Internal Overview of Prostatic Cancer Cases and Quality of BRCA1 and BRCA2 NGS Data from the FFPE Tissue
Abstract
:1. Introduction
1.1. Prostate Cancer Diagnosis and Treatment
1.2. BRCA1 and BRCA2 Gene Mutations
1.3. PARP Inhibitors in Prostate Cancer Therapy
1.4. NGS Technology Application in Prostate Cancer
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Somatic DNA Extraction and Sequencing of BRCA1 and BRCA2 Genes
3. Results
4. Discussion
4.1. Importance of BRCA1 and BRCA2 Genes
4.2. Challenges of NGS Technology
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Sekito, S.; Terabe, T.; Shibahara, T.; Onishi, T. Usefulness of Biparametric Magnetic Resonance Imaging Combined With Prostate Specific Antigen Density in Pre-biopsy Detection of Clinically Insignificant Prostate Cancer. Anticancer. Res. 2021, 41, 2183–2186. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, E.; Preisser, F.; Nazzani, S.; Tian, Z.; Bandini, M.; Gandaglia, G.; Fossati, N.; Montorsi, F.; Graefen, M.; Shariat, S.F.; et al. The Effect of Lymph Node Dissection in Metastatic Prostate Cancer Patients Treated with Radical Prostatectomy: A Contemporary Analysis of Survival and Early Postoperative Outcomes. Eur. Urol. Oncol. 2018, 2, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.J.; Chen, Y.-H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.-N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef]
- AIOM-AIRTUM. I Numeri del Cancro in Italia; Intermedia Editore: Brescia, Italy, 2023. [Google Scholar]
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA 2016, 315, 68–76. [Google Scholar] [CrossRef]
- Na, R.; Zheng, S.L.; Han, M.; Yu, H.; Jiang, D.; Shah, S.; Ewing, C.M.; Zhang, L.; Novakovic, K.; Petkewicz, J.; et al. Germ- line mutations in ATM and BRCA1/2 dis- Tignish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur. Urol. 2017, 71, 740–747. [Google Scholar] [CrossRef]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef]
- Castro, E.; Goh, C.; Olmos, D.; Saunders, E.; Leongamornlert, D.; Tymrakiewicz, M.; Mahmud, N.; Dadaev, T.; Govindasami, K.; Guy, M.; et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival out- comes in prostate cancer. J. Clin. Oncol. 2013, 31, 1748–1757. [Google Scholar] [CrossRef]
- Kensler, K.H.; Baichoo, S.; Pathania, S.; Rebbeck, T.R. The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. npj Precis. Oncol. 2022, 6, 39. [Google Scholar] [CrossRef]
- Zhang, H.; Tombline, G.; Weber, B.L. BRCA1, BRCA2, and DNA Damage Response: Collision or Collusion? Cell 1998, 92, 433–436. [Google Scholar] [CrossRef]
- Miki, Y.; Swensen, J.; Shattuck-Eidens, D.; Futreal, P.A.; Harshman, K.; Tavtigian, S.; Liu, Q.; Cochran, C.; Bennett, L.M.; Ding, W.; et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994, 266, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wooster, R.; Bignell, G.; Lancaster, J.; Swift, S.; Seal, S.; Mangion, J.; Collins, N.; Gregory, S.; Gumbs, C.; Micklem, G.; et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995, 378, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Varol, U.; Kucukzeybek, Y.; Alacacioglu, A.; Somali, I.; Altun, Z.; Aktas, S.; Tarhan, M.O. BRCA genes: BRCA 1 and BRCA 2. Apoptosis 2018, 23, 862–866. [Google Scholar]
- Lapini, A.; Caffo, O.; Conti, G.N.; Pappagallo, G.; Del Re, M.; D’angelillo, R.M.; Capoluongo, E.D.; Castiglione, F.; Brunelli, M.; Iacovelli, R.; et al. Matching BRCA and prostate cancer in a public health system: Report of the Italian Society for Uro-Oncology (SIUrO) consensus project. Crit. Rev. Oncol. 2023, 184, 103959. [Google Scholar] [CrossRef] [PubMed]
