Oral Food Challenge in Children with Tree Nut and Peanut Allergy: The Predictive Value of Diagnostic Tests
Abstract
:1. Introduction
2. Nut Allergy
3. Diagnostic Tests
4. Oral Food Challenge
5. Methods
6. Discussion
7. Observational Studies
8. Retrospective Studies
9. Prospective Studies
10. Results
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; Dutoit, G.; Eigenmann, P.; et al. EAACI Food Allergy and Anaphylaxis Guidelines: Diagnosis and management of food allergy. Allergy Eur. J. Allergy Clin. Immunol. 2014, 69, 1008–1025. [Google Scholar] [CrossRef] [PubMed]
- Burks, A.W.; Sampson, H.A. Diagnostic approaches to the patient with suspected food allergies. J. Pediatr. 1992, 121, S64–S71. [Google Scholar] [CrossRef] [PubMed]
- Burks, A.W.; Jones, S.M.; Boyce, J.A.; Sicherer, S.H.; Wood, R.A.; Assa’Ad, A.; Sampson, H.A. NIAID-Sponsored 2010 Guidelines for Managing Food Allergy: Applications in the Pediatric Population. Pediatrics 2011, 128, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.A.; Assa’Ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Report of the NIAID-Sponsored Expert Panel. J. Allergy Clin. Immunol. 2010, 126, S1–S58. [Google Scholar] [CrossRef]
- Du Toit, G.; Santos, A.; Roberts, G.; Fox, A.T.; Smith, P.; Lack, G. The diagnosis of IgE-mediated food allergy in childhood. Pediatr. Allergy Immunol. 2009, 20, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Calvani, M.; Bianchi, A.; Reginelli, C.; Peresso, M.; Testa, A. Oral Food Challenge. Medicina 2019, 55, 651. [Google Scholar] [CrossRef]
- Upton, J.E.M.; Bird, J.A. Oral food challenges: Special considerations. Ann. Allergy Asthma Immunol. 2020, 124, 451–458. [Google Scholar] [CrossRef]
- Foong, R.-X.; Dantzer, J.A.; Wood, R.A.; Santos, A.F. Improving Diagnostic Accuracy in Food Allergy. J. Allergy Clin. Immunol. Pract. 2021, 9, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Blumchen, K.; Beder, A.; Beschorner, J.; Ahrens, F.; Gruebl, A.; Hamelmann, E.; Hansen, G.; Heinzmann, A.; Nemat, K.; Niggemann, B.; et al. Modified oral food challenge used with sensitization biomarkers provides more real-life clinical thresholds for peanut allergy. J. Allergy Clin. Immunol. 2014, 134, 390–398.e4. [Google Scholar] [CrossRef]
- Rolinck-Werninghaus, C.; Niggemann, B.; Grabenhenrich, L.; Wahn, U.; Beyer, K. Outcome of oral food challenges in children in relation to symptom-eliciting allergen dose and allergen-specific IgE. Allergy 2012, 67, 951–957. [Google Scholar] [CrossRef]
- Chan, J.C.; Peters, R.L.; Koplin, J.J.; Dharmage, S.C.; Gurrin, L.C.; Wake, M.; Tang, M.L.; Prescott, S.; Allen, K.J.; Ponsonby, A.-L.; et al. Food Challenge and Community-Reported Reaction Profiles in Food-Allergic Children Aged 1 and 4 Years: A Population-Based Study. J. Allergy Clin. Immunol. Pract. 2017, 5, 398–409.e3. [Google Scholar] [CrossRef] [PubMed]
- Celik-Bilgili, S.; Mehl, A.; Verstege, A.; Staden, U.; Nocon, M.; Beyer, K.; Niggemann, B. The predictive value of specific immunoglobulin E levels in serum for the outcome of oral food challenges. Clin. Exp. Allergy 2005, 35, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.; Olivero, F.; Brindisi, G.; Comerci, A.F.; Ranucci, C.; Fiorentini, C.; Sculco, E.; Figliozzi, E.; Tudini, L.; Matys, V.; et al. Dietary Intervention during Weaning and Development of Food Allergy: What Is the State of the Art? Int. J. Mol. Sci. 2024, 25, 2769. [Google Scholar] [CrossRef]
- Osborne, N.J.; Koplin, J.J.; Martin, P.E.; Gurrin, L.C.; Lowe, A.J.; Matheson, M.C.; Ponsonby, A.-L.; Wake, M.; Tang, M.L.; Dharmage, S.C. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 2011, 127, 668–676.e2. [Google Scholar] [CrossRef]
- Liu, A.H.; Jaramillo, R.; Sicherer, S.H.; Wood, R.A.; Bock, S.A.; Burks, A.W.; Massing, M.; Cohn, R.D.; Zeldin, D.C. National prevalence and risk factors for food allergy and relationship to asthma: Results from the National Health and Nutrition Examination Survey 2005–2006. J. Allergy Clin. Immunol. 2010, 126, 798–806.e14. [Google Scholar] [CrossRef] [PubMed]
