Pulmonary Embolism in Critically Ill Patients—Prevention, Diagnosis, and Management
Abstract
:1. Introduction
2. Thromboembolic Prophylaxis
3. Clinical Suspicion, Diagnosis, and Risk Stratification
3.1. The Role of Continuous Hemodynamic Monitoring
3.2. The Role of Imaging and Other Diagnostic Tests
3.3. Risk Stratification
4. Management of Acute Pulmonary Embolism in the Intensive Care Unit
4.1. Therapeutic Anticoagulation
4.2. Inferior Vena Cava Filters
4.3. Reperfusion Therapies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Minet, C.; Potton, L.; Bonadona, A.; Hamidfar-Roy, R.; Somohano, C.A.; Lugosi, M.; Cartier, J.-C.; Ferretti, G.; Schwebel, C.; Timsit, J.-F. Venous Thromboembolism in the ICU: Main Characteristics, Diagnosis and Thromboprophylaxis. Crit. Care 2015, 19, 287. [Google Scholar] [CrossRef] [PubMed]
- Zochios, V.A.; Keeshan, A. Pulmonary Embolism in the Mechanically-Ventilated Critically Ill Patient: Is it Different? J. Intensive Care Soc. 2013, 14, 36–44. [Google Scholar] [CrossRef]
- McLeod, A.G.; Geerts, W. Venous Thromboembolism Prophylaxis in Critically Ill Patients. Crit. Care Clin. 2011, 27, 765–780. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.D.; McAuley, D.F.; Davies, S.; Gao, F. Discrepancies between Clinical and Postmortem Diagnoses in Critically Ill Patients: An Observational Study. Crit. Care 2003, 7, R129–R132. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z.; Visani, L.; De Rosa, M. Acute Pulmonary Embolism: Clinical Outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999, 353, 1386–1389. [Google Scholar] [CrossRef]
- Stein, P.D.; Terrin, M.L.; Hales, C.A.; Palevsky, H.I.; Saltzman, H.A.; Thompson, B.T.; Weg, J.G. Clinical, Laboratory, Roentgenographic, and Electrocardiographic Findings in Patients with Acute Pulmonary Embolism and No Pre-Existing Cardiac or Pulmonary Disease. Chest 1991, 100, 598–603. [Google Scholar] [CrossRef]
- Haddad, F.; Doyle, R.; Murphy, D.J.; Hunt, S.A. Right Ventricular Function in Cardiovascular Disease, Part II: Pathophysiology, Clinical Importance, and Management of Right Ventricular Failure. Circulation 2008, 117, 1717–1731. [Google Scholar] [CrossRef]
- Marik, P.E. Fever in the ICU. Chest 2000, 117, 855–869. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 Guidelines for Management of Venous Thromboembolism: Prophylaxis for Hospitalized and Nonhospitalized Medical Patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef]
- Nicholson, M.; Chan, N.; Bhagirath, V.; Ginsberg, J. Prevention of Venous Thromboembolism in 2020 and Beyond. J. Clin. Med. 2020, 9, 2467. [Google Scholar] [CrossRef]
- Helms, J.; Middeldorp, S.; Spyropoulos, A.C. Thromboprophylaxis in Critical Care. Intensive Care Med. 2023, 49, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Barritt, D.W.; Jordan, S.C. Anticoagulant Drugs in the Treatment of Pulmonary Embolism. A Controlled Trial. Lancet 1960, 1, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- Bruce Soloway, M.D. Low-Molecular-Weight Heparin Outperforms Other Options for Inpatient VTE Prophylaxis. NEJM J. Watch 2022, 2022. [Google Scholar]
- Boddi, M.; Peris, A. Deep Vein Thrombosis in Intensive Care. Adv. Exp. Med. Biol. 2017, 906, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhen, J.; Huang, L.; Zhou, J.; Yao, L.; Xu, L.; Zhang, W.; Zhang, G.; Chen, Q.; Cheng, B.; et al. The Risk Factors for Deep Venous Thrombosis in Critically Ill Older Adult Patients: A Subgroup Analysis of a Prospective, Multicenter, Observational Study. BMC Geriatr. 2022, 22, 977. [Google Scholar] [CrossRef]
- Attia, J.; Ray, J.G.; Cook, D.J.; Douketis, J.; Ginsberg, J.S.; Geerts, W.H. Deep Vein Thrombosis and Its Prevention in Critically Ill Adults. Arch. Intern. Med. 2001, 161, 1268–1279. [Google Scholar] [CrossRef]
- Rogers, M.A.M.; Levine, D.A.; Blumberg, N.; Flanders, S.A.; Chopra, V.; Langa, K.M. Triggers of Hospitalization for Venous Thromboembolism. Circulation 2012, 125, 2092–2099. [Google Scholar] [CrossRef]
- Clayton, T.C.; Gaskin, M.; Meade, T.W. Recent Respiratory Infection and Risk of Venous Thromboembolism: Case-Control Study through a General Practice Database. Int. J. Epidemiol. 2011, 40, 819–827. [Google Scholar] [CrossRef]
- Smeeth, L.; Cook, C.; Thomas, S.; Hall, A.J.; Hubbard, R.; Vallance, P. Risk of Deep Vein Thrombosis and Pulmonary Embolism after Acute Infection in a Community Setting. Lancet 2006, 367, 1075–1079. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and Validation of a Predictive Model for Chemotherapy-Associated Thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Dumaine, R.; Borentain, M.; Bertel, O.; Bode, C.; Gallo, R.; White, H.D.; Collet, J.-P.; Steinhubl, S.R.; Montalescot, G. Intravenous Low-Molecular-Weight Heparins Compared with Unfractionated Heparin in Percutaneous Coronary Intervention: Quantitative Review of Randomized Trials. Arch. Intern. Med. 2007, 167, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Middeldorp, S. Heparin: From Animal Organ Extract to Designer Drug. Thromb. Res. 2008, 122, 753–762. [Google Scholar] [CrossRef] [PubMed]