- Hommerding, M.; Hommerding, O.; Bernhardt, M.; Kreft, T.; Sanders, C.; Tischler, V.; Basitta, P.; Pelusi, N.; Wulf, A.L.; Ohlmann, C.H.; et al. Real-world data on the prevalence of BRCA1/2 and HRR gene mutations in patients with primary and metastatic castration resistant prostate cancer. World J. Urol. 2024, 42, 491. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015, 63, 1011–1025. [Google Scholar]
- Mandelker, D.; Zhang, L.; Kemel, Y.; Stadler, Z.K.; Joseph, V.; Zehir, A.; Pradhan, N.; Arnold, A.; Walsh, M.F.; Li, Y.; et al. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing. JAMA 2017, 318, 825–835. [Google Scholar] [CrossRef]
- Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Eng. J. Med. 2009, 361, 123–134. [Google Scholar] [CrossRef]
- Preiss, J.; Schlaeger, R.; Hilz, H. Specific inhibition of poly adpribose polymerase by thymidine and nicotinamide in HeLa cells. FEBS Lett. 1971, 19, 244–246. [Google Scholar] [CrossRef]
- Geenen, J.J.J.; Linn, S.C.; Beijnen, J.H.; Schellens, J.H.M. PARP Inhibitors in the Treatment of Triple-Negative Breast Cancer. Clin. Pharmacokinet. 2017, 57, 427–437. [Google Scholar] [CrossRef]
- Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.; Burgess, J.T.; O’Byrne, K.; Richard, D.J.; Bolderson, E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action on Tumor Resistance. Front Cell Dev Biol. 2020, 8, 564601. [Google Scholar] [CrossRef] [PubMed]
- Loehr, A.; Hussain, A.; Patnaik, A.; Bryce, A.H.; Castellano, D.; Font, A.; Shapiro, J.; Zhang, J.; Sautois, B.; Vogelzang, N.J.; et al. Emergence of BRCA Reversion Mutations in Patients with Metastatic Castration-resistant Prostate Cancer After Treatment with Rucaparib. Eur. Urol. 2023, 83, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Mosillo, C.; Calandrella, M.L.; Caserta, C.; Macrini, S.; Guida, A.; Sirgiovanni, G.; Bracarda, S. Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data? Cancers 2022, 14, 4189. [Google Scholar] [CrossRef]
- Beije, N.; Abida, W.; Antonarakis, E.S.; Castro, E.; de Wit, R.; Fizazi, K.; Gillessen, S.; Hussain, M.; Mateo, J.; Morris, M.J.; et al. PARP Inhibitors for Prostate Cancer: Tangled up in PROfound and PROpel (and TALAPRO-2) Blues. Eur. Urol. 2023, 84, 253–256. [Google Scholar] [CrossRef]
- Yang, X.; Leslie, G.; Doroszuk, A.; Schneider, S.; Allen, J.; Decker, B.; Dunning, A.M.; Redman, J.; Scarth, J.; Plaskocinska, I.; et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2021, 38, 673–685. [Google Scholar]
- Beatson, E.L.; Chau, C.H.; Price, D.K.; Figg, W.D. PARP inhibitors on the move in prostate cancer: Spotlight on Niraparib & update on PARP inhibitor combination trials. Am. J. Clin. Exp. Urol. 2022, 10, 252–257. [Google Scholar]
- Jeggo, P.A.; Pearl, L.H.; Carr, A.M. DNA repair, genome stability and cancer: A historical perspective. Nat. Rev. Cancer 2016, 16, 35–42. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef]
- Armenia, J.; Wankowicz, S.A.; Liu, D.; Gao, J.; Kundra, R.; Reznik, E.; Chatila, W.K.; Chakravarty, D.; Han, G.C.; Coleman, I.; et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 2018, 50, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Romero-Laorden, N.; Del Pozo, A.; Lozano, R.; Medina, A.; Puente, J.; Piulats, J.M.; Lorente, D.; Saez, M.I.; Morales-Barrera, R.; et al. PROREPAIR-B: A prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2019, 37, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Gorodetska, I.; Kozeretska, I.; Dubrovska, A. BRCA Genes: The rule in Genome Stability, Cancer Stemness and Therapy Resistance. J. Cnacer 2019, 10, 2109–2127. [Google Scholar] [CrossRef] [PubMed]