- Branum, A.M.; Lukacs, S.L. Food Allergy Among Children in the United States. Pediatrics 2009, 124, 1549–1555. [Google Scholar] [CrossRef]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Roberts, G.; Muraro, A.; Sheikh, A.; The EAACI Food Allergy and Anaphylaxis Guidelines Group. Prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 2014, 69, 992–1007. [Google Scholar] [CrossRef]
- Peters, R.L.; Koplin, J.J.; Gurrin, L.C.; Dharmage, S.C.; Wake, M.; Ponsonby, A.-L.; Tang, M.L.; Lowe, A.J.; Matheson, M.; Dwyer, T.; et al. The prevalence of food allergy and other allergic diseases in early childhood in a population-based study: HealthNuts age 4-year follow-up. J. Allergy Clin. Immunol. 2017, 140, 145–153.e8. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Muñoz-Furlong, A.; Sampson, H.A. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: A 5-year follow-up study. J. Allergy Clin. Immunol. 2003, 112, 1203–1207. [Google Scholar] [CrossRef]
- Grundy, J.; Matthews, S.; Bateman, B.; Dean, T.; Arshad, S.H. Rising prevalence of allergy to peanut in children: Data from 2 sequential cohorts. J. Allergy Clin. Immunol. 2002, 110, 784–789. [Google Scholar] [CrossRef]
- Kagan, R.S.; Joseph, L.; Dufresne, C.; Gray-Donald, K.; Turnbull, E.; Pierre, Y.S.; Clarke, A. Prevalence of peanut allergy in primary-school children in Montreal, Canada. J. Allergy Clin. Immunol. 2003, 112, 1223–1228. [Google Scholar] [CrossRef]
- Kljakovic, M.; Gatenby, P.; Hawkins, C.; Attewell, R.G.; Ciszek, K.; Kratochvil, G.; Moreira, A.; Ponsonby, A. The parent-reported prevalence and management of peanut and nut allergy in school children in the Australian Capital Territory. J. Paediatr. Child Health 2009, 45, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Muñoz-Furlong, A.; Godbold, J.H.; Sampson, H.A. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J. Allergy Clin. Immunol. 2010, 125, 1322–1326. [Google Scholar] [CrossRef]
- Ben-Shoshan, M.; Harrington, D.W.; Soller, L.; Fragapane, J.; Joseph, L.; Pierre, Y.S.; Godefroy, S.B.; Elliot, S.J.; Clarke, A.E. A population-based study on peanut, tree nut, fish, shellfish, and sesame allergy prevalence in Canada. J. Allergy Clin. Immunol. 2010, 125, 1327–1335. [Google Scholar] [CrossRef]
- McWilliam, V.; Koplin, J.; Lodge, C.; Tang, M.; Dharmage, S.; Allen, K. The Prevalence of Tree Nut Allergy: A Systematic Review. Curr. Allergy Asthma Rep. 2015, 15, 54. [Google Scholar] [CrossRef]
- Cela, L.; Brindisi, G.; Gravina, A.; Pastore, F.; Semeraro, A.; Bringheli, I.; Marchetti, L.; Morelli, R.; Cinicola, B.; Capponi, M.; et al. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow’s Milk Protein Allergy. Int. J. Mol. Sci. 2023, 24, 9781. [Google Scholar] [CrossRef] [PubMed]
- Cosme-Blanco, W.; Arroyo-Flores, E.; Ale, H. Food Allergies. Pediatr. Rev. 2020, 41, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Bringheli, I.; Brindisi, G.; Morelli, R.; Marchetti, L.; Cela, L.; Gravina, A.; Pastore, F.; Semeraro, A.; Cinicola, B.; Capponi, M.; et al. Kiwifruit’s Allergy in Children: What Do We Know? Nutrients 2023, 15, 3030. [Google Scholar] [CrossRef]
- Isolauri, E.; Sütas, Y.; Salo, M.K.; Isosomppi, R.; Kaila, M. Elimination diet in cow’s milk allergy: Risk for impaired growth in young children. J. Pediatr. 1998, 132, 1004–1009. [Google Scholar] [CrossRef]
- Rajani, P.S.; Martin, H.; Groetch, M.; Järvinen, K.M. Presentation and Management of Food Allergy in Breastfed Infants and Risks of Maternal Elimination Diets. J. Allergy Clin. Immunol. Pract. 2020, 8, 52–67. [Google Scholar] [CrossRef]
- Radlović, N.; Leković, Z.; Radlović, V.; Simić, D.; Ristić, D.; Vuletić, B. Food allergy in children. Srp. Arh. Celok. Lek. 2016, 144, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Akarsu, A.; Brindisi, G.; Fiocchi, A.; Zicari, A.M.; Arasi, S. Oral Immunotherapy in Food Allergy: A Critical Pediatric Perspective. Front. Pediatr. 2022, 10, 842196. [Google Scholar] [CrossRef]