- SHARMA, S. LOW MOLECULAR WEIGHT HEPARINS. Med. J. Armed Forces India 1998, 54, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, F.; Wan, X.; Wu, G.; Kesse, S.; Wang, S.; He, S. Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes. Molecules 2018, 23, 1757. [Google Scholar] [CrossRef]
- PROTECT Investigators for the Canadian Critical Care Trials Group and the Australian and New Zealand Intensive Care Society Clinical Trials Group; Cook, D.; Meade, M.; Guyatt, G.; Walter, S.; Heels-Ansdell, D.; Warkentin, T.E.; Zytaruk, N.; Crowther, M.; Geerts, W.; et al. Dalteparin versus Unfractionated Heparin in Critically Ill Patients. N. Engl. J. Med. 2011, 364, 1305–1314. [Google Scholar] [CrossRef]
- Ejaz, A.; Ahmed, M.M.; Tasleem, A.; Rafay Khan Niazi, M.; Ahsraf, M.F.; Ahmad, I.; Zakir, A.; Raza, A. Thromboprophylaxis in Intensive Care Unit Patients: A Literature Review. Cureus 2018, 10, e3341. [Google Scholar] [CrossRef]
- Duranteau, J.; Taccone, F.S.; Verhamme, P.; Ageno, W. ESA VTE Guidelines Task Force European Guidelines on Perioperative Venous Thromboembolism Prophylaxis: Intensive Care. Eur. J. Anaesthesiol. 2018, 35, 142–146. [Google Scholar] [CrossRef]
- Cauchie, P.; Piagnerelli, M. What Do We Know about Thromboprophylaxis and Its Monitoring in Critically Ill Patients? Biomedicines 2021, 9, 864. [Google Scholar] [CrossRef]
- Schulman, S.; Sholzberg, M.; Spyropoulos, A.C.; Zarychanski, R.; Resnick, H.E.; Bradbury, C.A.; Connors, J.M.; Falanga, A.; Iba, T.; Kaatz, S.; et al. ISTH Guidelines for Antithrombotic Treatment in COVID-19. J. Thromb. Haemost. 2022, 20, 2214–2225. [Google Scholar] [CrossRef]
- Park, G.; Dhillon, N.K.; Fierro, N.M.; Drevets, P.; Stupinski, J.; Ley, E.J. Creatinine Clearance Predicts the Goal Enoxaparin Dose in Traumatic Brain Injury. J. Trauma. Acute Care Surg. 2024, 96, 270–275. [Google Scholar] [CrossRef]
- Ley, E.J.; Brown, C.V.R.; Moore, E.E.; Sava, J.A.; Peck, K.; Ciesla, D.J.; Sperry, J.L.; Rizzo, A.G.; Rosen, N.G.; Brasel, K.J.; et al. Updated Guidelines to Reduce Venous Thromboembolism in Trauma Patients: A Western Trauma Association Critical Decisions Algorithm. J. Trauma. Acute Care Surg. 2020, 89, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Wickham, N.; Gallus, A.S.; Walters, B.N.J.; Wilson, A. NHMRC VTE Prevention Guideline Adaptation Committee Prevention of Venous Thromboembolism in Patients Admitted to Australian Hospitals: Summary of National Health and Medical Research Council Clinical Practice Guideline. Intern. Med. J. 2012, 42, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.B.; Vogt, K.N.; Lau, B.D.; Aboagye, J.; Parry, N.G.; Streiff, M.B.; Haut, E.R. Venous Thromboembolism Prevention in Emergency General Surgery: A Review. JAMA Surg. 2018, 153, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Ansell, J.; Hirsh, J.; Hylek, E.; Jacobson, A.; Crowther, M.; Palareti, G. Pharmacology and Management of the Vitamin K Antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008, 133, 160S–198S. [Google Scholar] [CrossRef]
- Meyfroidt, G.; Bouzat, P.; Casaer, M.P.; Chesnut, R.; Hamada, S.R.; Helbok, R.; Hutchinson, P.; Maas, A.I.R.; Manley, G.; Menon, D.K.; et al. Management of Moderate to Severe Traumatic Brain Injury: An Update for the Intensivist. Intensive Care Med. 2022, 48, 649–666. [Google Scholar] [CrossRef]
- Matsushima, K.; Leichtle, S.W.; Wild, J.; Young, K.; Chang, G.; Demetriades, D. Anticoagulation Therapy in Patients with Traumatic Brain Injury: An Eastern Association for the Surgery of Trauma Multicenter Prospective Study. Surgery 2021, 169, 470–476. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Rubiano, A.M.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Shutter, L.; et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020, 87, 427. [Google Scholar] [CrossRef]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef]
- Napolitano, M.; Saccullo, G.; Marietta, M.; Carpenedo, M.; Castaman, G.; Cerchiara, E.; Chistolini, A.; Contino, L.; De Stefano, V.; Falanga, A.; et al. Platelet Cut-off for Anticoagulant Therapy in Thrombocytopenic Patients with Blood Cancer and Venous Thromboembolism: An Expert Consensus. Blood Transfus. 2019, 17, 171–180. [Google Scholar] [CrossRef]
- Pang, B.; Kearney, L.; Maccarone, J.; Zhang, J.; Kearney, C.; Sangani, R.; Shankar, D.A.; Gillmeyer, K.R.; Law, A.C.; Bosch, N.A. Association between Early Venous Thromboembolism Prophylaxis, Bleeding Risk, and Venous Thromboembolism among Critically Ill Patients with Thrombocytopenia. Ann. Am. Thorac. Soc. 2023, 20, 917–920. [Google Scholar] [CrossRef]
- Lisman, T.; Caldwell, S.H.; Intagliata, N.M. Haemostatic Alterations and Management of Haemostasis in Patients with Cirrhosis. J. Hepatol. 2022, 76, 1291–1305. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, M.; Cantrell, D.R.; D’Agostino, C.; Jahromi, B.S.; Ansari, S.A.; Potts, M.B. Bivalirudin as a Substitute for Heparin in Neurointervention for Patients with Heparin-Induced Thrombocytopenia. J. Stroke Cerebrovasc. Dis. 2024, 33, 107310. [Google Scholar] [CrossRef] [PubMed]