- Hatano, Y.; Tamanda, M.; Matsuo, M.; Hara, A. Molecular Trajectory of BRCA1 and BRCA2 Mutations. Front. Oncol. 2020, 10, 361. [Google Scholar] [CrossRef]
- Mateo, J.; Porta, N.; Bianchini, D.; McGovern, U.; Elliott, T.; Jones, R.; Syndikus, I.; Ralph, C.; Jain, S.; Varughese, M.; et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 162–174. [Google Scholar] [CrossRef]
- Smith, M.R.; Sandhu, S.K.; Kelly, W.K.; Scher, H.I.; Efstathiou, E.; Lara, P.; Yu, E.Y.; George, D.J.; Chi, K.N.; Summa, J.; et al. Phase II study of niraparib in patients with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD): Preliminary results of GALAHAD. J. Clin. Oncol. 2019, 37, 202. [Google Scholar] [CrossRef]
- De Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020, 383, 891. [Google Scholar] [CrossRef]
- De Bono, J.S.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.K.; Mehra, N.; Kolinsky, M.; Roubaud, G.; Özgüroǧlu, M.; Matsubara, N.; et al. Central, prospective detection of homologous recombination repair gene mutations (HRRm) in tumour tissue from >4000 men with metastatic castration resistant prostate cancer (mCRPC) screened for the PROfound study. Ann. Oncol. 2019, 30, v325–v355. [Google Scholar] [CrossRef]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef]
- Beltran, H.; Yelensky, R.; Frampton, G.M.; Park, K.; Downing, S.R.; MacDonald, T.Y.; Jarosz, M.; Lipson, D.; Tagawa, S.T.; Nanus, D.M.; et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013, 63, 920–926. [Google Scholar] [CrossRef]
- Xuan, J.; Yu, Y.; Qing, T.; Guo, L.; Shi, L. Next-generation sequencing in the clinic: Promises and challenges. Cancer Lett. 2012, 340, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Angerilli, V.; Galuppini, F.; Pagni, F.; Fusco, N.; Malapelle, U.; Fassan, M. The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics. 2021, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Van Maldegem, F.; de Wit, M.; Morsink, F.; Musler, A.; Weegenaar, J.; van Noesel, C.J.M. Effects of Processing Delay, Formalin Fixation, and Immunohistochemistry on RNA Recovery From Formalin-Fixed Paraffin-Embedded Tissue Sections. Diagn. Mol. Pathol. 2008, 17, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Groelz, D.; Viertler, C.; Pabst, D.; Dettmann, N.; Zatloukal, K. Impact of Storage Conditions on the Quality of Nucleic Acids in Paraffin Embedded Tissues. PLoS ONE 2018, 13, e0203608. [Google Scholar] [CrossRef]
- Do, H.; Dobrovic, A. Sequence Artifacts in DNA from Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clin. Chem. 2015, 61, 64–71. [Google Scholar] [CrossRef]
- McGhee, J.D.; von Hippel, P.H. Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry 1975, 14, 1297–1303. [Google Scholar] [CrossRef]
- Fraenkel-Conrat, H.; Olcott, H.S. The Reaction of Formaldehyde with Proteins. V. Cross-linking between Amino and Primary Amide or Guanidyl Groups. J. Am. Chem. Soc. 1948, 70, 2673–2684. [Google Scholar] [CrossRef]
- Ludyga, N.; Grünwald, B.; Azimzadeh, O.; Englert, S.; Hüfler, H.; Tapio, S.; Aubele, M. Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch. 2012, 460, 131–140. [Google Scholar] [CrossRef]
- Schweiger, M.R.; Kerick, M.; Timmermann, B.; Albrecht, M.W.; Borodina, T.; Parkhomchuk, D.; Zatloukal, K.; Lehrach, H. Genome-Wide Massively Parellel Sequencing of Formaldehyde Fixed-Paraffin Embedded (FFPE) Tumor Tissue for Copy-Number-and-Mutation-Anlysis. PLoS ONE 2009, 4, E5548. [Google Scholar] [CrossRef]
- Kerick, M.; Isau, M.; Timmermann, B.; Sültmann, H.; Herwig, R.; Krobitsch, S.; Schaefer, G.; Verdorfer, I.; Bartsch, G.; Klocker, H.; et al. Targeted High Throughput Sequencing in Clinical Cancer Settings: Formaldehyde Fixed-Paraffin Embedded (FFPE) Tumor Tissues, Input Amount and Tumor Heterogeneity. BMC Med. Genom. 2011, 4, 68. [Google Scholar] [CrossRef]