- Smeekens, J.M.; Bagley, K.; Kulis, M. Tree nut allergies: Allergen homology, cross-reactivity, and implications for therapy. Clin. Exp. Allergy 2018, 48, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Andorf, S.; Borres, M.P.; Block, W.; Tupa, D.; Bollyky, J.B.; Sampath, V.; Elizur, A.; Lidholm, J.; Jones, J.E.; Galli, S.J.; et al. Association of Clinical Reactivity with Sensitization to Allergen Components in Multifood-Allergic Children. J. Allergy Clin. Immunol. Pract. 2017, 5, 1325–1334.e4. [Google Scholar] [CrossRef] [PubMed]
- Price, A.; Ramachandran, S.; Smith, G.P.; Stevenson, M.L.; Pomeranz, M.K.; Cohen, D.E. Oral Allergy Syndrome (Pollen-Food Allergy Syndrome). Dermatitis 2015, 26, 78–88. [Google Scholar] [CrossRef]
- Wangorsch, A.; Jamin, A.; Lidholm, J.; Gräni, N.; Lang, C.; Ballmer-Weber, B.; Vieths, S.; Scheurer, S. Identification and implication of an allergenic PR-10 protein from walnut in birch pollen associated walnut allergy. Mol. Nutr. Food Res. 2017, 61, 1600902. [Google Scholar] [CrossRef]
- Mothes-Luksch, N.; Raith, M.; Stingl, G.; Focke-Tejkl, M.; Razzazi-Fazeli, E.; Zieglmayer, R.; Wöhrl, S.; Swoboda, I. Pru p 3, a marker allergen for lipid transfer protein sensitization also in Central Europe. Allergy 2017, 72, 1415–1418. [Google Scholar] [CrossRef]
- Santos, A.F.; Riggioni, C.; Agache, I.; Akdis, C.A.; Akdis, M.; Alvarez-Perea, A.; Alvaro-Lozano, M.; Ballmer-Weber, B.; Barni, S.; Beyer, K.; et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy 2023, 78, 3057–3076. [Google Scholar] [CrossRef] [PubMed]
- Frati, F.; Incorvaia, C.; Cavaliere, C.; Di Cara, G.; Marcucci, F.; Esposito, S.; Masieri, S. The skin prick test. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S1), 19–24. [Google Scholar] [PubMed]
- Torres Córdova, P. Skin test (Skin Prick Test) in food allergy. Rev Alerg Mex. 2023, 70, 242–244. [Google Scholar] [CrossRef]
- Peters, R.L.; Krawiec, M.; Koplin, J.J.; Santos, A.F. Update on food allergy. Pediatr. Allergy Immunol. 2021, 32, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Calamelli, E.; Trozzo, A.; Di Blasi, E.; Serra, L.; Bottau, P. Hazelnut Allergy. Medicina 2021, 57, 67. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.; Tripodi, S.; Panetta, V.; Perna, S.; Potapova, E.; Dondi, A.; Bernardini, R.; Caffarelli, C.; Casani, A.; Cervone, R.; et al. Early molecular biomarkers predicting the evolution of allergic rhinitis and its comorbidities: A longitudinal multicenter study of a patient cohort. Pediatr. Allergy Immunol. 2019, 30, 325–334. [Google Scholar] [CrossRef]
- Lange, L.; Beyer, K.; Kleine-Tebbe, J. Benefits and limitations of molecular diagnostics in peanut allergy: Part 14 of the series Molecular Allergology. Allergo J. Int. 2014, 23, 158–163. [Google Scholar] [CrossRef]
- Barni, S.; Liccioli, G.; Sarti, L.; Giovannini, M.; Novembre, E.; Mori, F. Immunoglobulin E (IgE)-Mediated Food Allergy in Children: Epidemiology, Pathogenesis, Diagnosis, Prevention, and Management. Medicina 2020, 56, 111. [Google Scholar] [CrossRef]
- Riggioni, C.; Ricci, C.; Moya, B.; Wong, D.; van Goor, E.; Bartha, I.; Buyuktiryaki, B.; Giovannini, M.; Jayasinghe, S.; Jaumdally, H.; et al. Systematic review and meta-analyses on the accuracy of diagnostic tests for IgE-mediated food allergy. Allergy 2024, 79, 324–352. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, K.; Jeon, S.-A.; Lee, S. Component resolved diagnosis of walnut allergy in young children: Jug r 1 as a major walnut allergen. Asian Pac. J. Allergy Immunol. 2021, 39, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Kuźmiński, A.; Przybyszewski, M.; Przybyszewska, J.; Ukleja-Sokołowska, N.; Pałgan, K.; Bartuzi, Z. Tree nut allergy. Postep. Dermatol. Alergol. 2021, 38, 544–549. [Google Scholar] [CrossRef]
- Mandalari, G.; Mackie, A.R. Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients 2018, 10, 1706. [Google Scholar] [CrossRef]
- Asarnoj, A.; Glaumann, S.; Elfström, L.; Lilja, G.; Lidholm, J.; Nilsson, C.; Wickman, M. Anaphylaxis to Peanut in a Patient Predominantly Sensitized to Ara h 6. Int. Arch. Allergy Immunol. 2012, 159, 209–212. [Google Scholar] [CrossRef]