- Cross, B.; Turner, R.M.; Zhang, J.E.; Pirmohamed, M. Being Precise with Anticoagulation to Reduce Adverse Drug Reactions: Are We There Yet? Pharmacogenom. J. 2024, 24, 7. [Google Scholar] [CrossRef] [PubMed]
- Ng, I.C.; Barnes, C.; Biswas, S.; Wright, D.; Dagal, A. When Is It Safe to Resume Anticoagulation in Traumatic Brain Injury? Curr. Opin. Anaesthesiol. 2022, 35, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Rappold, J.F.; Sheppard, F.R.; Carmichael, S.P., II; Cuschieri, J.; Ley, E.; Rangel, E.; Seshadri, A.J.; Michetti, C.P. Venous Thromboembolism Prophylaxis in the Trauma Intensive Care Unit: An American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document. Trauma. Surg. Acute Care Open 2021, 6, e000643. [Google Scholar] [CrossRef]
- Koehler, D.M.; Shipman, J.; Davidson, M.A.; Guillamondegui, O. Is Early Venous Thromboembolism Prophylaxis Safe in Trauma Patients with Intracranial Hemorrhage. J. Trauma Acute Care Surg. 2011, 70, 324–329. [Google Scholar] [CrossRef]
- Denson, K.; Morgan, D.; Cunningham, R.; Nigliazzo, A.; Brackett, D.; Lane, M.; Smith, B.; Albrecht, R. Incidence of Venous Thromboembolism in Patients with Traumatic Brain Injury. Am. J. Surg. 2007, 193, 380–383; discussion 383–384. [Google Scholar] [CrossRef]
- Salter, B.S.; Weiner, M.M.; Trinh, M.A.; Heller, J.; Evans, A.S.; Adams, D.H.; Fischer, G.W. Heparin-Induced Thrombocytopenia: A Comprehensive Clinical Review. J. Am. Coll. Cardiol. 2016, 67, 2519–2532. [Google Scholar] [CrossRef]
- Greinacher, A. CLINICAL PRACTICE. Heparin-Induced Thrombocytopenia. N. Engl. J. Med. 2015, 373, 252–261. [Google Scholar] [CrossRef]
- Greinacher, A.; Farner, B.; Kroll, H.; Kohlmann, T.; Warkentin, T.E.; Eichler, P. Clinical Features of Heparin-Induced Thrombocytopenia Including Risk Factors for Thrombosis. A Retrospective Analysis of 408 Patients. Thromb. Haemost. 2005, 94, 132–135. [Google Scholar] [CrossRef]
- Arnold, D.M.; Lim, W. A Rational Approach to the Diagnosis and Management of Thrombocytopenia in the Hospitalized Patient. Semin. Hematol. 2011, 48, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Hui, P.; Cook, D.J.; Lim, W.; Fraser, G.A.; Arnold, D.M. The Frequency and Clinical Significance of Thrombocytopenia Complicating Critical Illness: A Systematic Review. Chest 2011, 139, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Greinacher, A.; Gruel, Y.; Aster, R.H.; Chong, B.H. Scientific and standardization committee of the international society on thrombosis and haemostasis Laboratory Testing for Heparin-Induced Thrombocytopenia: A Conceptual Framework and Implications for Diagnosis. J. Thromb. Haemost. 2011, 9, 2498–2500. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E. Fondaparinux: Does It Cause HIT? Can It Treat HIT? Expert. Rev. Hematol. 2010, 3, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-T.; Dylan, M.L.; Lin, J.; Dubois, R.W. Hospitals’ Compliance with Prophylaxis Guidelines for Venous Thromboembolism. Am. J. Health-Syst. Pharm. 2007, 64, 69–76. [Google Scholar] [CrossRef]
- Smythe, M.A.; Priziola, J.; Dobesh, P.P.; Wirth, D.; Cuker, A.; Wittkowsky, A.K. Guidance for the Practical Management of the Heparin Anticoagulants in the Treatment of Venous Thromboembolism. J. Thromb. Thrombolysis 2016, 41, 165–186. [Google Scholar] [CrossRef]
- Sikes, L.; Charles, K.; Antigua, A.; Patel, R.; Imboywa, S.; Cherian, P. Anti-Factor Xa Level Monitoring for Enoxaparin Prophylaxis and Treatment in High-Risk Patient Groups. HCA Healthc. J. Med. 2023, 4, 105–109. [Google Scholar] [CrossRef]
- Wells, P.S.; Ginsberg, J.S.; Anderson, D.R.; Kearon, C.; Gent, M.; Turpie, A.G.; Bormanis, J.; Weitz, J.; Chamberlain, M.; Bowie, D.; et al. Use of a Clinical Model for Safe Management of Patients with Suspected Pulmonary Embolism. Ann. Intern. Med. 1998, 129, 997–1005. [Google Scholar] [CrossRef]
- Pollack, C.V.; Schreiber, D.; Goldhaber, S.Z.; Slattery, D.; Fanikos, J.; O’Neil, B.J.; Thompson, J.R.; Hiestand, B.; Briese, B.A.; Pendleton, R.C.; et al. Clinical Characteristics, Management, and Outcomes of Patients Diagnosed with Acute Pulmonary Embolism in the Emergency Department: Initial Report of EMPEROR (Multicenter Emergency Medicine Pulmonary Embolism in the Real World Registry). J. Am. Coll. Cardiol. 2011, 57, 700–706. [Google Scholar] [CrossRef]
- Miniati, M.; Prediletto, R.; Formichi, B.; Marini, C.; Di Ricco, G.; Tonelli, L.; Allescia, G.; Pistolesi, M. Accuracy of clinical assessment in the diagnosis of pulmonary embolism. Am. J. Respir. Crit. Care Med. 1999, 159, 864–871. [Google Scholar] [CrossRef]