- Deans, Z.C.; Costa, J.L.; Cree, I.; Dequeker, E.; Edsjö, A.; Henderson, S.; Hummel, M.; Ligtenberg, M.J.; Loddo, M.; Machado, J.C.; et al. Integration of next-Generation Sequencing in Clinical Diagnostic Molecular Pathology Laboratories for Analysis of Solid Tumours; an Expert Opinion on Behalf of IQN Path ASBL. Virchows Arch. 2017, 470, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Crocetto, F.; Russo, G.; Di Zazzo, E.; Pisapia, P.; Mirto, B.F.; Palmieri, A.; Pepe, F.; Bellevicine, C.; Russo, A.; La Civita, E.; et al. Liquid Biopsy in Prostate Cancer Management—Current Challenges and Future Perspectives. Cancers 2022, 14, 3272. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.; Freitas, C.; Fernandes, M.G.; Sousa, C.; Reboredo, C.; Cruz-Martins, N.; Mosquera, J.; Hespanhol, V.; Campelo, R. Liquid biopsy: The value of different bodily fluids. Biomark. Med. 2022, 16, 127–145. [Google Scholar] [CrossRef] [PubMed]
- Mohler, J.L.; Antonarakis, E.S.; Armstrong, A.J.; D’Amico, A.V.; Davis, B.J.; Dorff, T.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; et al. NCCN clinical practice guidelines in oncology. Prostate cancer. Version 2.2019. J. Natl. Compr. Cancer Netw. 2019, 17, 479–505. [Google Scholar] [CrossRef]
Average Age | Primary Prostatic Adenocarcinoma | Metatatic Prostatic Adenocarcinoma | Grade Group 1 * | Grade Group 2 * | Grade Group 3 * | Grade Group 4 * | Grade Group 5 * | Therapy * |
---|---|---|---|---|---|---|---|---|
49–90 | 59 | 11 | 3 | / | 5 | 7 | 7 | 3: anti-androgen therapy 2: therapy with Dutasteride |
Sample Type | Not Evaluable | Wild Type | Mutate |
---|---|---|---|
Prostate biopsy | 30 | 13 | -BRCA2 ex11 c.5946delT p.Ser1982fs VAF = 72.1 %, Pathogenic -BRCA2 ex11 c.3195_3198delTAAT p.Asn1066fs VAF = 51.1 %, Pathogenic |
Prostate surgical resection | 11 | 2 | BRCA2 ex10 c.1244A>G p.His415Arg VAF = 51.03, Uncertain |
Cot included—Supraclavicular lymph nodes | BRCA2 ex11 c.3302A>G p.His1101Arg VAF = 52.9 %, Uncertain | ||
Cot included—Mediastinal lymph nodes | 2 | ||
Cot included—Lymph nodes | 1 | ||
Lung needle biopsy | 1 | ||
Femoral biopsy | 1 | ||
Bladder biopsy | 2 | ||
Vertebral needle biopsy | 1 | ||
Cavernous body needle biopsy | 1 | ||
Liver biopsy | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antolini, E.; Filosa, A.; Santoni, M.; Antaldi, E.; Bartoli, E.; Sierchio, L.; Giantomassi, F.; Mandolesi, A.; Goteri, G. Internal Overview of Prostatic Cancer Cases and Quality of BRCA1 and BRCA2 NGS Data from the FFPE Tissue. Diagnostics 2024, 14, 2067. https://doi.org/10.3390/diagnostics14182067
Antolini E, Filosa A, Santoni M, Antaldi E, Bartoli E, Sierchio L, Giantomassi F, Mandolesi A, Goteri G. Internal Overview of Prostatic Cancer Cases and Quality of BRCA1 and BRCA2 NGS Data from the FFPE Tissue. Diagnostics. 2024; 14(18):2067. https://doi.org/10.3390/diagnostics14182067
Chicago/Turabian StyleAntolini, Enrica, Alessandra Filosa, Matteo Santoni, Elena Antaldi, Elisa Bartoli, Lidia Sierchio, Federica Giantomassi, Alessandra Mandolesi, and Gaia Goteri. 2024. "Internal Overview of Prostatic Cancer Cases and Quality of BRCA1 and BRCA2 NGS Data from the FFPE Tissue" Diagnostics 14, no. 18: 2067. https://doi.org/10.3390/diagnostics14182067
APA StyleAntolini, E., Filosa, A., Santoni, M., Antaldi, E., Bartoli, E., Sierchio, L., Giantomassi, F., Mandolesi, A., & Goteri, G. (2024). Internal Overview of Prostatic Cancer Cases and Quality of BRCA1 and BRCA2 NGS Data from the FFPE Tissue. Diagnostics, 14(18), 2067. https://doi.org/10.3390/diagnostics14182067