- Martinet, J.; Couderc, L.; Renosi, F.; Bobée, V.; Marguet, C.; Boyer, O. Diagnostic Value of Antigen-Specific Immunoglobulin E Immunoassays against Ara h 2 and Ara h 8 Peanut Components in Child Food Allergy. Int. Arch. Allergy Immunol. 2016, 169, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Flinterman, A.E.; Akkerdaas, J.H.; Knulst, A.C.; van Ree, R.; Pasmans, S.G. Hazelnut allergy: From pollen-associated mild allergy to severe anaphylactic reactions. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Roux, K.H.; Teuber, S.S.; Sathe, S.K. Tree nut allergens. Int. Arch. Allergy Immunol. 2003, 131, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Carrapatoso, I.; Oliveira, M.B.; Mafra, I. Walnut allergens: Molecular characterization, detection and clinical relevance. Clin. Exp. Allergy 2014, 44, 319–341. [Google Scholar] [CrossRef]
- Elizur, A.; Appel, M.Y.; Nachshon, L.; Levy, M.B.; Epstein-Rigbi, N.; Pontoppidan, B.; Lidholm, J.; Goldberg, M.R. Clinical and Molecular Characterization of Walnut and Pecan Allergy (NUT CRACKER Study). J. Allergy Clin. Immunol. Pract. 2019, 8, 157–165.e2. [Google Scholar] [CrossRef]
- Joyce, K.M.; Boyd, J.; Viernes, J.L. Contact dermatitis following sustained exposure to pecans (Carya illinoensis): A case report. Contact Dermat. 2006, 77, 209–212. [Google Scholar]
- Kattan, J.D.; Sicherer, S.H. Optimizing the Diagnosis of Food Allergy. Immunol. Allergy Clin. N. Am. 2014, 35, 61–76. [Google Scholar] [CrossRef]
- Nowak-Wegrzyn, A.; Assa’ad, A.H.; Bahna, S.L.; Bock, S.A.; Sicherer, S.H.; Teuber, S.S.; Adverse Reactions to Food Committee of American Academy of Allergy, Asthma & Immunology. Work Group report: Oral food challenge testing. J. Allergy Clin. Immunol. 2009, 123, S365–S383. [Google Scholar] [CrossRef]
- Bird, J.A.; Groetch, M.; Allen, K.J.; Bock, S.A.; Leonard, S.; Nowak-Wegrzyn, A.H.; Sicherer, S.; Clark, A.; Fleischer, D.M.; Venter, C.; et al. Conducting an Oral Food Challenge to Peanut in an Infant. J. Allergy Clin. Immunol. Pract. 2017, 5, 301–311.e1. [Google Scholar] [CrossRef]
- Bird, J.A.; Leonard, S.; Groetch, M.; Assa’Ad, A.; Cianferoni, A.; Clark, A.; Crain, M.; Fausnight, T.; Fleischer, D.; Green, T.; et al. Conducting an Oral Food Challenge: An Update to the 2009 Adverse Reactions to Foods Committee Work Group Report. J. Allergy Clin. Immunol. Pract. 2020, 8, 75–90.e17. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Bock, S.A.; Spears, G.C.; Wilson, C.G.; Miyazawa, N.K.; Gleason, M.C.; Gyorkos, E.A.; Murphy, J.R.; Atkins, D.; Leung, D.Y. Oral Food Challenges in Children with a Diagnosis of Food Allergy. J. Pediatr. 2011, 158, 578–583.e1. [Google Scholar] [CrossRef]
- Perry, T.T.; Matsui, E.C.; Conover-Walker, M.K.; Wood, R.A. Risk of oral food challenges. J. Allergy Clin. Immunol. 2004, 114, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- A Sampson, H. Use of food-challenge tests in children. Lancet 2001, 358, 1832–1833. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Cox, A.L.; Vitale, M.; Sampson, H.A. Outcomes of office-based, open food challenges in the management of food allergy. J. Allergy Clin. Immunol. 2011, 128, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A.; Ho, D.G. Relationship between food-specific IgE concentrations and the risk of positive food challenges in children and adolescents. J. Allergy Clin. Immunol. 1997, 100, 444–451. [Google Scholar] [CrossRef]
- Pucar, F.; Kagan, R.; Lim, H.; Clarke, A. Peanut challenge: A retrospective study of 140 patients. Clin. Exp. Allergy 2001, 31, 40–46. [Google Scholar] [CrossRef]
- Kagan, R.; Hayami, D.; Joseph, L.; Pierre, Y.S.; Clarke, A.E. The predictive value of a positive prick skin test to peanut in atopic, peanut-naïve children. Ann. Allergy Asthma Immunol. 2003, 90, 640–645. [Google Scholar] [CrossRef]