- Douma, R.A.; Mos, I.C.M.; Erkens, P.M.G.; Nizet, T.A.C.; Durian, M.F.; Hovens, M.M.; van Houten, A.A.; Hofstee, H.M.A.; Klok, F.A.; ten Cate, H.; et al. Performance of 4 Clinical Decision Rules in the Diagnostic Management of Acute Pulmonary Embolism: A Prospective Cohort Study. Ann. Intern. Med. 2011, 154, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Millington, S.J.; Aissaoui, N.; Bowcock, E.; Brodie, D.; Burns, K.E.A.; Douflé, G.; Haddad, F.; Lahm, T.; Piazza, G.; Sanchez, O.; et al. High and Intermediate Risk Pulmonary Embolism in the ICU. Intensive Care Med. 2024, 50, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Ende-Verhaar, Y.M.; Becattini, C.; Jimenez, D.; Lankeit, M.; Huisman, M.V.; Konstantinides, S.V.; Klok, F.A. Differential Impact of Syncope on the Prognosis of Patients with Acute Pulmonary Embolism: A Systematic Review and Meta-Analysis. Eur. Heart J. 2018, 39, 4186–4195. [Google Scholar] [CrossRef]
- Shopp, J.D.; Stewart, L.K.; Emmett, T.W.; Kline, J.A. Findings From 12-Lead Electrocardiography That Predict Circulatory Shock From Pulmonary Embolism: Systematic Review and Meta-Analysis. Acad. Emerg. Med. 2015, 22, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, M.; Andrade, J.; Heydari, B.; Ignaszewski, A. Jeremy Swan and the Pulmonary Artery Catheter: Paving the Way for Effective Hemodynamic Monitoring. BCMJ 2009, 51, 302–307. [Google Scholar]
- Zhang, Z.; Xu, X.; Yao, M.; Chen, H.; Ni, H.; Fan, H. Use of the PiCCO System in Critically Ill Patients with Septic Shock and Acute Respiratory Distress Syndrome: A Study Protocol for a Randomized Controlled Trial. Trials 2013, 14, 32. [Google Scholar] [CrossRef]
- Grensemann, J. Cardiac Output Monitoring by Pulse Contour Analysis, the Technical Basics of Less-Invasive Techniques. Front. Med. 2018, 5, 64. [Google Scholar] [CrossRef]
- Shah, M.R.; Hasselblad, V.; Stevenson, L.W.; Binanay, C.; O’Connor, C.M.; Sopko, G.; Califf, R.M. Impact of the Pulmonary Artery Catheter in Critically Ill Patients: Meta-Analysis of Randomized Clinical Trials. JAMA 2005, 294, 1664–1670. [Google Scholar] [CrossRef]
- Mehta, Y.; Arora, D. Newer Methods of Cardiac Output Monitoring. World J. Cardiol. 2014, 6, 1022–1029. [Google Scholar] [CrossRef]
- Grignola, J.C.; Domingo, E. Acute Right Ventricular Dysfunction in Intensive Care Unit. BioMed Res. Int. 2017, 2017, 8217105. [Google Scholar] [CrossRef]
- Tomita, A.; Takada, S.; Fujimoto, T.; Iwasaki, M.; Hayashi, Y. Analysis of Difficulty in Placement of Pulmonary Artery Catheter through the Left Internal Jugular Vein. JA Clin. Rep. 2020, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Sakka, S.G.; Meier-Hellmann, A. Intrathoracic Blood Volume in a Patient with Pulmonary Embolism. Eur. J. Anaesthesiol. EJA 2003, 20, 256. [Google Scholar] [CrossRef]
- Michard, F.; Futier, E.; Desebbe, O.; Biais, M.; Guinot, P.G.; Leone, M.; Licker, M.J.; Molliex, S.; Pirracchio, R.; Provenchère, S.; et al. Pulse Contour Techniques for Perioperative Hemodynamic Monitoring: A Nationwide Carbon Footprint and Cost Estimation. Anaesth. Crit. Care Pain Med. 2023, 42, 101239. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Y.; Zhang, W.; Lu, W.; Chen, M.; Luo, J. Early Interventional Therapy for Acute Massive Pulmonary Embolism Guided by Minimally Invasive Hemodynamic Monitoring. Int. J. Clin. Exp. Med. 2015, 8, 14011–14017. [Google Scholar]
- Stein, P.D.; Henry, J.W.; Gottschalk, A. Reassessment of Pulmonary Angiography for the Diagnosis of Pulmonary Embolism: Relation of Interpreter Agreement to the Order of the Involved Pulmonary Arterial Branch. Radiology 1999, 210, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Hashmi, M.F. Lung Ventilation Perfusion Scan (VQ Scan). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Stein, P.D.; Fowler, S.E.; Goodman, L.R.; Gottschalk, A.; Hales, C.A.; Hull, R.D.; Leeper, K.V.; Popovich, J.; Quinn, D.A.; Sos, T.A.; et al. Multidetector Computed Tomography for Acute Pulmonary Embolism. N. Engl. J. Med. 2006, 354, 2317–2327. [Google Scholar] [CrossRef]
- Murata, M.; Nakagawa, N.; Kawasaki, T.; Yasuo, S.; Yoshida, T.; Ando, K.; Okamori, S.; Okada, Y. Adverse Events during Intrahospital Transport of Critically Ill Patients: A Systematic Review and Meta-Analysis. Am. J. Emerg. Med. 2022, 52, 13–19. [Google Scholar] [CrossRef]
- Knight, P.H.; Maheshwari, N.; Hussain, J.; Scholl, M.; Hughes, M.; Papadimos, T.J.; Guo, W.A.; Cipolla, J.; Stawicki, S.P.; Latchana, N. Complications during Intrahospital Transport of Critically Ill Patients: Focus on Risk Identification and Prevention. Int. J. Crit. Illn. Inj. Sci. 2015, 5, 256–264. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Jones, A.E.; Tumlin, J.A.; Kline, J.A. Prospective Study of the Incidence of Contrast-Induced Nephropathy Among Patients Evaluated for Pulmonary Embolism by Contrast-Enhanced Computed Tomography. Acad. Emerg. Med. 2012, 19, 618–625. [Google Scholar] [CrossRef]
- Turedi, S.; Erdem, E.; Karaca, Y.; Tatli, O.; Sahin, A.; Turkmen, S.; Gunduz, A. The High Risk of Contrast-Induced Nephropathy in Patients with Suspected Pulmonary Embolism Despite Three Different Prophylaxis: A Randomized Controlled Trial. Acad. Emerg. Med. 2016, 23, 1136–1145. [Google Scholar] [CrossRef]
