ikemoto, J.; Serikawa, M.; Hanada, K.; Eguchi, N.; Sasaki, T.; Fujimoto, Y.; Sugiyama, S.; Yamaguchi, A.; Noma, B.; Kamigaki, M.; et al. Clinical analysis of early-stage pancreatic cancer and proposal for a new diagnostic algorithm: A multicenter observational study. Diagnostics 2021, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Gillard, B.K.; Chen, Y.S.A.; Gaubatz, J.W.; Massey, J.B.; Pownall, H.J. Plasma factors required for human apolipoprotein A-II dimerization. Biochemistry 2005, 44, 471–479. [Google Scholar] [CrossRef]
- Honda, K.; Okusaka, T.; Felix, K.; Nakamori, S.; Sata, N.; Nagai, H.; Ioka, T.; Tsuchida, A.; Shimahara, T.; Shimahara, M.; et al. Altered plasma apolipoprotein modifications in patients with pancreatic cancer: Protein characterization and multi-institutional validation. PLoS ONE 2012, 7, e46908. [Google Scholar] [CrossRef]
- Kashiro, A.; Kobayashi, M.; Oh, T.; Miyamoto, M.; Atsumi, J.; Nagashima, K.; Takeuchi, K.; Nara, S.; Hijioka, S.; Mozizane, C.; et al. Clinical development of a blood biomarker using apolipoprotein-A2 isoforms for early detection of pancreatic cancer. J. Gastroenterol. 2024, 59, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Srivastava, S. Potential usefulness of apolipoprotein A2 isoforms for screening and risk stratification of pancreatic cancer. Biomark. Med. 2016, 10, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Kobayashi, M.; Okusaka, T.; Rinaudo, J.A.; Huang, Y.; Marsh, T.; Sanada, M.; Sasajima, Y.; Nakamori, S.; Shimahara, M.; et al. Plasma biomarker for detection of early stage pancreatic cancer and risk factors for pancreatic malignancy using antibodies for apolipoprotein-AII isoforms. Sci. Rep. 2015, 5, 15921. [Google Scholar] [CrossRef]
- Sato, Y.; Kobayashi, T.; Nishiumi, S.; Okada, A.; Fujita, T.; Sanuki, T.; Kobayashi, M.; Asahara, M.; Adachi, M.; Sakai, A.; et al. Prospective Study Using Plasma Apolipoprotein A2-Isoforms to Screen for High-Risk Status of Pancreatic Cancer. Cancers 2020, 12, 2625. [Google Scholar] [CrossRef] [PubMed]
- Hozawa, A.; Tanno, K.; Nakaya, N.; Nakamura, T.; Tsuchiya, N.; Hirata, T.; Narita, A.; Kogure, M.; Nochioka, K.; Sasaki, R.; et al. Study profile of the Tohoku medical megabank community-based cohort study. J. Epidemiol. 2021, 31, 65–76. [Google Scholar] [CrossRef]
- Ahn, S.S.; Kim, M.J.; Choi, J.Y.; Hong, H.S.; Chung, Y.E.; Lim, J.S. Indicative findings of pancreatic cancer in prediagnostic C.T. Eur. Radiol. 2009, 19, 2448–2455. [Google Scholar] [CrossRef]
- Rosewicz, S.; Wiedenmann, B. Pancreatic carcinoma. Lancet 1997, 349, 485–489. [Google Scholar] [CrossRef]
- Okusaka, T.; Nakamura, M.; Yoshida, M.; Kitano, M.; Ito, Y.; Mizuno, N.; Hanada, K.; Ozaka, M.; Morizane, C.; Takeyama, Y. Clinical practice gudelines for pancreatic cancer 2022 from the Japanese pancreas society: A synopsis. Int. J. Clin. Oncol. 2023, 28, 493–511. [Google Scholar] [CrossRef]
- Hansson, G.C.; Karlsson, K.A.; Larson, G.; McKibbin, J.M.; Blaszczyk, M.; Herlyn, M.; Steplewski, Z.; Koprowski, H. Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. Characterization by antibody binding to glycosphingolipids in a chromatogram binding assay. J. Biol. Chem. 1983, 258, 4091–4097. [Google Scholar] [CrossRef]
- Honda, K. Risk stratification of pancreatic cancer by a blood test for apolipoprotein A2-isoforms. Cancer Biomark. 2022, 33, 503–512. [Google Scholar] [CrossRef]