- Perry, T.T.; Matsui, E.C.; Conover-Walker, M.K.; Wood, R.A. The relationship of allergen-specific IgE levels and oral food challenge outcome. J. Allergy Clin. Immunol. 2004, 114, 144–149. [Google Scholar] [CrossRef]
- Ueno, H.; Yoshioka, K.; Matsumoto, T. Usefulness of the skin index in predicting the outcome of oral challenges in children. J. Investig. Allergol. Clin. Immunol. 2007, 17, 207–210. [Google Scholar]
- Van Veen, W.J.; Dikkeschei, L.D.; Roberts, G.; Brand, P.L. Predictive value of specific IgE for clinical peanut allergy in children: Relationship with eczema, asthma, and setting (primary or secondary care). Clin. Transl. Allergy 2013, 3, 34. [Google Scholar] [CrossRef]
- Gupta, R.S.; Lau, C.H.; Hamilton, R.G.; Donnell, A.; Newhall, K.K. Predicting Outcomes of Oral Food Challenges by Using the Allergen-Specific IgE–Total IgE Ratio. J. Allergy Clin. Immunol. Pract. 2014, 2, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Beyer, K.; Grabenhenrich, L.; Härtl, M.; Beder, A.; Kalb, B.; Ziegert, M.; Finger, A.; Harandi, N.; Schlags, R.; Gappa, M.; et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy 2015, 70, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, J.; Leung, N.; Wang, L.X.; Lisann, L.; Sicherer, S.H.; Scurlock, A.M.; Pesek, R.; Perry, T.T.; Jones, S.M.; et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. Ann. Allergy Asthma Immunol. 2015, 114, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Buyuktiryaki, B.; Cavkaytar, O.; Sahiner, U.M.; Yilmaz, E.A.; Yavuz, S.T.; Soyer, O.; Sekerel, B.E.; Tuncer, A.; Sackesen, C. Cor a 14, Hazelnut-Specific IgE, and SPT as a Reliable Tool in Hazelnut Allergy Diagnosis in Eastern Mediterranean Children. J. Allergy Clin. Immunol. Pract. 2016, 4, 265–272.e3. [Google Scholar] [CrossRef] [PubMed]
- Arkwright, P.D.; MacMahon, J.; Koplin, J.; Rajput, S.; Cross, S.; Fitzsimons, R.; Davidson, N.; Deshpande, V.; Rao, N.; Lumsden, C.; et al. Severity and threshold of peanut reactivity during hospital-based open oral food challenges: An international multicenter survey. Pediatr. Allergy Immunol. 2018, 29, 754–761. [Google Scholar] [CrossRef]
- Elegbede, C.F.; Papadopoulos, A.; Just, J.; Moneret-Vautrin, D.A.; Deschildre, A.; Crépet, A. Gender, prick test size and rAra h 2 sIgE level may predict the eliciting dose in patients with peanut allergy: Evidence from the Mirabel survey. Clin. Exp. Allergy 2019, 49, 677–689. [Google Scholar] [CrossRef]
- McWilliam, V.; Peters, R.L.; Allen, K.J.; Dharmage, S.C.; Ponsonby, A.-L.; Tang, M.L.; Smart, J.; Perrett, K.; Tey, D.; Robinson, M.; et al. Skin Prick Test Predictive Values for the Outcome of Cashew Challenges in Children. J. Allergy Clin. Immunol. Pract. 2020, 8, 141–148.e2. [Google Scholar] [CrossRef]
- Virkud, Y.V.; Chen, Y.-C.; Stieb, E.S.; Alejos, A.R.; Renton, N.; Shreffler, W.G.; Hesterberg, P.E. Analysis of Oral Food Challenge Outcomes in IgE-Mediated Food Allergies to Almond in a Large Cohort. J. Allergy Clin. Immunol. Pract. 2019, 7, 2359–2368.e3. [Google Scholar] [CrossRef]
- Chong, K.W.; Saffari, S.E.; Chan, N.; Seah, R.; Tan, C.H.; Goh, S.H.; Goh, A.; Loh, W. Predictive value of peanut skin prick test, specific IgE in peanut-sensitized children in Singapore. Asia Pac. Allergy 2019, 9, e21. [Google Scholar] [CrossRef]
- Chua, G.T.; Chong, P.C.Y.; Au, E.Y.L.; Cheong, K.N.; Wong, W.H.S.; Chan, E.Y.T.; Ho, M.H.K.; Lau, Y.L.; Duque, J.S.R. Skin prick testing a better predictor than blood testing for the diagnosis of peanut allergy in Chinese children. Asian Pac. J. Allergy Immunol. 2021, 39, 241–248. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, K.; Lee, E.; Lee, S. Prediction of Food Allergens Sensitization Based on History Taking Technique in Young Children. Korean J. Fam. Med. 2021, 42, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Nagakura, K.; Itonaga, T.; Sato, S.; Ebisawa, M.; Yanagida, N. Macadamia nut-specific IgE levels for predicting anaphylaxis. Pediatr. Allergy Immunol. 2022, 33, e13852. [Google Scholar] [CrossRef] [PubMed]