- Wong, A.; Robba, C.; Mayo, P. Critical Care Ultrasound. Intensive Care Med. 2022, 48, 1069–1071. [Google Scholar] [CrossRef] [PubMed]
- Osterwalder, J.; Polyzogopoulou, E.; Hoffmann, B. Point-of-Care Ultrasound—History, Current and Evolving Clinical Concepts in Emergency Medicine. Medicina 2023, 59, 2179. [Google Scholar] [CrossRef] [PubMed]
- Raheja, R.; Brahmavar, M.; Joshi, D.; Raman, D. Application of Lung Ultrasound in Critical Care Setting: A Review. Cureus 2019, 11, e5233. [Google Scholar] [CrossRef] [PubMed]
- Torbicki, A.; Kurzyna, M.; Ciurzynski, M.; Pruszczyk, P.; Pacho, R.; Kuch-Wocial, A.; Szulc, M. Proximal Pulmonary Emboli Modify Right Ventricular Ejection Pattern. Eur. Respir. J. 1999, 13, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Kurnicka, K.; Lichodziejewska, B.; Goliszek, S.; Dzikowska-Diduch, O.; Zdończyk, O.; Kozłowska, M.; Kostrubiec, M.; Ciurzyński, M.; Palczewski, P.; Grudzka, K.; et al. Echocardiographic Pattern of Acute Pulmonary Embolism: Analysis of 511 Consecutive Patients. J. Am. Soc. Echocardiogr. 2016, 29, 907–913. [Google Scholar] [CrossRef]
- Bova, C.; Greco, F.; Misuraca, G.; Serafini, O.; Crocco, F.; Greco, A.; Noto, A. Diagnostic Utility of Echocardiography in Patients with Suspected Pulmonary Embolism. Am. J. Emerg. Med. 2003, 21, 180–183. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Dresden, S.; Mitchell, P.; Rahimi, L.; Leo, M.; Rubin-Smith, J.; Bibi, S.; White, L.; Langlois, B.; Sullivan, A.; Carmody, K. Right Ventricular Dilatation on Bedside Echocardiography Performed by Emergency Physicians Aids in the Diagnosis of Pulmonary Embolism. Ann. Emerg. Med. 2014, 63, 16–24. [Google Scholar] [CrossRef]
- Le Gal, G.; Righini, M.; Sanchez, O.; Roy, P.-M.; Baba-Ahmed, M.; Perrier, A.; Bounameaux, H. A Positive Compression Ultrasonography of the Lower Limb Veins Is Highly Predictive of Pulmonary Embolism on Computed Tomography in Suspected Patients. Thromb. Haemost. 2006, 95, 963–966. [Google Scholar] [CrossRef]
- Nazerian, P.; Volpicelli, G.; Gigli, C.; Lamorte, A.; Grifoni, S.; Vanni, S. Diagnostic Accuracy of Focused Cardiac and Venous Ultrasound Examinations in Patients with Shock and Suspected Pulmonary Embolism. Intern. Emerg. Med. 2018, 13, 567–574. [Google Scholar] [CrossRef]
- Martini, K.; Blüthgen, C.; Walter, J.E.; Nguyen-Kim, T.D.L.; Thienemann, F.; Frauenfelder, T. Patterns of Organizing Pneumonia and Microinfarcts as Surrogate for Endothelial Disruption and Microangiopathic Thromboembolic Events in Patients with Coronavirus Disease 2019. PLoS ONE 2020, 15, e0240078. [Google Scholar] [CrossRef] [PubMed]
- Rocca, E.; Zanza, C.; Longhitano, Y.; Piccolella, F.; Romenskaya, T.; Racca, F.; Savioli, G.; Saviano, A.; Piccioni, A.; Mongodi, S. Lung Ultrasound in Critical Care and Emergency Medicine: Clinical Review. Adv. Respir. Med. 2023, 91, 203–223. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Gonçalves, D.; Cabral, J.P.; Gomes, B.; Teixeira, J.; Mariz, J. Triple POCUS: A New Approach to an Old Problem. Eur. J. Case Rep. Intern. Med. 2018, 5, 000938. [Google Scholar] [CrossRef] [PubMed]
- Nazerian, P.; Vanni, S.; Volpicelli, G.; Gigli, C.; Zanobetti, M.; Bartolucci, M.; Ciavattone, A.; Lamorte, A.; Veltri, A.; Fabbri, A.; et al. Accuracy of Point-of-Care Multiorgan Ultrasonography for the Diagnosis of Pulmonary Embolism. Chest 2014, 145, 950–957. [Google Scholar] [CrossRef]
- Koenig, S.; Chandra, S.; Alaverdian, A.; Dibello, C.; Mayo, P.H.; Narasimhan, M. Ultrasound Assessment of Pulmonary Embolism in Patients Receiving CT Pulmonary Angiography. Chest 2014, 145, 818–823. [Google Scholar] [CrossRef]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Forgie, M.; Kearon, C.; Dreyer, J.; Kovacs, G.; Mitchell, M.; Lewandowski, B.; Kovacs, M.J. Evaluation of D-Dimer in the Diagnosis of Suspected Deep-Vein Thrombosis. N. Engl. J. Med. 2003, 349, 1227–1235. [Google Scholar] [CrossRef]
- Kabrhel, C.; Mark Courtney, D.; Camargo, C.A.; Plewa, M.C.; Nordenholz, K.E.; Moore, C.L.; Richman, P.B.; Smithline, H.A.; Beam, D.M.; Kline, J.A. Factors Associated with Positive D-Dimer Results in Patients Evaluated for Pulmonary Embolism. Acad. Emerg. Med. 2010, 17, 589–597. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Harrison, A.M.; Carrera, P.; Srivali, N.; Kittamongkolchai, W.; Erdogan, A.; Kashani, K.B. Temporal Trends in the Utilization of Vasopressors in Intensive Care Units: An Epidemiologic Study. BMC Pharmacol. Toxicol. 2016, 17, 19. [Google Scholar] [CrossRef]
- Villar, J.; Mora-Ordoñez, J.M.; Soler, J.A.; Mosteiro, F.; Vidal, A.; Ambrós, A.; Fernández, L.; Murcia, I.; Civantos, B.; Romera, M.A.; et al. The PANDORA Study: Prevalence and Outcome of Acute Hypoxemic Respiratory Failure in the Pre-COVID-19 Era. Crit. Care Explor. 2022, 4, e0684. [Google Scholar] [CrossRef]