- Hayasaki, A.; Murata, Y.; Usui, M.; Hibi, T.; Fujii, T.; Iizawa, Y.; Kato, H.; Tanemura, A.; Azumi, Y.; Kuriyama, N.; et al. Clinical significance of plasma apolipoprotein-AII isoforms as a marker of pancreatic exocrine disorder for patients with pancreatic adenocarcinoma undergoing chemoradiotherapy, paying attention to pancreatic morphological changes. Biomed. Res. Int. 2019, 2019, 5738614. [Google Scholar] [CrossRef] [PubMed]
- Futagami, S.; Agawa, S.; Nakamura, K.; Watanabe, Y.; Habiro, M.; Kawawa, R.; Yamawaki, H.; Tsushima, R.; Kirita, K.; Akimoto, T.; et al. Apolipoprotein A2 isoforms associated with exocrine pancreatic insufficiency in early chronic pancreatitis. J. Gastroenterol. Hepatol. 2023, 38, 1949–1957. [Google Scholar] [CrossRef] [PubMed]
- Hanada, K.; Fukuhara, M.; Minami, T.; Yano, S.; Ikemoto, J.; Shimizu, A.; Kurihara, K.; Okuda, Y.; Ikeda, M.; Yokode, M.; et al. Pathological features and imaging findings in pancreatic carcinoma in situ. Pancreas 2021, 50, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Hanada, K.; Okazaki, A.; Hirano, N.; Izumi, Y.; Teraoka, Y.; Ikemoto, J.; Kanemitsu, K.; Hino, F.; Fukuda, T.; Yonehara, S. Diagnostic strategies for early pancreatic cancer. J. Gastroenterol. 2015, 50, 147–154. [Google Scholar] [CrossRef]
- Sagami, R.; Yamao, K.; Nakahodo, J.; Minami, R.; Tsurusaki, M.; Murakami, K.; Amano, Y. Pre-oerative imaging and pathological diagnosis of localized high-grade pancreatic intra-epithelial neoplasia without invasive carcinoma. Cancers 2021, 24, 945. [Google Scholar] [CrossRef]
- Yamao, K.; Takenaka, M.; Ishikawa, R.; Okamoto, A.; Yamazaki, T.; Nakai, A.; Omoto, S.; Kamata, K.; Minaga, K.; Matsumoto, I.; et al. Partial pancreatic parenchymal atrophy is a new specific finding to diagnose small pancreatic cancer (≤10 mm) including carcinoma in situ: Comparison with localized benign main pancreatic duct stenosis patients. Diagnostics 2020, 10, 445. [Google Scholar] [CrossRef]
- Nakahodo, J.; Kikuyama, M.; Nojiri, S.; Chiba, K.; Yoshimoto, K.; Kamisawa, T.; Horiguchi, S.; Honda, G. Focal parenchymal atrophy of pancreas: An important sign of underlying high-grade pancreatic intraepithelial neoplasia without invasive carcinoma, i.e., carcinoma in situ. Pancreatology 2020, 20, 1689–1697. [Google Scholar] [CrossRef]
- Gonda, M.; Masuda, A.; Kobayashi, T.; Iemoto, T.; Kakuyama, S.; Ezaki, T.; Ikegawa, T.; Hirata, Y.; Tsumura, H.; Ogisu, K.; et al. Temporal progression of pancreatic cancer computed tomography findings until diagnosis: A large-scale multicenter study. United Eur. Gastroenterol. J. 2024, 12, 761–771. [Google Scholar] [CrossRef]
- Kanno, A.; Masanume, A.; Hanada, K.; Kikuyama, M.; Kitano, M. Advances in early detection of pancreatic cancer. Diagnostics 2019, 5, 18. [Google Scholar] [CrossRef]
- Kurihara, K.; Hanada, K.; Shimizu, A. Endoscopic ultrasonography diagnosis of early pancreatic cancer. Diagnostics 2020, 10, 1086. [Google Scholar] [CrossRef]
- Sakamoto, H.; Harada, S.; Nishioka, N.; Maeda, K.; Kurihara, T.; Sakamoto, T.; Higuchi, K.; Kitano, M.; Tekeyama, Y.; Kogire, M.; et al. Asocial program for the early detection of pancreatic cancer: The Kishiwada Katsuragi Project. Oncology 2017, 93, 89–97. [Google Scholar] [CrossRef]
- Felix, K.; Honda, K.; Nagashima, K.; Kashiro, A.; Takeuchi, K.; Kobayashi, T.; Hinterkopf, S.; Gaida, M.M.; Dang, H.; Brindl, N.; et al. Noninvasive risk stratification of intraductal papillary mucinous neoplasia with malignant potential by serum apolipoprotein-A2-isoforms. Int. J. Cancer 2022, 150, 881–894. [Google Scholar] [CrossRef]