- Grinek, S.; Suprun, M.; Raghunathan, R.; Tomalin, L.E.; Getts, R.; Bahnson, T.; Lack, G.; Sampson, H.A.; Suarez-Farinas, M. Epitope-Specific IgE at 1 Year of Age Can Predict Peanut Allergy Status at 5 Years. Int. Arch. Allergy Immunol. 2023, 184, 273–278. [Google Scholar] [CrossRef]
- Koutlas, N.; Stallings, A.; Hall, G.; Zhou, C.; Kim-Chang, J.; Mousallem, T. Pediatric oral food challenges in the outpatient setting: A single-center experience. J. Allergy Clin. Immunol. Glob. 2023, 3, 100187. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Nationality | Study Design | Study Population | Food Allergy | SPT | Specific sIgE | Molecular Findings | Outcome | Results |
---|---|---|---|---|---|---|---|---|
Sampson et al., 1997, USA [65] | Retrospective | 196 (0.6–17.9 y; 5.2 y median age) | Peanuts and others | Cutoff SPT = 3 mm Sensitivity = 90%, specificity = 29%, “corrected” NPV = 96%, “corrected” PPV = 12% | sIgE = 0.35 kUA/L 95% PPV = 15 kUA/L 90%PPV = 9 kUA/L 85% NPV = 0.35 kUA/L | Not studied | sIgE: sensitivity = 97%, specificity = 38%, “corrected” NPV = 99%, “corrected” PPV = 15% | Patients with peanut IgE > 15 kUA/L do not need OFC to confirm the diagnosis |
Pucar et al., 2001, Canada [66] | Retrospective | 140 (15 m–17 y; 5.2 y median age) | Peanuts | SPT < 5 mm = OFC negative; SPT ≥ 5 mm = OFC positive | Not studied | Not studied | Sensitivity = 100% Specificity = 62.3% PPV = 28.1% NPV = 100% | In patients with SPT < 5 mm, OFC is usually negative If SPT > 5 mm, OFC is necessary |
Kagan et al., 2003, Canada [67] | Retrospective | 47 (4.5–7.6 y; 5.2–6.4 median age) | Peanuts | SPT = 5 mm, sensitivity and NPV = 100%; SPT = 10 mm, PPV = 80%; SPT = 12 mm, PPV = 90%. | Median sIgE = 0.63 kUA/L in TS; 13.1 UA/L in AS | Not studied | SPT = 5 mm, sensitivity = 100%, NPV = 100% | Small sample size limits applicability of this value |
Perry et al., 2004, USA [68] | Retrospective | 391 (5.3 y median age), including 173 tested for peanut allergy (5.6 y median age) | Peanuts and others (milk, peanuts, wheat, soy) | Not studied | Median IgE = 0.5 kUA/L in TS IgE = 1.9 kUA/L in AS (p < 0.001) | Not studied | Clear history: at IgE < 0.35 kUA/L, 76% passed OFC; at IgE > 5 kUA/ L, none passed OFC No clear history: at IgE < 0.35 kUA/L, 88% passed OFC; at IgE > 5 kUA/L, 77% passed OFC | Patients with a positive history should be challenged at IgE < 2 kUA/L; patients without a positive history should be challenged at IgE = 5 kUA/L |
Ueno et al., 2007, Japan [69] | Retrospective | 51 (35 m median age) | Peanuts (4 OFCs) and others | SPT: sensitivity = 100%, specificity = 11%, PPV = 41%, NPV = 100% | IgE: sensitivity = 91%, specificity = 15%, PPV = 40%, NPV = 73% | Not studied | SPT results are significantly different between the two groups (p = 0.03); IgE is not significantly different | Skin index correlates better than SPT result with OFC outcome |
Van Veen et al., 2013, Netherlands [70] | Retrospective | 427 (0–18 y) 280 completed the study AP: 52 TP: 190 PPA: 38 | Peanuts | Not studied | AS have higher peanut-specific IgE levels than TS (p < 0.001) | Not studied | Probability of positive OFC < 95% even if peanut-specific IgE >100 kU/L Eczema is most strongly related to peanut allergy (OR 3.20, 95% CI 1.30–7.93) | Weak relationship between peanut-sIgE and peanut allergy (limited utility of sIgE in diagnosis) |
Gupta et al., 2014, USA [71] | Prospective | 161 (11 m to 18 y; 4.0 y median age) | Peanuts, tree nuts and others | Not studied | sIgE range in the overall study: 0.1–55.7 kUA/L tIgE range: 2.2–5000 kU/L Ratio range: 0.1–10.5% | Not studied | Peanuts: OFC ratio vs. sIgE AUC = 0.78 vs. 0.56 (p = 0.08) Tree nuts: OFC ratio vs. sIgE AUC = 0.85 vs. 0.60 (p = 0.14) | Ratio showed a significantly higher accuracy than sIgE alone in predicting outcomes of OFCs involving persistent food allergens |