- Lim, W.; Qushmaq, I.; Devereaux, P.J.; Heels-Ansdell, D.; Lauzier, F.; Ismaila, A.S.; Crowther, M.A.; Cook, D.J. Elevated Cardiac Troponin Measurements in Critically Ill Patients. Arch. Intern. Med. 2006, 166, 2446–2454. [Google Scholar] [CrossRef]
- Konstantinides, S.; Meyer, G. Management of Acute Pulmonary Embolism 2019: What Is New in the Updated European Guidelines? Intern Emerg Med 2020, 15, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Aviram, G.; Cohen, D.; Steinvil, A.; Shmueli, H.; Keren, G.; Banai, S.; Berliner, S.; Rogowski, O. Significance of Reflux of Contrast Medium into the Inferior Vena Cava on Computerized Tomographic Pulmonary Angiogram. Am. J. Cardiol. 2012, 109, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Lyhne, M.D.; Kabrhel, C.; Giordano, N.; Andersen, A.; Nielsen-Kudsk, J.E.; Zheng, H.; Dudzinski, D.M. The Echocardiographic Ratio Tricuspid Annular Plane Systolic Excursion/Pulmonary Arterial Systolic Pressure Predicts Short-Term Adverse Outcomes in Acute Pulmonary Embolism. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Jeremias, A.; Gibson, C.M. Narrative Review: Alternative Causes for Elevated Cardiac Troponin Levels When Acute Coronary Syndromes Are Excluded. Ann. Intern. Med. 2005, 142, 786–791. [Google Scholar] [CrossRef]
- Banerjee, D.; Perrett, C.; Banerjee, A. Troponins, Acute Coronary Syndrome and Renal Disease: From Acute Kidney Injury Through End-Stage Kidney Disease. Eur. Cardiol. 2019, 14, 187–190. [Google Scholar] [CrossRef]
- Puls, M.; Dellas, C.; Lankeit, M.; Olschewski, M.; Binder, L.; Geibel, A.; Reiner, C.; Schäfer, K.; Hasenfuss, G.; Konstantinides, S. Heart-Type Fatty Acid-Binding Protein Permits Early Risk Stratification of Pulmonary Embolism. Eur. Heart J. 2007, 28, 224–229. [Google Scholar] [CrossRef]
- Lankeit, M.; Friesen, D.; Aschoff, J.; Dellas, C.; Hasenfuss, G.; Katus, H.; Konstantinides, S.; Giannitsis, E. Highly Sensitive Troponin T Assay in Normotensive Patients with Acute Pulmonary Embolism. Eur. Heart J. 2010, 31, 1836–1844. [Google Scholar] [CrossRef]
- Klok, F.A.; Mos, I.C.M.; Huisman, M.V. Brain-Type Natriuretic Peptide Levels in the Prediction of Adverse Outcome in Patients with Pulmonary Embolism: A Systematic Review and Meta-Analysis. Am. J. Respir. Crit. Care Med. 2008, 178, 425–430. [Google Scholar] [CrossRef]
- Lankeit, M.; Jiménez, D.; Kostrubiec, M.; Dellas, C.; Kuhnert, K.; Hasenfuß, G.; Pruszczyk, P.; Konstantinides, S. Validation of N-Terminal pro-Brain Natriuretic Peptide Cut-off Values for Risk Stratification of Pulmonary Embolism. Eur. Respir. J. 2014, 43, 1669–1677. [Google Scholar] [CrossRef]
- Vanni, S.; Viviani, G.; Baioni, M.; Pepe, G.; Nazerian, P.; Socci, F.; Bartolucci, M.; Bartolini, M.; Grifoni, S. Prognostic Value of Plasma Lactate Levels among Patients with Acute Pulmonary Embolism: The Thrombo-Embolism Lactate Outcome Study. Ann. Emerg. Med. 2013, 61, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Kostrubiec, M.; Pływaczewska, M.; Jiménez, D.; Lankeit, M.; Ciurzynski, M.; Konstantinides, S.; Pruszczyk, P. The Prognostic Value of Renal Function in Acute Pulmonary Embolism-A Multi-Centre Cohort Study. Thromb. Haemost. 2019, 119, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-Y.; Chen, H.-L.; Ni, S.-S. Hyponatremia and Short-Term Prognosis of Patients with Acute Pulmonary Embolism: A Meta-Analysis. Int. J. Cardiol. 2017, 227, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Wyzgał, A.; Koć, M.; Pacho, S.; Bielecki, M.; Wawrzyniak, R.; Kostrubiec, M.; Ciurzyński, M.; Kurnicka, K.; Goliszek, S.; Paczyńska, M.; et al. Plasma Copeptin for Short Term Risk Stratification in Acute Pulmonary Embolism. J. Thromb. Thrombolysis 2016, 41, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.W.; Toppen, W.; Lee, J.; Wilhalme, H.; Saggar, R.; Barjaktarevic, I.Z. Outcomes and Prognostic Factors of Pulmonary Hypertension Patients Undergoing Emergent Endotracheal Intubation. J. Intensive Care Med. 2023, 38, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Marwah, V.; Shafin Babu, P.S.; Katoch, C.D.S.; Bhati, G.; Peter, D.K. Effectiveness of High Flow Nasal Cannula Oxygen Therapy in Patients of Acute Pulmonary Thromboembolism with Acute Hypoxemic Respiratory Failure. Med. J. Armed Forces India 2022, 78, 448–453. [Google Scholar] [CrossRef]
- Pérez-Nieto, O.R.; Gómez-Oropeza, I.; Quintero-Leyra, A.; Kammar-García, A.; Zamarrón-López, É.I.; Soto-Estrada, M.; Morgado-Villaseñor, L.A.; Meza-Comparán, H.D. Hemodynamic and Respiratory Support in Pulmonary Embolism: A Narrative Review. Front. Med. 2023, 10, 1123793. [Google Scholar] [CrossRef]
- Chopard, R.; Nielsen, P.; Ius, F.; Cebotari, S.; Ecarnot, F.; Pilichowski, H.; Schmidt, M.; Kjaergaard, B.; Sousa-Casasnovas, I.; Ghoreishi, M.; et al. Optimal Reperfusion Strategy in Acute High-Risk Pulmonary Embolism Requiring Extracorporeal Membrane Oxygenation Support: A Systematic Review and Meta-Analysis. Eur. Respir. J. 2022, 60, 2102977. [Google Scholar] [CrossRef]