No. | Sex | Age | Stage | apoA2-i Index | CA19-9 (U/mL) | Intraductal Tumor Spread (mm) | Pathological Diagnosis | Imaging Findings | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Tumor Lesion | MPD Dilatation by MRCP | MPD Stenosis by MRCP | Pancreatic Atrophy by CT | ||||||||
1 | Female | 58 | 0 | 92.1 | 5.8 | 5 | HG-PanIN | No | Yes | No | Wide |
2 | Female | 60 | 0 | 88.1 | 7.1 | 5 | HG-PanIN | No | No | Yes | Local |
3 | Female | 79 | 0 | 111.9 | 7.6 | 7 | HG-PanIN | No | No | Yes | Local |
4 | Female | 76 | 0 | 90.2 | 2 > | 8 | HG-PanIN | No | No | Yes | Local |
5 | Female | 67 | 0 | 107.0 | 2 > | 4 | HG-PanIN | No | Yes | Yes | Local |
6 | Female | 75 | 0 | 75.6 | 6.3 | 5 | HG-PanIN | No | Yes | No | Wide |
7 | Female | 58 | 0 | 91.5 | 20.3 | 3 | HG-PanIN | No | Yes | Yes | Local |
8 | Female | 66 | 0 | 73.9 | 2.6 | 3 | HG-PanIN | No | Yes | Yes | Local |
9 | Male | 69 | 0 | 151.8 | 12.0 | 10 | HG-PanIN | No | Yes | No | Local |
10 | Male | 71 | 0 | 52.0 | 44.2 | 10 | IPMN with high grade dysplasia | Yes (Mural nodule) 10 mm | Yes | No | Wide |
11 | Male | 86 | 0 | 55.3 | 4.9 | 5 | Yes (Mural nodule) 7 mm | Yes | No | Local | |
12 | Male | 78 | 0 | 83.7 | 6.3 | 4, 3 | Yes (Mural nodule) 5 mm | Yes | No | No | |
Tumor size (mm) | |||||||||||
13 | Female | 78 | IA | 49.9 | 6.8 | 15 | Well | Yes | Yes | Yes | Local |
14 | Female | 78 | IA | 88.0 | 2 > | 12, 12 | Well | Yes | Yes | Yes | Local |
15 | Female | 76 | IA | 58.2 | 38.6 | 15 | Well | Yes | Yes | Yes | Wide |
16 | Female | 83 | IA | 73.3 | 3.0 | 5 | Well | Yes | Yes | Yes | Local |
17 | Female | 79 | IA | 0.0 | 150.3 | 10 | Well | Yes | Yes | Yes | Local |
18 | Male | 82 | IA | 63.3 | 2.7 | 8 | Well | Yes | Yes | Yes | Wide |
19 | Male | 65 | IA | 42.9 | 9.9 | 4, 20 | Well | Yes | Yes | Yes | Wide |
20 | Female | 80 | IA | 100.8 | 2.5 | 16 | Well | Yes | Yes | Yes | Local |
21 | Female | 69 | IA | 75.4 | 162.0 | 20, 8 | Mod | Yes | Yes | No | No |
22 | Male | 83 | IA | 57.9 | 92.6 | 20 | Mod | Yes | Yes | Yes | Wide |
23 | Female | 75 | IA | 74.9 | 80.4 | 4 | IPMN-derived invasive carcinoma | Yes | Yes | No | No |
24 | Female | 79 | IA | 62.1 | 13.2 | 2 | ITPN-derived invasive carcinoma | No | No | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanada, K.; Shimizu, A.; Tsushima, K.; Kobayashi, M. Potential of Carbohydrate Antigen 19-9 and Serum Apolipoprotein A2-Isoforms in the Diagnosis of Stage 0 and IA Pancreatic Cancer. Diagnostics 2024, 14, 1920. https://doi.org/10.3390/diagnostics14171920
Hanada K, Shimizu A, Tsushima K, Kobayashi M. Potential of Carbohydrate Antigen 19-9 and Serum Apolipoprotein A2-Isoforms in the Diagnosis of Stage 0 and IA Pancreatic Cancer. Diagnostics. 2024; 14(17):1920. https://doi.org/10.3390/diagnostics14171920
Chicago/Turabian StyleHanada, Keiji, Akihiro Shimizu, Ken Tsushima, and Michimoto Kobayashi. 2024. "Potential of Carbohydrate Antigen 19-9 and Serum Apolipoprotein A2-Isoforms in the Diagnosis of Stage 0 and IA Pancreatic Cancer" Diagnostics 14, no. 17: 1920. https://doi.org/10.3390/diagnostics14171920
APA StyleHanada, K., Shimizu, A., Tsushima, K., & Kobayashi, M. (2024). Potential of Carbohydrate Antigen 19-9 and Serum Apolipoprotein A2-Isoforms in the Diagnosis of Stage 0 and IA Pancreatic Cancer. Diagnostics, 14(17), 1920. https://doi.org/10.3390/diagnostics14171920