Beyer et al., 2015, Germany [72] | Prospective multicenter | 353 (2–8 y): 210 OFCs with peanuts, 143 OFCs with hazelnuts. | Peanuts and hazelnuts | Not studied | Not studied | Ara h 2 = 0.35 kU/L, sensitivity = 86%, specificity = 86%; Cor a 14 = 0.35 kU/L, sensitivity = 85%, specificity = 81%. | Ara h 2 at 14.4 kU/L and 42 kU/L indicate a 90% and 95% probability of a positive OFC, respectively Cor a 14 at 48 kU/L indicates a 90% probability of a positive OFC | Ara h 2- and Cor a 14-sIgE could be useful for estimating the probability of a positive OFC. |
Song et al., 2015, USA, China [73] | Retrospective | 67 (16 y median age) | Peanuts, tree nuts and others | SPT results are significantly different between positive and negative OFC (p < 0.001) | Median sIgE levels are significantly different between positive and negative OFC (p< 0.001). | Weak positive correlation between Ara h 2 and Ara h 8 OFC severity scores (p = 0.038 and p = 0.0139, respectively) | SPT wheal size, sIgE level and sIgE/sIgG4 ratio are correlated with OFC outcome (p < 0.001, p < 0.001 and p < 0.05) | SPT wheal size and sIgE level are useful in predicting the presence of FA but not the severity of the reaction |
Buyuktiryaki et al., 2016, Turkey [74] | Prospective | 64 (2.1 to 7.2 y; 3.4 y median age) | Hazelnuts | SPT = 5.25 and = 12 mm indicate a 50% and 95% probability of clinical reactivity | IgE values of 4 and 10.2 kU/L to hazelnut extract indicate a 50% and 95% probability of clinical reactivity | Cor a 14 sIgE = 0.48 and = 1.0 kU/L indicate a 50% and 95% probability of clinical reactivity | SPT, hazelnut IgE and Cor a 14 sIgE are higher in AS than in TS (p < 0.004, p < 0.001 and p < 0.001). | Cor a 14 is the most reliable diagnostic test for predicting clinical reactivity in children |
Arkwright et al., 2018, United Kingdom [75] | Retrospective, multicenter, case record | 1634 (1–18 y) | Peanuts | Sensitivity, specificity, PPV and NPV of SPT to peanuts ≥ 3 mm are 93%, 56%, 50% and 94%; those of SPT ≥ 8 mm are 47%, 94%, 81% and 79% | Sensitivity, specificity, PPV and NPV of peanut-specific IgE ≥ 0.35 AUK/L are 80%, 58%, 48% and 86% | Sensitivity, specificity, PPV and NPV of Ara h 2 IgE ≥ 0.35 AUK/L are 57%, 96%, 87% and 84% | SPT ≥ 3 mm had the best NPV (94%), and Ara h 2 ≥ 0.35 AUK/L provided the best PPV (87%) | Wheal size in SPT correlates with the risk of anaphylaxis (relative risk 1.2, 95% CI 1.1–1.3) |
Elegbede et al., 2019, France, Belgium, Luxembourg [76] | Observational, multicenter | 785 (2 to 27 y; 9 y median age); 204 OFCs | Peanuts | Higher size of SPT = higher risk of reacting to a small quantity of peanuts | Not studied | Higher Ara h 2 sIgE level = higher risk of reacting to a small quantity of peanuts | SPT and Ara h 2 correlate with the risk of peanut allergic reaction (beta coefficient and 95% credible interval of 0.05 and 0.01 respectively) | The Cox model is the most effective statistical model to predict threshold doses, based on gender, SPT and Ara h 2 |
McWilliam et al., 2019, Australia, UK [77] | Retrospective | 145 (7.8 y median age) Clinical cohort: 286 (7.1 y median age) | Cashews | Population cohort: SPT > 8 mm in 91% of patients with positive OFC Clinical cohort: SPT > 8 mm in 59% of patients with positive OFC | Not studied | Not studied | Population cohort: SPT cutoff for 95% PPV is 10 mm Clinical cohort: SPT cutoff for 95% PPV is 14 mm | A larger SPT wheal size may be more suitable than the 8 mm cutoff to guide clinical decisions |
Virkud et al., 2019, USA [78] | Retrospective | 590 (1–66 y) | Almonds | Positive OFC is correlated with larger wheal size in the SPT (p = 0.001) | Positive OFC is correlated with higher almond sIgE levels (p < 0.001) and higher peanut IgE levels (p = 0.003) | Not studied | 95% predicted probability of a positive OFC is at SPT = 46 mm and almond-specific IgE = 174 kU/L | Almond-sIgE, almond SPT and age at challenge combined demonstrated good PV for Grade 2/3 allergic reactions |
Chong et al., 2019, Singapore [79] | Retrospective | 328: 269 AP, 59 TP | Peanuts | SPT ≥ 8 mm is highly predictive (>95%) of an allergic reaction | Peanut sIgE ≥ 6 kU/L provided a 95% PPV for clinical reaction | Not studied | Both cutoffs provided a 95% PPV for clinical reaction | These cutoff values can assist clinicians in assessing the risk of peanut OFC |