- Meneveau, N.; Séronde, M.-F.; Blonde, M.-C.; Legalery, P.; Didier-Petit, K.; Briand, F.; Caulfield, F.; Schiele, F.; Bernard, Y.; Bassand, J.-P. Management of Unsuccessful Thrombolysis in Acute Massive Pulmonary Embolism. Chest 2006, 129, 1043–1050. [Google Scholar] [CrossRef]
- Ius, F.; Hoeper, M.M.; Fegbeutel, C.; Kühn, C.; Olsson, K.; Koigeldiyev, N.; Tudorache, I.; Warnecke, G.; Optenhöfel, J.; Puntigam, J.O.; et al. Extracorporeal Membrane Oxygenation and Surgical Embolectomy for High-Risk Pulmonary Embolism. Eur. Respir. J. 2019, 53, 1801773. [Google Scholar] [CrossRef]
- Stevens, S.M.; Woller, S.C.; Baumann Kreuziger, L.; Doerschug, K.; Geersing, G.-J.; Klok, F.A.; King, C.S.; Murin, S.; Vintch, J.R.E.; Wells, P.S.; et al. Antithrombotic Therapy for VTE Disease: Compendium and Review of CHEST Guidelines 2012–2021. Chest 2024, 166, 388–404. [Google Scholar] [CrossRef]
- Giri, J.; Sista, A.K.; Weinberg, I.; Kearon, C.; Kumbhani, D.J.; Desai, N.D.; Piazza, G.; Gladwin, M.T.; Chatterjee, S.; Kobayashi, T.; et al. Interventional Therapies for Acute Pulmonary Embolism: Current Status and Principles for the Development of Novel Evidence: A Scientific Statement from the American Heart Association. Circulation 2019, 140, e774–e801. [Google Scholar] [CrossRef] [PubMed]
- Barnes, G.; Giri, J.; Courtney, D.M.; Naydenov, S.; Wood, T.; Rosovsky, R.; Rosenfield, K.; Kabrhel, C. National PERTTM Consortium Research Committee Nuts and Bolts of Running a Pulmonary Embolism Response Team: Results from an Organizational Survey of the National PERTTM Consortium Members. Hosp. Pract. (1995) 2017, 45, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Barnes, G.D.; Kabrhel, C.; Courtney, D.M.; Naydenov, S.; Wood, T.; Rosovsky, R.; Rosenfield, K.; Giri, J. National PERT Consortium Research Committee Diversity in the Pulmonary Embolism Response Team Model: An Organizational Survey of the National PERT Consortium Members. Chest 2016, 150, 1414–1417. [Google Scholar] [CrossRef] [PubMed]
- Bejjani, A.; Khairani, C.D.; Campia, U.; Piazza, G. Pulmonary Embolism Response Teams: Theory, Implementation, and Unanswered Questions. J. Clin. Med. 2022, 11, 6129. [Google Scholar] [CrossRef] [PubMed]
- Hobohm, L.; Farmakis, I.T.; Keller, K.; Scibior, B.; Mavromanoli, A.C.; Sagoschen, I.; Münzel, T.; Ahrens, I.; Konstantinides, S. Pulmonary Embolism Response Team (PERT) Implementation and Its Clinical Value across Countries: A Scoping Review and Meta-Analysis. Clin. Res. Cardiol. 2023, 112, 1351–1361. [Google Scholar] [CrossRef]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 Guidelines for Management of Venous Thromboembolism: Treatment of Deep Vein Thrombosis and Pulmonary Embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef]
- Chiasakul, T.; Mullier, F.; Lecompte, T.; Nguyen, P.; Cuker, A. Laboratory Monitoring of Heparin Anticoagulation in Hemodialysis: Rationale and Strategies. Semin. Nephrol. 2023, 43, 151477. [Google Scholar] [CrossRef]
- Raschke, R.A.; Reilly, B.M.; Guidry, J.R.; Fontana, J.R.; Srinivas, S. The Weight-Based Heparin Dosing Nomogram Compared with a “Standard Care” Nomogram. A Randomized Controlled Trial. Ann. Intern. Med. 1993, 119, 874–881. [Google Scholar] [CrossRef]
- Levy, J.H.; Frere, C.; Koster, A. Resistance to Unfractionated Heparin in the ICU: Evaluation and Management Options. Intensive Care Med. 2023, 49, 1005–1007. [Google Scholar] [CrossRef]
- Mismetti, P.; Laporte, S.; Pellerin, O.; Ennezat, P.-V.; Couturaud, F.; Elias, A.; Falvo, N.; Meneveau, N.; Quere, I.; Roy, P.-M.; et al. Effect of a Retrievable Inferior Vena Cava Filter plus Anticoagulation vs Anticoagulation Alone on Risk of Recurrent Pulmonary Embolism: A Randomized Clinical Trial. JAMA 2015, 313, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Wu, A.; Tam, M.; Spain, J.; McKinney, J.M.; Wang, W. Caval Penetration by Inferior Vena Cava Filters: A Systematic Literature Review of Clinical Significance and Management. Circulation 2015, 132, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Angel, L.F.; Tapson, V.; Galgon, R.E.; Restrepo, M.I.; Kaufman, J. Systematic Review of the Use of Retrievable Inferior Vena Cava Filters. J. Vasc. Interv. Radiol. 2011, 22, 1522–1530.e3. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Carrier, M.; Klok, F.A. High-Risk Pulmonary Embolism in the Intensive Care Unit. Intensive Care Med. 2023, 49, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.; Hobohm, L.; Ebner, M.; Kresoja, K.-P.; Münzel, T.; Konstantinides, S.V.; Lankeit, M. Trends in Thrombolytic Treatment and Outcomes of Acute Pulmonary Embolism in Germany. Eur. Heart J. 2020, 41, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Lauder, L.; Pérez Navarro, P.; Götzinger, F.; Ewen, S.; Al Ghorani, H.; Haring, B.; Lepper, P.M.; Kulenthiran, S.; Böhm, M.; Link, A.; et al. Mechanical Thrombectomy in Intermediate- and High-Risk Acute Pulmonary Embolism: Hemodynamic Outcomes at Three Months. Respir. Res. 2023, 24, 257. [Google Scholar] [CrossRef]