Chua et al., 2021, China [80] | Single-center, cross-sectional with addition of retrospective data | 31 (1–18 y): 16 AS, 15 TS | Peanuts | At 6 mm: ~95% specificity (p < 0.0001) | No differences in peanut sIgE between TS and AS | Ara h 2 sIgE 0.14 kU(A)/L = highest sensitivity and specificity; at 0.74 kU(A)/L, ~95% specificity (p = 0.02) | SPT (p < 0.0001) and Ara h 2 sIgE (p = 0.02) correlate with peanut allergy sIgE (p = 0.26), Ara h 1 sIgE (p = 0.19) and Ara h 3 sIgE (p = 0.27) do not correlate with peanut allergy | SPT results are the best predictor of peanut allergy in the Chinese pediatric population, followed by Ara h 2 sIgE |
Lee et al., 2021, Korea [81] | Retrospective | 377 (<3 y): 116 for egg whites, 182 for cow’s milk, 17 for walnuts, 22 for soybeans | Walnuts and others | Not studied | Walnut sIgE ≥ 0.35 kU/L: Class 1 = 9/10 (90.0%); Class 2 = 2/3 (66.7%); Class 3 = 1/4 (25.0%) | Not studied | Walnut sIgE ≥ 0.35 kU/L: PPV 90% in class 1 and 84.6% in classes 1–2 (p < 0.05); NPV 57.1% in class 1 and 75% in classes 1–2 (p < 0.05) | There is a correlation between clinical symptom profile and sIgE sensitization rate in patients with walnut allergy (accuracy rate of 76.5%) |
Kubota et al., 2022, Japan [82] | Retrospective | 41 (7.7 y median age); SG: 21; CG: 20 | Macadamia nuts | Not studied | Median value of sIgE: in An group, 7.97 kUA/L; in non-An group, 1.92 kUA/L; in TS, 1.90 kUA/L | Not studied | sIgE median levels are higher in An group than in non-An group (p = 0.02) and CG (p < 0.001) | Optimal sIgE cutoff value is at 3.76 kUA/L, with sensitivity and NPV of 100% |
Grinek et al., 2023, USA [83] | Retrospective | 74 from LEAP cohort (from 4–11 m to 5 y) | Peanuts | Not studied | IgE and IgG4 against specific epitopes: sesIgE, Ara h sIgE, ses-IgG4 | Not studied | Combining sesIgE and IgE to Ara h 1, 2, 3 and 9 could predict the peanut allergy status at 5 y (average validation accuracy of 64%) | IgE antibody profiles at 1 y of age can predict the outcome of peanut OFC at 5 y |
Koutlas et al., 2023, USA [84] | Retrospective | 510 (169 peanuts) | Peanuts (173 OFCs), tree nuts (85 OFC), others (eggs, milk) | Peanut OFC outcomes were not associated with median peanut SPT results | Peanut OFC outcome was not associated with median peanut sIgE levels | Not studied | Food sIgE level < 2 kU/L and SPT < 5 mm result in a valid cutoff with a failure rate of 13% for nonbaked milk, nonbaked eggs and nuts | SPT and sIgE are not predictive of the outcome of OFCs (p > 0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cela, L.; Gravina, A.; Semeraro, A.; Pastore, F.; Morelli, R.; Marchetti, L.; Brindisi, G.; Olivero, F.; Piccioni, M.G.; Zicari, A.M.; et al. Oral Food Challenge in Children with Tree Nut and Peanut Allergy: The Predictive Value of Diagnostic Tests. Diagnostics 2024, 14, 2069. https://doi.org/10.3390/diagnostics14182069
Cela L, Gravina A, Semeraro A, Pastore F, Morelli R, Marchetti L, Brindisi G, Olivero F, Piccioni MG, Zicari AM, et al. Oral Food Challenge in Children with Tree Nut and Peanut Allergy: The Predictive Value of Diagnostic Tests. Diagnostics. 2024; 14(18):2069. https://doi.org/10.3390/diagnostics14182069
Chicago/Turabian StyleCela, Ludovica, Alessandro Gravina, Antonio Semeraro, Francesca Pastore, Rebecca Morelli, Lavinia Marchetti, Giulia Brindisi, Francesca Olivero, Maria Grazia Piccioni, Anna Maria Zicari, and et al. 2024. "Oral Food Challenge in Children with Tree Nut and Peanut Allergy: The Predictive Value of Diagnostic Tests" Diagnostics 14, no. 18: 2069. https://doi.org/10.3390/diagnostics14182069
APA StyleCela, L., Gravina, A., Semeraro, A., Pastore, F., Morelli, R., Marchetti, L., Brindisi, G., Olivero, F., Piccioni, M. G., Zicari, A. M., & Anania, C. (2024). Oral Food Challenge in Children with Tree Nut and Peanut Allergy: The Predictive Value of Diagnostic Tests. Diagnostics, 14(18), 2069. https://doi.org/10.3390/diagnostics14182069