- Hong Son, P.D.; Uoc, N.H.; Lu, P.H.; Hung, D.Q.; Vo, H.-L. Surgical Pulmonary Embolectomy in a Multi-Trauma Patient: One-Center Experience in the Resource-Limited Setting. SAGE Open Med. Case Rep. 2020, 8, 2050313X2095375. [Google Scholar] [CrossRef]
- Loyalka, P.; Ansari, M.Z.; Cheema, F.H.; Miller, C.C.; Rajagopal, S.; Rajagopal, K. Surgical Pulmonary Embolectomy and Catheter-Based Therapies for Acute Pulmonary Embolism: A Contemporary Systematic Review. J. Thorac. Cardiovasc. Surg. 2018, 156, 2155–2167. [Google Scholar] [CrossRef]
Agent | Dose * |
---|---|
Unfractionated heparin | 5000 IU × 2 SC |
Dalteparin | 5000 IU × 1 SC |
Enoxaparin | 40 mg × 1 SC |
Bemiparin | 3500 IU × 1 SC |
Nadroparin | 2850 IU × 1 SC |
Tinzaparin | 4500 IU × 1 SC |
Reviparin | 1431 IU × 1 SC |
Fondaparinux | 2500 IU × 1 SC |
The Simplified Geneva Clinical Prediction Rule | Points | Useful in ICU |
---|---|---|
History of PE/DVT | 1 | |
HR 75–94 b.p.m. | 1 | |
HR ≥ 95 b.p.m. | 2 | |
Fracture/surgery within previous 30 d. | 1 | |
Hemoptysis | 1 | |
Active malignancy | 1 | |
Unilateral leg pain | 1 | |
Unilateral leg edema and pain on deep venous palpation | 1 | |
Age > 65 years | 1 | |
The Simplified Wells Prediction Rule | ||
Signs and symptoms of DVT | 3 | |
Alternate diagnosis less likely than PE | 3 | |
HR > 100 b.p.m. | 1.5 | |
Bed-bound or surgery in the previous 28 d. | 1.5 | |
History of DVT/PE | 1.5 | |
Hemoptysis | 1 | |
Active malignancy | 1 |
Risk of Early Mortality | Hemodynamic Instability | sPESI ≥ 1 | Right Ventricular Dysfunction | Cardiac Troponin Elevation |
---|---|---|---|---|
High | + | + | + | + |
Intermediate–high | - | + | + | + |
Intermediate–low | - | + | +/- | +/- |
Low | - | - | - | - |
Challenges in critically ill patients | >50% on vasopressors [99] | >25% have non ARDS hypoxemia [100] | Can be caused by concomittant heart/lung disease, MV, and ARDS [70] | Reported rate > 40% in critically ill populations [101] |
The Simplified Pulmonary Embolism Severity Index | ||
---|---|---|
>80 years | 1 | |
Active malignancy | 1 | |
Chronic heart failure | 1 | |
Chronic lung disease | 1 | |
HR ≥ 110 b.p.m. | 1 | |
SBP < 100 mmHg | 1 | |
O2 Sat < 90% | 1 |
Biomarker | Reference Values | Cut-off Values for Risk Stratification | Physiological Role | Comments |
---|---|---|---|---|
High-sensitivity troponin T | <14 pg/mL * | 14 pg/mL if <75 y.o. 45 pg/mL if 75 y.o. | Marker of myocardial injury | High NPV for acute PE; associated with outcomes and mortality |
H-FABP | 1.7 ± 0.9 ng/mL $ | 6 ng/mL | Marker of myocardial injury | Associated with outcomes and mortality |
BNP NT-proBNP | BNP < 100 pg/mL NT-proBNP < 125 pg/mL if <75 y.o. < 450 pg/mL if >75 y.o. | 600 pg/mL | Index of right ventricular strain | Associated with outcomes and mortality |
Serum lactate | <2 mmol/L | 2 mmol/L | Balance between tissue oxygen supply and demand | Predictive of PE-related complications |
eGFR | 90 to 120 mL/min/1.73 m2 | ≤60 mL/min/1.73 m2 | Index of renal function | Associated with 30-day mortality |
NGAL | 50–149 ng/mL | >75 ng/ml | Index of renal injury | Associated with 30-day mortality |
Cystatin C | 500–1000 ng/ml | >1900 ng/ml | Index of renal injury | Associated with 30-day mortality |
Serum Na | 135–145 mEq/L | <135 meq/L | Index of total body water | Predictive of in-hospital mortality |
Copeptin | 1–13.8 pmol/L | 4 pmol/L | Marker of endogenous stress | Increased risk of adverse outcome |
Agent | Dose a |
---|---|
Unfractionated heparin | 80 IU/kg IV bolus, followed by continuous IV infusion of 18 units/kg/h IV |
Dalteparin | 100 IU/kg × 2 SC |
200 IU/kg × 1 SC | |
Enoxaparin | 1.0 mg/kg × 2 SC |
1.5 mg/kg × 1 SC | |
Nadroparin | 86 IU/kg × 2 SC |
171 IU/kg × 1 SC | |
Tinzaparin | 175 IU/kg × 1 SC |
Fondaparinux b | BW < 50 kg: 5 mg × 1 SC |
BW 50–100 kg: 7.5 mg × 1 SC | |
BW > 100 kg: 10 mg × 1 SC |
Agent | Dose a |
---|---|
rtPA | 100 mg/2 h, IV. In cases of extreme hemodynamic compromise, consider 0.6 mg/kg/15 min, IV (max. 50 mg) |
Streptokinase | 250,000 IU/50 min, then 100,000 IU/h for 12–24 h, IV |
Urokinase | 4400 IU/kg/10 min, then 4400 IU/kg/h for 12–24 h, IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrettou, C.S.; Dima, E.; Sigala, I. Pulmonary Embolism in Critically Ill Patients—Prevention, Diagnosis, and Management. Diagnostics 2024, 14, 2208. https://doi.org/10.3390/diagnostics14192208
Vrettou CS, Dima E, Sigala I. Pulmonary Embolism in Critically Ill Patients—Prevention, Diagnosis, and Management. Diagnostics. 2024; 14(19):2208. https://doi.org/10.3390/diagnostics14192208
Chicago/Turabian StyleVrettou, Charikleia S., Effrosyni Dima, and Ioanna Sigala. 2024. "Pulmonary Embolism in Critically Ill Patients—Prevention, Diagnosis, and Management" Diagnostics 14, no. 19: 2208. https://doi.org/10.3390/diagnostics14192208
APA StyleVrettou, C. S., Dima, E., & Sigala, I. (2024). Pulmonary Embolism in Critically Ill Patients—Prevention, Diagnosis, and Management. Diagnostics, 14(19), 2208. https://doi.org/10.3390/diagnostics14192208